1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
//------------------------------------------------------------------------------
// GB_meta16_definitions.h: methods that depend on the sparsity of A and B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Define macros that depend on the sparsity of A and B for GB_meta16_factory.
// These macros are only used by saxpy3 methods.
//------------------------------------------------------------------------------
// GB_GET_B_j: prepare to iterate over B(:,j)
//------------------------------------------------------------------------------
#undef GB_GET_B_j
#if defined ( GB_META16 )
#if ( GB_B_IS_HYPER || GB_A_IS_HYPER )
// A or B are hyper
#define GB_GET_B_j \
GB_GET_B_j_FOR_ALL_FORMATS (GB_A_IS_HYPER,GB_B_IS_SPARSE,GB_B_IS_HYPER)
#else
#if ( GB_B_IS_SPARSE )
// B is sparse
#define GB_GET_B_j \
const int64_t j = kk ; \
int64_t pB = Bp [kk] ; \
const int64_t pB_end = Bp [kk+1] ; \
const int64_t bjnz = pB_end - pB ; \
GB_GET_T_FOR_SECONDJ
#else
// B is bitmap or full
#define GB_GET_B_j \
const int64_t j = kk ; \
int64_t pB = kk * bvlen ; \
const int64_t pB_end = pB + bvlen ; \
const int64_t bjnz = bvlen ; \
GB_GET_T_FOR_SECONDJ
#endif
#endif
#else
// define GB_GET_B_j for all sparsity formats
#define GB_GET_B_j \
GB_GET_B_j_FOR_ALL_FORMATS (A_is_hyper, B_is_sparse, B_is_hyper)
#endif
//------------------------------------------------------------------------------
// GB_GET_B_kj_INDEX: get the index k of the entry B(k,j)
//------------------------------------------------------------------------------
#undef GB_GET_B_kj_INDEX
#if defined ( GB_META16 )
#if ( GB_B_IS_HYPER || GB_B_IS_SPARSE )
// B is hyper or sparse
#define GB_GET_B_kj_INDEX \
const int64_t k = Bi [pB]
#elif ( GB_B_IS_BITMAP )
// B is bitmap
#define GB_GET_B_kj_INDEX \
if (!Bb [pB]) continue ; \
const int64_t k = pB % bvlen
#else
// B is full
#define GB_GET_B_kj_INDEX \
const int64_t k = pB % bvlen
#endif
#else
// for any format of B
#define GB_GET_B_kj_INDEX \
if (!GBB (Bb, pB)) continue ; \
const int64_t k = GBI (Bi, pB, bvlen)
#endif
//------------------------------------------------------------------------------
// GB_GET_A_k: prepare to iterate over the vector A(:,k)
//------------------------------------------------------------------------------
#undef GB_GET_A_k
#if defined ( GB_META16 )
#if ( GB_A_IS_HYPER )
// A is hyper
#define GB_GET_A_k GB_GET_A_k_FOR_ALL_FORMATS (true)
#elif ( GB_A_IS_SPARSE )
// A is sparse
#define GB_GET_A_k \
const int64_t pA_start = Ap [k] ; \
const int64_t pA_end = Ap [k+1] ; \
const int64_t aknz = pA_end - pA_start
#else
// A is bitmap or full
#define GB_GET_A_k \
const int64_t pA_start = k * avlen ; \
const int64_t pA_end = pA_start + avlen ; \
const int64_t aknz = avlen
#endif
#else
// define GB_GET_A_k for all sparsity formats
#define GB_GET_A_k GB_GET_A_k_FOR_ALL_FORMATS (A_is_hyper)
#endif
//------------------------------------------------------------------------------
// GB_GET_A_ik_INDEX: get the index i of the entry A(i,k)
//------------------------------------------------------------------------------
#undef GB_GET_A_ik_INDEX
#if defined ( GB_META16 )
#if ( GB_A_IS_HYPER || GB_A_IS_SPARSE )
// A is hyper or sparse
#define GB_GET_A_ik_INDEX \
const int64_t i = Ai [pA]
#elif ( GB_A_IS_BITMAP )
// A is bitmap
#define GB_GET_A_ik_INDEX \
if (!Ab [pA]) continue ; \
const int64_t i = pA % avlen
#else
// A is full
#define GB_GET_A_ik_INDEX \
const int64_t i = pA % avlen
#endif
#else
// for any format of A
#define GB_GET_A_ik_INDEX \
if (!GBB (Ab, pA)) continue ; \
const int64_t i = GBI (Ai, pA, avlen)
#endif
//------------------------------------------------------------------------------
// GB_COMPUTE_C_j_WHEN_NNZ_B_j_IS_ONE: compute C(:,j) when nnz(B(:,j)) == 1
//------------------------------------------------------------------------------
// C(:,j) = A(:,k)*B(k,j) when there is a single entry in B(:,j)
// The mask must not be present. A must be sparse or hypersparse.
