1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_symbolic_template: symbolic analysis for GB_AxB_saxpy3
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Symbolic analysis for C=A*B, C<M>=A*B or C<!M>=A*B, via GB_AxB_saxpy3.
// Coarse tasks compute nnz (C (:,j)) for each of their vectors j. Fine tasks
// just scatter the mask M into the hash table. This phase does not depend on
// the semiring, nor does it depend on the type of C, A, or B. It does access
// the values of M, if the mask matrix M is present and not structural.
// If B is hypersparse, C must also be hypersparse.
// Otherwise, C must be sparse.
// The sparsity of A and B are #defined' constants for this method,
// as is the 3 cases of the mask (no M, M, or !M).
#include "GB_AxB_saxpy3.h"
#include "GB_AxB_saxpy3_template.h"
#include "GB_atomics.h"
#include "GB_unused.h"
#define GB_META16
#include "GB_meta16_definitions.h"
void GB_EVAL2 (GB (AxB_saxpy3_sym), GB_MASK_A_B_SUFFIX)
(
GrB_Matrix C, // Cp is computed for coarse tasks
#if ( !GB_NO_MASK )
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
#endif
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
)
{
//--------------------------------------------------------------------------
// get M, A, B, and C
//--------------------------------------------------------------------------
int64_t *restrict Cp = C->p ;
const int64_t cvlen = C->vlen ;
const int64_t *restrict Bp = B->p ;
const int64_t *restrict Bh = B->h ;
const int8_t *restrict Bb = B->b ;
const int64_t *restrict Bi = B->i ;
const int64_t bvlen = B->vlen ;
ASSERT (GB_B_IS_SPARSE == GB_IS_SPARSE (B)) ;
ASSERT (GB_B_IS_HYPER == GB_IS_HYPERSPARSE (B)) ;
ASSERT (GB_B_IS_BITMAP == GB_IS_BITMAP (B)) ;
ASSERT (GB_B_IS_FULL == GB_IS_FULL (B)) ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int8_t *restrict Ab = A->b ;
const int64_t *restrict Ai = A->i ;
const int64_t anvec = A->nvec ;
const int64_t avlen = A->vlen ;
const bool A_jumbled = A->jumbled ;
ASSERT (GB_A_IS_SPARSE == GB_IS_SPARSE (A)) ;
ASSERT (GB_A_IS_HYPER == GB_IS_HYPERSPARSE (A)) ;
ASSERT (GB_A_IS_BITMAP == GB_IS_BITMAP (A)) ;
ASSERT (GB_A_IS_FULL == GB_IS_FULL (A)) ;
#if GB_A_IS_HYPER
const int64_t *restrict A_Yp = A->Y->p ;
const int64_t *restrict A_Yi = A->Y->i ;
const int64_t *restrict A_Yx = A->Y->x ;
int64_t A_hash_bits = A->Y->vdim - 1 ;
#endif
#if ( !GB_NO_MASK )
const int64_t *restrict Mp = M->p ;
const int64_t *restrict Mh = M->h ;
const int8_t *restrict Mb = M->b ;
const int64_t *restrict Mi = M->i ;
const GB_void *restrict Mx = (GB_void *) (Mask_struct ? NULL : (M->x)) ;
size_t msize = M->type->size ;
int64_t mnvec = M->nvec ;
int64_t mvlen = M->vlen ;
const bool M_is_hyper = GB_IS_HYPERSPARSE (M) ;
const bool M_is_bitmap = GB_IS_BITMAP (M) ;
const bool M_jumbled = GB_JUMBLED (M) ;
// get the M hyper_hash
const int64_t *restrict M_Yp = NULL ;
const int64_t *restrict M_Yi = NULL ;
const int64_t *restrict M_Yx = NULL ;
int64_t M_hash_bits = 0 ;
{
if (M_is_hyper)
{
// mask is present, and hypersparse
M_Yp = M->Y->p ;
M_Yi = M->Y->i ;
M_Yx = M->Y->x ;
M_hash_bits = M->Y->vdim - 1 ;
}
}
#endif
//==========================================================================
// phase1: count nnz(C(:,j)) for coarse tasks, scatter M for fine tasks
//==========================================================================
// At this point, all of Hf [...] is zero, for all tasks.
