1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
//------------------------------------------------------------------------------
// GB_select_phase2: C=select(A,thunk)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
{
//--------------------------------------------------------------------------
// get A
//--------------------------------------------------------------------------
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
// if A is iso and the op is user-defined, Ax [0] is passed to the user
// selectop
const GB_ATYPE *restrict Ax = (GB_ATYPE *) A->x ;
size_t asize = A->type->size ;
int64_t avlen = A->vlen ;
int64_t avdim = A->vdim ;
// if A is bitmap, the bitmap selector is always used instead
ASSERT (!GB_IS_BITMAP (A)) ;
#ifndef GB_DIAG_SELECTOR
// if A is full, all opcodes except DIAG use the bitmap selector instead
ASSERT (!GB_IS_FULL (A)) ;
#endif
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = A_ek_slicing + A_ntasks ;
const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
//--------------------------------------------------------------------------
// C = select (A)
//--------------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
//----------------------------------------------------------------------
// selection from vectors kfirst to klast
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// find the part of A(:,k) to be operated on by this task
//------------------------------------------------------------------
int64_t pA_start, pA_end, pC ;
GB_get_pA_and_pC (&pA_start, &pA_end, &pC, tid, k, kfirst, klast,
pstart_Aslice, Cp_kfirst, Cp, avlen, Ap, avlen) ;
//------------------------------------------------------------------
// compact Ai and Ax [pA_start ... pA_end-1] into Ci and Cx
//------------------------------------------------------------------
#if defined ( GB_ENTRY_SELECTOR )
int64_t j = GBH (Ah, k) ;
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// A is never full; that case is now handled by the
// bitmap selector instead.
ASSERT (Ai != NULL) ;
int64_t i = Ai [pA] ;
GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
if (keep)
{
ASSERT (pC >= Cp [k] && pC < Cp [k+1]) ;
Ci [pC] = i ;
// Cx [pC] = Ax [pA] ;
GB_SELECT_ENTRY (Cx, pC, Ax, pA) ;
pC++ ;
}
}
#elif defined ( GB_TRIL_SELECTOR ) || \
defined ( GB_ROWGT_SELECTOR )
// keep Zp [k] to pA_end-1
int64_t p = GB_IMAX (Zp [k], pA_start) ;
int64_t mynz = pA_end - p ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pA_start <= p && p + mynz <= pA_end) ;
ASSERT (pC >= Cp [k] && pC + mynz <= Cp [k+1]) ;
ASSERT (Ai != NULL) ;
memcpy (Ci +pC, Ai +p, mynz*sizeof (int64_t)) ;
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +p*asize, mynz*asize) ;
#endif
}
#elif defined ( GB_TRIU_SELECTOR ) || \
defined ( GB_ROWLE_SELECTOR )
// keep pA_start to Zp[k]-1
int64_t p = GB_IMIN (Zp [k], pA_end) ;
int64_t mynz = p - pA_start ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pC >= Cp [k] && pC + mynz <= Cp [k+1]) ;
ASSERT (Ai != NULL) ;
memcpy (Ci +pC, Ai +pA_start, mynz*sizeof (int64_t)) ;
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +pA_start*asize, mynz*asize) ;
#endif
}
#elif defined ( GB_DIAG_SELECTOR )
// task that owns the diagonal entry does this work
// A can be sparse or full, but not bitmap
int64_t p = Zp [k] ;
if (pA_start <= p && p < pA_end)
{
ASSERT (pC >= Cp [k] && pC + 1 <= Cp [k+1]) ;
Ci [pC] = GBI (Ai, p, avlen) ;
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +p*asize, asize) ;
#endif
}
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// keep pA_start to Zp[k]-1
int64_t p = GB_IMIN (Zp [k], pA_end) ;
int64_t mynz = p - pA_start ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pC >= Cp [k] && pC + mynz <= Cp [k+1]) ;
ASSERT (Ai != NULL) ;
memcpy (Ci +pC, Ai +pA_start, mynz*sizeof (int64_t)) ;
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +pA_start*asize, mynz*asize) ;
#endif
pC += mynz ;
}
// keep Zp[k]+1 to pA_end-1
p = GB_IMAX (Zp [k]+1, pA_start) ;
mynz = pA_end - p ;
if (mynz > 0)
{
// A and C are both sparse or hypersparse
ASSERT (pA_start <= p && p < pA_end) ;
ASSERT (pC >= Cp [k] && pC + mynz <= Cp [k+1]) ;
ASSERT (Ai != NULL) ;
memcpy (Ci +pC, Ai +p, mynz*sizeof (int64_t)) ;
#if !GB_ISO_SELECT
memcpy (Cx +pC*asize, Ax +p*asize, mynz*asize) ;
#endif
}
#endif
}
}
}
|