#undef GB_COMPUTE_C_j_WHEN_NNZ_B_j_IS_ONE
#if GB_IS_ANY_PAIR_SEMIRING
// ANY_PAIR: result is purely symbolic; no numeric work to do
#define GB_COMPUTE_C_j_WHEN_NNZ_B_j_IS_ONE \
ASSERT (A_is_sparse || A_is_hyper) ; \
GB_GET_B_kj_INDEX ; /* get index k of B(k,j) */ \
GB_GET_A_k ; /* get A(:,k) */ \
memcpy (Ci + pC, Ai + pA_start, aknz * sizeof (int64_t)) ; \
/* C becomes jumbled if A is jumbled */ \
task_C_jumbled = task_C_jumbled || A_jumbled ;
#else
// typical semiring
#define GB_COMPUTE_C_j_WHEN_NNZ_B_j_IS_ONE \
ASSERT (A_is_sparse || A_is_hyper) ; \
GB_GET_B_kj_INDEX ; /* get index k of B(k,j) */ \
GB_GET_A_k ; /* get A(:,k) */ \
GB_GET_B_kj ; /* bkj = B(k,j) */ \
/* scan A(:,k) */ \
for (int64_t pA = pA_start ; pA < pA_end ; pA++) \
{ \
GB_GET_A_ik_INDEX ; /* get index i of A(i,k) */ \
GB_MULT_A_ik_B_kj ; /* t = A(i,k)*B(k,j) */ \
GB_CIJ_WRITE (pC, t) ; /* Cx [pC] = t */ \
Ci [pC++] = i ; \
} \
/* C becomes jumbled if A is jumbled */ \
task_C_jumbled = task_C_jumbled || A_jumbled ;
#endif
//------------------------------------------------------------------------------
// GB_COMPUTE_DENSE_C_j: compute C(:,j)=A*B(:,j) when C(:,j) is completely dense
//------------------------------------------------------------------------------
// This method is not used for the saxpy3 generic method.
#undef GB_COMPUTE_DENSE_C_j
#if GB_IS_ANY_PAIR_SEMIRING
// ANY_PAIR: result is purely symbolic; no numeric work to do
#define GB_COMPUTE_DENSE_C_j \
for (int64_t i = 0 ; i < cvlen ; i++) \
{ \
Ci [pC + i] = i ; \
}
#else
// typical semiring
#define GB_COMPUTE_DENSE_C_j \
for (int64_t i = 0 ; i < cvlen ; i++) \
{ \
Ci [pC + i] = i ; \
GB_CIJ_WRITE (pC + i, GB_IDENTITY) ; /* C(i,j)=0 */ \
} \
for ( ; pB < pB_end ; pB++) /* scan B(:,j) */ \
{ \
GB_GET_B_kj_INDEX ; /* get index k of B(k,j) */ \
GB_GET_A_k ; /* get A(:,k) */ \
if (aknz == 0) continue ; /* skip if A(:,k) empty */ \
GB_GET_B_kj ; /* bkj = B(k,j) */ \
/* scan A(:,k) */ \
for (int64_t pA = pA_start ; pA < pA_end ; pA++) \
{ \
GB_GET_A_ik_INDEX ; /* get index i of A(i,k) */ \
GB_MULT_A_ik_B_kj ; /* t = A(i,k)*B(k,j) */ \
GB_CIJ_UPDATE (pC + i, t) ; /* Cx [pC+i]+=t */ \
} \
}
#endif
//------------------------------------------------------------------------------
// GB_SCAN_M_j_OR_A_k: compute C(:,j) using linear scan or binary search
//------------------------------------------------------------------------------
// C(:,j)<M(:,j)>=A(:,k)*B(k,j) using one of two methods
#undef GB_SCAN_M_j_OR_A_k
#define GB_SCAN_M_j_OR_A_k(A_ok_for_binary_search) \
{ \
if (A_ok_for_binary_search && aknz > 256 && mjnz_much < aknz && \
mjnz < mvlen && aknz < avlen) \
{ \
/* M and A are both sparse, and nnz(M(:,j)) is much less than */ \
/* nnz(A(:,k)); scan M(:,j), and do binary search for A(i,k).*/ \
/* This requires that A is not jumbled. */ \
int64_t pA = pA_start ; \
for (int64_t pM = pM_start ; pM < pM_end ; pM++) \
{ \
GB_GET_M_ij (pM) ; /* get M(i,j) */ \
if (!mij) continue ; /* skip if M(i,j)=0 */ \
int64_t i = Mi [pM] ; \
bool found ; /* search for A(i,k) */ \
if (M_jumbled) pA = pA_start ; \
int64_t apright = pA_end - 1 ; \
GB_BINARY_SEARCH (i, Ai, pA, apright, found) ; \
if (found) \
{ \
/* C(i,j)<M(i,j)> += A(i,k) * B(k,j) for this method. */ \
/* M(i,j) is always 1, as given in the hash table */ \
GB_IKJ ; \
} \
} \
} \
else \
{ \
/* A(:,j) is sparse enough relative to M(:,j) */ \
/* M and/or A can dense, and either can be jumbled. */ \
/* scan A(:,k), and lookup M(i,j) (in the hash table) */ \
for (int64_t pA = pA_start ; pA < pA_end ; pA++) \
{ \
GB_GET_A_ik_INDEX ; /* get index i of A(i,j) */ \
/* do C(i,j)<M(i,j)> += A(i,k) * B(k,j) for this method */ \
/* M(i,j) may be 0 or 1, as given in the hash table */ \
GB_IKJ ; \
} \
} \
}
|