// Hi and Hx are not initialized.
int taskid ;
#pragma omp parallel for num_threads(nthreads) schedule(static,1)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
int64_t hash_size = SaxpyTasks [taskid].hsize ;
bool use_Gustavson = (hash_size == cvlen) ;
if (taskid < nfine)
{
//------------------------------------------------------------------
// no work for fine tasks in phase1 if M is not present
//------------------------------------------------------------------
#if ( !GB_NO_MASK )
{
//--------------------------------------------------------------
// get the task descriptor
//--------------------------------------------------------------
int64_t kk = SaxpyTasks [taskid].vector ;
int64_t bjnz = (Bp == NULL) ? bvlen : (Bp [kk+1] - Bp [kk]) ;
// no work to do if B(:,j) is empty
if (bjnz == 0) continue ;
// partition M(:,j)
GB_GET_M_j ; // get M(:,j)
int team_size = SaxpyTasks [taskid].team_size ;
int leader = SaxpyTasks [taskid].leader ;
int my_teamid = taskid - leader ;
int64_t mystart, myend ;
GB_PARTITION (mystart, myend, mjnz, my_teamid, team_size) ;
mystart += pM_start ;
myend += pM_start ;
if (use_Gustavson)
{
//----------------------------------------------------------
// phase1: fine Gustavson task, C<M>=A*B or C<!M>=A*B
//----------------------------------------------------------
// Scatter the values of M(:,j) into Hf. No atomics needed
// since all indices i in M(;,j) are unique. Do not
// scatter the mask if M(:,j) is a dense vector, since in
// that case the numeric phase accesses M(:,j) directly,
// not via Hf.
if (mjnz > 0)
{
int8_t *restrict
Hf = (int8_t *restrict) SaxpyTasks [taskid].Hf ;
GB_SCATTER_M_j (mystart, myend, 1) ;
}
}
else if (!M_in_place)
{
//----------------------------------------------------------
// phase1: fine hash task, C<M>=A*B or C<!M>=A*B
//----------------------------------------------------------
// If M_in_place is true, this is skipped. The mask
// M is dense, and is used in-place.
// The least significant 2 bits of Hf [hash] is the flag f,
// and the upper bits contain h, as (h,f). After this
// phase1, if M(i,j)=1 then the hash table contains
// ((i+1),1) in Hf [hash] at some location.
// Later, the flag values of f = 2 and 3 are also used.
// Only f=1 is set in this phase.
// h == 0, f == 0: unoccupied and unlocked
// h == i+1, f == 1: occupied with M(i,j)=1
int64_t *restrict
Hf = (int64_t *restrict) SaxpyTasks [taskid].Hf ;
int64_t hash_bits = (hash_size-1) ;
// scan my M(:,j)
for (int64_t pM = mystart ; pM < myend ; pM++)
{
GB_GET_M_ij (pM) ; // get M(i,j)
if (!mij) continue ; // skip if M(i,j)=0
int64_t i = GBI (Mi, pM, mvlen) ;
int64_t i_mine = ((i+1) << 2) + 1 ; // ((i+1),1)
for (GB_HASH (i))
{
int64_t hf ;
// swap my hash entry into the hash table;
// does the following using an atomic capture:
// { hf = Hf [hash] ; Hf [hash] = i_mine ; }
GB_ATOMIC_CAPTURE_INT64 (hf, Hf [hash], i_mine) ;
if (hf == 0) break ; // success
// i_mine has been inserted, but a prior entry was
// already there. It needs to be replaced, so take
// ownership of this displaced entry, and keep
// looking until a new empty slot is found for it.
