1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
//------------------------------------------------------------------------------
// GB_full_add_template: phase2 for C=A+B, C<M>=A+B, C<!M>=A+B, C is full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C is full. The mask M is not present (otherwise, C would be sparse,
// hypersparse, or bitmap). All of these methods are asymptotically optimal.
// ------------------------------------------
// C = A + B
// ------------------------------------------
// full . sparse full
// full . bitmap full
// full . full sparse
// full . full bitmap
// full . full full
// If C is iso and full, this phase has nothing to do.
#ifndef GB_ISO_ADD
{
int64_t p ;
ASSERT (M == NULL) ;
ASSERT (A_is_full || B_is_full) ;
ASSERT (C_sparsity == GxB_FULL) ;
if (A_is_full && B_is_full)
{
//----------------------------------------------------------------------
// Method30: C, A, B are all full
//----------------------------------------------------------------------
#pragma omp parallel for num_threads(C_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
// C (i,j) = A (i,j) + B (i,j)
GB_LOAD_A (aij, Ax, p, A_iso) ;
GB_LOAD_B (bij, Bx, p, B_iso) ;
GB_BINOP (GB_CX (p), aij, bij, p % vlen, p / vlen) ;
}
}
else if (A_is_full)
{
//----------------------------------------------------------------------
// C and A are full; B is hypersparse, sparse, or bitmap
//----------------------------------------------------------------------
if (B_is_bitmap)
{
//------------------------------------------------------------------
// Method31: C and A are full; B is bitmap
//------------------------------------------------------------------
#pragma omp parallel for num_threads(C_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
if (Bb [p])
{
// C (i,j) = A (i,j) + B (i,j)
GB_LOAD_A (aij, Ax, p, A_iso) ;
GB_LOAD_B (bij, Bx, p, B_iso) ;
GB_BINOP (GB_CX (p), aij, bij, p % vlen, p / vlen) ;
}
else
{
#ifdef GB_EWISEUNION
{
// C (i,j) = A(i,j) + beta
GB_LOAD_A (aij, Ax, p, A_iso) ;
GB_BINOP (GB_CX (p), aij, beta_scalar,
p % vlen, p / vlen);
}
#else
{
// C (i,j) = A (i,j)
GB_COPY_A_TO_C (GB_CX (p), Ax, p, A_iso) ;
}
#endif
}
}
}
else
{
//------------------------------------------------------------------
// Method32: C and A are full; B is sparse or hypersparse
//------------------------------------------------------------------
#pragma omp parallel for num_threads(C_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
#ifdef GB_EWISEUNION
{
// C (i,j) = A(i,j) + beta
GB_LOAD_A (aij, Ax, p, A_iso) ;
GB_BINOP (GB_CX (p), aij, beta_scalar,
p % vlen, p / vlen) ;
}
#else
{
// C (i,j) = A (i,j)
GB_COPY_A_TO_C (GB_CX (p), Ax, p, A_iso) ;
}
#endif
}
GB_SLICE_MATRIX (B, 8, chunk) ;
#pragma omp parallel for num_threads(B_nthreads) schedule(dynamic,1)
for (taskid = 0 ; taskid < B_ntasks ; taskid++)
{
int64_t kfirst = kfirst_Bslice [taskid] ;
int64_t klast = klast_Bslice [taskid] ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// find the part of B(:,k) for this task
int64_t j = GBH (Bh, k) ;
int64_t pB_start, pB_end ;
GB_get_pA (&pB_start, &pB_end, taskid, k, kfirst,
klast, pstart_Bslice, Bp, vlen) ;
int64_t pC_start = j * vlen ;
// traverse over B(:,j), the kth vector of B
for (int64_t pB = pB_start ; pB < pB_end ; pB++)
{
// C (i,j) = A (i,j) + B (i,j)
int64_t i = Bi [pB] ;
int64_t p = pC_start + i ;
GB_LOAD_A (aij, Ax, p , A_iso) ;
GB_LOAD_B (bij, Bx, pB, B_iso) ;
GB_BINOP (GB_CX (p), aij, bij, i, j) ;
}
}
}
}
}
else
{
//----------------------------------------------------------------------
// C and B are full; A is hypersparse, sparse, or bitmap
//----------------------------------------------------------------------
if (A_is_bitmap)
{
//------------------------------------------------------------------
// Method33: C and B are full; A is bitmap
//------------------------------------------------------------------
#pragma omp parallel for num_threads(C_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
if (Ab [p])
{
// C (i,j) = A (i,j) + B (i,j)
GB_LOAD_A (aij, Ax, p, A_iso) ;
GB_LOAD_B (bij, Bx, p, B_iso) ;
GB_BINOP (GB_CX (p), aij, bij, p % vlen, p / vlen) ;
}
else
{
#ifdef GB_EWISEUNION
{
// C (i,j) = alpha + B(i,j)
GB_LOAD_B (bij, Bx, p, B_iso) ;
GB_BINOP (GB_CX (p), alpha_scalar,
bij, p % vlen, p / vlen);
}
#else
{
// C (i,j) = B (i,j)
GB_COPY_B_TO_C (GB_CX (p), Bx, p, B_iso) ;
}
#endif
}
}
}
else
{
//------------------------------------------------------------------
// Method34: C and B are full; A is hypersparse or sparse
//------------------------------------------------------------------
#pragma omp parallel for num_threads(C_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
#ifdef GB_EWISEUNION
{
// C (i,j) = alpha + B(i,j)
GB_LOAD_B (bij, Bx, p, B_iso) ;
GB_BINOP (GB_CX (p), alpha_scalar, bij,
p % vlen, p / vlen) ;
}
#else
{
// C (i,j) = B (i,j)
GB_COPY_B_TO_C (GB_CX (p), Bx, p, B_iso) ;
}
#endif
}
GB_SLICE_MATRIX (A, 8, chunk) ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (taskid = 0 ; taskid < A_ntasks ; taskid++)
{
int64_t kfirst = kfirst_Aslice [taskid] ;
int64_t klast = klast_Aslice [taskid] ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// find the part of A(:,k) for this task
int64_t j = GBH (Ah, k) ;
int64_t pA_start, pA_end ;
GB_get_pA (&pA_start, &pA_end, taskid, k, kfirst,
klast, pstart_Aslice, Ap, vlen) ;
int64_t pC_start = j * vlen ;
// traverse over A(:,j), the kth vector of A
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// C (i,j) = A (i,j) + B (i,j)
int64_t i = Ai [pA] ;
int64_t p = pC_start + i ;
GB_LOAD_A (aij, Ax, pA, A_iso) ;
GB_LOAD_B (bij, Bx, p , B_iso) ;
GB_BINOP (GB_CX (p), aij, bij, i, j) ;
}
}
}
}
}
}
#endif
|