1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
//------------------------------------------------------------------------------
// GB_dense_subassign_25_template: C<M> = A where C is empty and A is dense
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C<M> = A where C starts as empty, M is structural, and A is dense. The
// pattern of C is an exact copy of M. A is full, dense, or bitmap.
// M is sparse or hypersparse, and C is constructed with the same pattern as M.
{
//--------------------------------------------------------------------------
// get C, M, and A
//--------------------------------------------------------------------------
ASSERT (GB_sparsity (M) == GB_sparsity (C)) ;
int64_t *restrict Ci = C->i ;
ASSERT (GB_IS_SPARSE (M) || GB_IS_HYPERSPARSE (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
const int64_t *restrict Mp = M->p ;
const int64_t *restrict Mh = M->h ;
const int64_t *restrict Mi = M->i ;
const int64_t mvlen = M->vlen ;
const bool A_is_bitmap = GB_IS_BITMAP (A) ;
const bool A_iso = A->iso ;
const int8_t *restrict Ab = A->b ;
const int64_t avlen = A->vlen ;
const int64_t *restrict kfirst_Mslice = M_ek_slicing ;
const int64_t *restrict klast_Mslice = M_ek_slicing + M_ntasks ;
const int64_t *restrict pstart_Mslice = M_ek_slicing + M_ntasks * 2 ;
#ifdef GB_ISO_ASSIGN
ASSERT (C->iso) ;
#else
ASSERT (!C->iso) ;
const GB_ATYPE *restrict Ax = (GB_ATYPE *) A->x ;
GB_CTYPE *restrict Cx = (GB_CTYPE *) C->x ;
#endif
//--------------------------------------------------------------------------
// C<M> = A
//--------------------------------------------------------------------------
if (A_is_bitmap)
{
//----------------------------------------------------------------------
// A is bitmap, so zombies can be created in C
//----------------------------------------------------------------------
int64_t nzombies = 0 ;
int tid ;
#pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1) \
reduction(+:nzombies)
for (tid = 0 ; tid < M_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Mslice [tid] ;
int64_t klast = klast_Mslice [tid] ;
int64_t task_nzombies = 0 ;
//------------------------------------------------------------------
// C<M(:,kfirst:klast)> = A(:,kfirst:klast)
//------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//--------------------------------------------------------------
// find the part of M(:,k) to be operated on by this task
//--------------------------------------------------------------
int64_t j = GBH (Mh, k) ;
int64_t pM_start, pM_end ;
GB_get_pA (&pM_start, &pM_end, tid, k,
kfirst, klast, pstart_Mslice, Mp, mvlen) ;
//--------------------------------------------------------------
// C<M(:,j)> = A(:,j)
//--------------------------------------------------------------
// M is hypersparse or sparse. C is the same as M.
// pA points to the start of A(:,j) since A is dense
int64_t pA = j * avlen ;
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
int64_t i = Mi [pM] ;
int64_t p = pA + i ;
if (Ab [p])
{
// C(i,j) = A(i,j)
#ifndef GB_ISO_ASSIGN
GB_COPY_A_TO_C (Cx, pM, Ax, p, A_iso) ;
#endif
}
else
{
// C(i,j) becomes a zombie
task_nzombies++ ;
Ci [pM] = GB_FLIP (i) ;
}
}
}
nzombies += task_nzombies ;
}
C->nzombies = nzombies ;
}
else
{
//----------------------------------------------------------------------
// A is full, so no zombies will appear in C
//----------------------------------------------------------------------
#ifndef GB_ISO_ASSIGN
{
int tid ;
#pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < M_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Mslice [tid] ;
int64_t klast = klast_Mslice [tid] ;
//--------------------------------------------------------------
// C<M(:,kfirst:klast)> = A(:,kfirst:klast)
//--------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//----------------------------------------------------------
// find the part of M(:,k) to be operated on by this task
//----------------------------------------------------------
int64_t j = GBH (Mh, k) ;
int64_t pM_start, pM_end ;
GB_get_pA (&pM_start, &pM_end, tid, k,
kfirst, klast, pstart_Mslice, Mp, mvlen) ;
//----------------------------------------------------------
// C<M(:,j)> = A(:,j)
//----------------------------------------------------------
// M is hypersparse or sparse. C is the same as M.
// pA points to the start of A(:,j) since A is dense
int64_t pA = j * avlen ;
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
// C(i,j) = A(i,j)
int64_t p = pA + GBI (Mi, pM, mvlen) ;
GB_COPY_A_TO_C (Cx, pM, Ax, p, A_iso) ;
}
}
}
}
#endif
}
}
#undef GB_ISO_ASSIGN
|