i_mine = hf ;
}
}
}
}
#endif
}
else
{
//------------------------------------------------------------------
// coarse tasks: compute nnz in each vector of A*B(:,kfirst:klast)
//------------------------------------------------------------------
int64_t *restrict
Hf = (int64_t *restrict) SaxpyTasks [taskid].Hf ;
int64_t kfirst = SaxpyTasks [taskid].start ;
int64_t klast = SaxpyTasks [taskid].end ;
int64_t mark = 0 ;
if (use_Gustavson)
{
//--------------------------------------------------------------
// phase1: coarse Gustavson task
//--------------------------------------------------------------
#if ( GB_NO_MASK )
{
// phase1: coarse Gustavson task, C=A*B
#include "GB_AxB_saxpy3_coarseGus_noM_phase1.c"
}
#elif ( !GB_MASK_COMP )
{
// phase1: coarse Gustavson task, C<M>=A*B
#include "GB_AxB_saxpy3_coarseGus_M_phase1.c"
}
#else
{
// phase1: coarse Gustavson task, C<!M>=A*B
#include "GB_AxB_saxpy3_coarseGus_notM_phase1.c"
}
#endif
}
else
{
//--------------------------------------------------------------
// phase1: coarse hash task
//--------------------------------------------------------------
int64_t *restrict Hi = SaxpyTasks [taskid].Hi ;
int64_t hash_bits = (hash_size-1) ;
#if ( GB_NO_MASK )
{
//----------------------------------------------------------
// phase1: coarse hash task, C=A*B
//----------------------------------------------------------
#undef GB_CHECK_MASK_ij
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
}
#elif ( !GB_MASK_COMP )
{
//----------------------------------------------------------
// phase1: coarse hash task, C<M>=A*B
//----------------------------------------------------------
if (M_in_place)
{
//------------------------------------------------------
// M(:,j) is dense. M is not scattered into Hf.
//------------------------------------------------------
#undef GB_CHECK_MASK_ij
#define GB_CHECK_MASK_ij \
bool mij = \
(M_is_bitmap ? Mjb [i] : 1) && \
(Mask_struct ? 1 : (Mjx [i] != 0)) ; \
if (!mij) continue ;
switch (msize)
{
default:
case GB_1BYTE :
#undef M_TYPE
#define M_TYPE uint8_t
#undef M_SIZE
#define M_SIZE 1
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_2BYTE :
#undef M_TYPE
#define M_TYPE uint16_t
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_4BYTE :
#undef M_TYPE
#define M_TYPE uint32_t
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_8BYTE :
#undef M_TYPE
#define M_TYPE uint64_t
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_16BYTE :
#undef M_TYPE
#define M_TYPE uint64_t
#undef M_SIZE
#define M_SIZE 2
#undef GB_CHECK_MASK_ij
#define GB_CHECK_MASK_ij \
bool mij = \
(M_is_bitmap ? Mjb [i] : 1) && \
(Mask_struct ? 1 : \
(Mjx [2*i] != 0) || \
(Mjx [2*i+1] != 0)) ; \
if (!mij) continue ;
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
}
}
else
{
//------------------------------------------------------
// M is sparse and scattered into Hf
//------------------------------------------------------
#include "GB_AxB_saxpy3_coarseHash_M_phase1.c"
}
}
#else
{
//----------------------------------------------------------
// phase1: coarse hash task, C<!M>=A*B
//----------------------------------------------------------
if (M_in_place)
{
//------------------------------------------------------
// M(:,j) is dense. M is not scattered into Hf.
