1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
//------------------------------------------------------------------------------
// GB_sort_template: sort all vectors in a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// macros:
// GB_SORT (func) defined as GB_sort_func_TYPE_ascend or _descend,
// GB_msort_ISO_ascend or _descend,
// or GB_msort_func_UDT
// GB_TYPE bool, int8_, ... or GB_void for UDT or ISO
// GB_ADDR(A,p) A+p for builtin, A + p * GB_SIZE otherwise
// GB_SIZE size of each entry: sizeof (GB_TYPE) for built-in
// GB_GET(x,X,i) x = X [i] for built-in, memcpy for UDT
// GB_COPY(A,i,C,k) A[i] = C [k]
// GB_SWAP(A,i,k) swap A[i] and A[k]
// GB_LT compare two entries, x < y, or x > y for descending sort
//------------------------------------------------------------------------------
// GB_SORT (partition): use a pivot to partition an array
//------------------------------------------------------------------------------
// C.A.R Hoare partition method, partitions an array in-place via a pivot.
// k = partition (A, n) partitions A [0:n-1] such that all entries in
// A [0:k] are <= all entries in A [k+1:n-1].
static inline int64_t GB_SORT (partition)
(
GB_TYPE *restrict A_0, // size n arrays to partition
int64_t *restrict A_1, // size n array
const int64_t n, // size of the array(s) to partition
uint64_t *seed // random number seed, modified on output
#if GB_SORT_UDT
, size_t csize // size of GB_TYPE
, size_t xsize // size of op->xtype
, GxB_binary_function flt // function to test for < (ascend), > (descend)
, GB_cast_function fcast // cast entry to inputs of flt
#endif
)
{
// select a pivot at random
int64_t pivot = ((n < GB_RAND_MAX) ? GB_rand15 (seed) : GB_rand (seed)) % n;
// Pivot = A [pivot]
GB_GET (Pivot0, A_0, pivot) ; // Pivot0 = A_0 [pivot]
int64_t Pivot1 = A_1 [pivot] ;
// At the top of the while loop, A [left+1...right-1] is considered, and
// entries outside this range are in their proper place and not touched.
// Since the input specification of this function is to partition A
// [0..n-1], left must start at -1 and right must start at n.
int64_t left = -1 ;
int64_t right = n ;
// keep partitioning until the left and right sides meet
while (true)
{
// loop invariant: A [0..left] < pivot and A [right..n-1] > Pivot,
// so the region to be considered is A [left+1 ... right-1].
// increment left until finding an entry A [left] >= Pivot
bool less ;
do
{
left++ ;
// a0 = A_0 [left]
GB_GET (a0, A_0, left) ;
// less = (a0, A_1 [left]) < (Pivot0, Pivot1)
GB_LT (less, a0, A_1 [left], Pivot0, Pivot1) ;
}
while (less) ;
// decrement right until finding an entry A [right] <= Pivot
do
{
right-- ;
// a0 = A_0 [right]
GB_GET (a1, A_0, right) ;
// less = (Pivot0, Pivot1) < (a1, A_1 [right])
GB_LT (less, Pivot0, Pivot1, a1, A_1 [right]) ;
}
while (less) ;
// now A [0..left-1] < pivot and A [right+1..n-1] > pivot, but
// A [left] > pivot and A [right] < pivot, so these two entries
// are out of place and must be swapped.
// However, if the two sides have met, the partition is finished.
if (left >= right)
{
// A has been partitioned into A [0:right] and A [right+1:n-1].
// k = right+1, so A is split into A [0:k-1] and A [k:n-1].
