File: GB_AxB_saxpy3_coarseGus_notM_phase5.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 503; asm: 369; python: 125; awk: 10
file content (116 lines) | stat: -rw-r--r-- 4,584 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_coarseGus_notM_phase5: C<!M>=A*B, coarse Gustavson, phase5
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

{

    //--------------------------------------------------------------------------
    // phase5: coarse Gustavson task, C<!M>=A*B
    //--------------------------------------------------------------------------

    // Since the mask is !M:
    // Hf [i] < mark    : M(i,j)=0, C(i,j) is not yet seen.
    // Hf [i] == mark   : M(i,j)=1, so C(i,j) is ignored.
    // Hf [i] == mark+1 : M(i,j)=0, and C(i,j) has been seen.

    for (int64_t kk = kfirst ; kk <= klast ; kk++)
    {
        int64_t pC = Cp [kk] ;
        int64_t cjnz = Cp [kk+1] - pC ;
        if (cjnz == 0) continue ;   // nothing to do
        GB_GET_B_j ;                // get B(:,j)
        #ifndef GB_GENERIC
        if (cjnz == cvlen)          // C(:,j) is dense
        { 
            // This is not used for the generic saxpy3.
            GB_COMPUTE_DENSE_C_j ;  // C(:,j) = A*B(:,j)
            continue ;
        }
        #endif
        GB_GET_M_j ;            // get M(:,j)
        mark += 2 ;
        int64_t mark1 = mark+1 ;

        // scatter M(:,j) into the Gustavson workspace
        GB_SCATTER_M_j (pM_start, pM_end, mark) ;

        if (16 * cjnz > cvlen)
        {

            //------------------------------------------------------------------
            // C(:,j) is not very sparse
            //------------------------------------------------------------------

            for ( ; pB < pB_end ; pB++)         // scan B(:,j)
            {
                GB_GET_B_kj_INDEX ;             // get k of B(k,j)
                GB_GET_A_k ;                    // get A(:,k)
                if (aknz == 0) continue ;
                GB_GET_B_kj ;                   // bkj = B(k,j)
                // scan A(:,k)
                for (int64_t pA = pA_start ; pA < pA_end ; pA++)
                {
                    GB_GET_A_ik_INDEX ;         // get i of A(i,k)
                    int64_t hf = Hf [i] ;
                    if (hf < mark)
                    { 
                        // C(i,j) = A(i,k) * B(k,j)
                        Hf [i] = mark1 ;        // mark as seen
                        GB_MULT_A_ik_B_kj ;     // t = A(i,k)*B(k,j)
                        GB_HX_WRITE (i, t) ;    // Hx [i] = t
                    }
                    else if (hf == mark1)
                    { 
                        // C(i,j) += A(i,k) * B(k,j)
                        GB_MULT_A_ik_B_kj ;     // t =A(i,k)*B(k,j)
                        GB_HX_UPDATE (i, t) ;   // Hx [i] += t
                    }
                }
            }
            GB_GATHER_ALL_C_j(mark1) ;  // gather into C(:,j) 

        }
        else
        {

            //------------------------------------------------------------------
            // C(:,j) is very sparse
            //------------------------------------------------------------------

            for ( ; pB < pB_end ; pB++)         // scan B(:,j)
            {
                GB_GET_B_kj_INDEX ;             // get k of B(k,j)
                GB_GET_A_k ;                    // get A(:,k)
                if (aknz == 0) continue ;
                GB_GET_B_kj ;                   // bkj = B(k,j)
                // scan A(:,k)
                for (int64_t pA = pA_start ; pA < pA_end ; pA++)
                {
                    GB_GET_A_ik_INDEX ;         // get i of A(i,k)
                    int64_t hf = Hf [i] ;
                    if (hf < mark)
                    { 
                        // C(i,j) = A(i,k) * B(k,j)
                        Hf [i] = mark1 ;        // mark as seen
                        GB_MULT_A_ik_B_kj ;     // t = A(i,k)*B(k,j)
                        GB_HX_WRITE (i, t) ;    // Hx [i] = t
                        Ci [pC++] = i ;         // create C(:,j) pattern
                    }
                    else if (hf == mark1)
                    { 
                        // C(i,j) += A(i,k) * B(k,j)
                        GB_MULT_A_ik_B_kj ;     // t =A(i,k)*B(k,j)
                        GB_HX_UPDATE (i, t) ;   // Hx [i] += t
                    }
                }
            }
            GB_SORT_AND_GATHER_C_j ;    // gather into C(:,j)
        }
    }
}