//------------------------------------------------------
#undef GB_CHECK_MASK_ij
#define GB_CHECK_MASK_ij \
bool mij = \
(M_is_bitmap ? Mjb [i] : 1) && \
(Mask_struct ? 1 : (Mjx [i] != 0)) ; \
if (mij) continue ;
switch (msize)
{
default:
case GB_1BYTE :
#undef M_TYPE
#define M_TYPE uint8_t
#undef M_SIZE
#define M_SIZE 1
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_2BYTE :
#undef M_TYPE
#define M_TYPE uint16_t
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_4BYTE :
#undef M_TYPE
#define M_TYPE uint32_t
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_8BYTE :
#undef M_TYPE
#define M_TYPE uint64_t
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
case GB_16BYTE :
#undef M_TYPE
#define M_TYPE uint64_t
#undef M_SIZE
#define M_SIZE 2
#undef GB_CHECK_MASK_ij
#define GB_CHECK_MASK_ij \
bool mij = \
(M_is_bitmap ? Mjb [i] : 1) && \
(Mask_struct ? 1 : \
(Mjx [2*i] != 0) || \
(Mjx [2*i+1] != 0)) ; \
if (mij) continue ;
#include "GB_AxB_saxpy3_coarseHash_phase1.c"
break ;
}
}
else
{
//------------------------------------------------------
// M is sparse and scattered into Hf
//------------------------------------------------------
#include "GB_AxB_saxpy3_coarseHash_notM_phase1.c"
}
}
#endif
}
}
}
//--------------------------------------------------------------------------
// check result for phase1 for fine tasks
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
#if ( !GB_NO_MASK )
{
for (taskid = 0 ; taskid < nfine ; taskid++)
{
int64_t kk = SaxpyTasks [taskid].vector ;
ASSERT (kk >= 0 && kk < B->nvec) ;
int64_t bjnz = (Bp == NULL) ? bvlen : (Bp [kk+1] - Bp [kk]) ;
// no work to do if B(:,j) is empty
if (bjnz == 0) continue ;
int64_t hash_size = SaxpyTasks [taskid].hsize ;
bool use_Gustavson = (hash_size == cvlen) ;
int leader = SaxpyTasks [taskid].leader ;
if (leader != taskid) continue ;
GB_GET_M_j ; // get M(:,j)
if (mjnz == 0) continue ;
int64_t mjcount2 = 0 ;
int64_t mjcount = 0 ;
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
GB_GET_M_ij (pM) ; // get M(i,j)
if (mij) mjcount++ ;
}
if (use_Gustavson)
{
// phase1: fine Gustavson task, C<M>=A*B or C<!M>=A*B
int8_t *restrict
Hf = (int8_t *restrict) SaxpyTasks [taskid].Hf ;
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
GB_GET_M_ij (pM) ; // get M(i,j)
int64_t i = GBI (Mi, pM, mvlen) ;
ASSERT (Hf [i] == mij) ;
}
for (int64_t i = 0 ; i < cvlen ; i++)
{
ASSERT (Hf [i] == 0 || Hf [i] == 1) ;
if (Hf [i] == 1) mjcount2++ ;
}
ASSERT (mjcount == mjcount2) ;
}
else if (!M_in_place)
{
// phase1: fine hash task, C<M>=A*B or C<!M>=A*B
// h == 0, f == 0: unoccupied and unlocked
// h == i+1, f == 1: occupied with M(i,j)=1
int64_t *restrict
Hf = (int64_t *restrict) SaxpyTasks [taskid].Hf ;
int64_t hash_bits = (hash_size-1) ;
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
GB_GET_M_ij (pM) ; // get M(i,j)
if (!mij) continue ; // skip if M(i,j)=0
int64_t i = GBI (Mi, pM, mvlen) ;
int64_t i_mine = ((i+1) << 2) + 1 ; // ((i+1),1)
int64_t probe = 0 ;
for (GB_HASH (i))
{
int64_t hf = Hf [hash] ;
if (hf == i_mine)
{
mjcount2++ ;
break ;
}
ASSERT (hf != 0) ;
probe++ ;
ASSERT (probe < cvlen) ;
}
}
ASSERT (mjcount == mjcount2) ;
mjcount2 = 0 ;
for (int64_t hash = 0 ; hash < hash_size ; hash++)
{
int64_t hf = Hf [hash] ;
int64_t h = (hf >> 2) ; // empty (0), or a 1-based
int64_t f = (hf & 3) ; // 0 if empty or 1 if occupied
if (f == 1) ASSERT (h >= 1 && h <= cvlen) ;
ASSERT (hf == 0 || f == 1) ;
if (f == 1) mjcount2++ ;
}
ASSERT (mjcount == mjcount2) ;
}
}
}
#endif
#endif
}
|