return (right + 1) ;
}
// since A [left] > pivot and A [right] < pivot, swap them
GB_SWAP (A_0, left, right) ;
int64_t t1 = A_1 [left] ; A_1 [left] = A_1 [right] ; A_1 [right] = t1 ;
// after the swap this condition holds:
// A [0..left] < pivot and A [right..n-1] > pivot
}
}
//------------------------------------------------------------------------------
// GB_SORT (quicksort): recursive single-threaded quicksort
//------------------------------------------------------------------------------
static void GB_SORT (quicksort) // sort A [0:n-1]
(
GB_TYPE *restrict A_0, // size n arrays to sort
int64_t *restrict A_1, // size n array
const int64_t n, // size of the array(s) to sort
uint64_t *seed // random number seed
#if GB_SORT_UDT
, size_t csize // size of GB_TYPE
, size_t xsize // size of op->xtype
, GxB_binary_function flt // function to test for < (ascend), > (descend)
, GB_cast_function fcast // cast entry to inputs of flt
#endif
)
{
if (n < 20)
{
// in-place insertion sort on A [0:n-1], where n is small
for (int64_t k = 1 ; k < n ; k++)
{
for (int64_t j = k ; j > 0 ; j--)
{
// a0 = A_0 [j]
GB_GET (a0, A_0, j) ;
// a1 = A_0 [j-1]
GB_GET (a1, A_0, j-1) ;
// break if A [j] >= A [j-1]
bool less ;
// less = (a0, A_1 [j]) < (a1, A_1 [j-1])
GB_LT (less, a0, A_1 [j], a1, A_1 [j-1]) ;
if (!less) break ;
// swap A [j-1] and A [j]
GB_SWAP (A_0, j-1, j) ;
int64_t t1 = A_1 [j-1] ; A_1 [j-1] = A_1 [j] ; A_1 [j] = t1 ;
}
}
}
else
{
// partition A [0:n-1] into A [0:k-1] and A [k:n-1]
int64_t k = GB_SORT (partition) (A_0, A_1, n, seed
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
// sort each partition
// sort A [0:k-1]
GB_SORT (quicksort) (A_0, A_1, k, seed
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
// sort A [k:n-1]
GB_SORT (quicksort) (GB_ADDR (A_0, k), A_1 + k, n-k, seed
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
}
//------------------------------------------------------------------------------
// GB_SORT (binary_search): binary search for the pivot
//------------------------------------------------------------------------------
// The Pivot value is Z [pivot], and a binary search for the Pivot is made in
// the array X [p_pstart...p_end-1], which is sorted in non-decreasing order on
// input. The return value is pleft, where
//
// X [p_start ... pleft-1] <= Pivot and
// X [pleft ... p_end-1] >= Pivot holds.
//
// pleft is returned in the range p_start to p_end. If pleft is p_start, then
// the Pivot is smaller than all entries in X [p_start...p_end-1], and the left
// list X [p_start...pleft-1] is empty. If pleft is p_end, then the Pivot is
// larger than all entries in X [p_start...p_end-1], and the right list X
// [pleft...p_end-1] is empty.
static int64_t GB_SORT (binary_search) // return pleft
(
const GB_TYPE *restrict Z_0, // Pivot is Z [pivot]
const int64_t *restrict Z_1,
const int64_t pivot,
const GB_TYPE *restrict X_0, // search in X [p_start..p_end_-1]
const int64_t *restrict X_1,
const int64_t p_start,
const int64_t p_end
#if GB_SORT_UDT
, size_t csize // size of GB_TYPE
, size_t xsize // size of op->xtype
, GxB_binary_function flt // function to test for < (ascend), > (descend)
, GB_cast_function fcast // cast entry to inputs of flt
#endif
)
{
//--------------------------------------------------------------------------
// find where the Pivot appears in X
//--------------------------------------------------------------------------
// binary search of X [p_start...p_end-1] for the Pivot
int64_t pleft = p_start ;
int64_t pright = p_end - 1 ;
GB_GET (Pivot0, Z_0, pivot) ; // Pivot0 = Z_0 [pivot]
int64_t Pivot1 = Z_1 [pivot] ;
bool less ;
while (pleft < pright)
{
int64_t pmiddle = (pleft + pright) >> 1 ;
// x0 = X_0 [pmiddle]
GB_GET (x0, X_0, pmiddle) ;
// less = (x0, X_1 [pmiddle]) < (Pivot0, Pivot1)
GB_LT (less, x0, X_1 [pmiddle], Pivot0, Pivot1) ;
pleft = less ? (pmiddle+1) : pleft ;
pright = less ? pright : pmiddle ;
}
// binary search is narrowed down to a single item
// or it has found the list is empty:
ASSERT (pleft == pright || pleft == pright + 1) ;
// If found is true then X [pleft == pright] == Pivot. If duplicates
// appear then X [pleft] is any one of the entries equal to the Pivot
// in the list. If found is false then
// X [p_start ... pleft-1] < Pivot and
// X [pleft+1 ... p_end-1] > Pivot holds.
// The value X [pleft] may be either < or > Pivot.
bool found = (pleft == pright) && (X_1 [pleft] == Pivot1) ;
// Modify pleft and pright:
if (!found && (pleft == pright))
{
// x0 = X_0 [pleft]
GB_GET (x0, X_0, pleft) ;
// less = (x0, X_1 [pleft]) < (Pivot0, Pivot1)
GB_LT (less, x0, X_1 [pleft], Pivot0, Pivot1) ;
if (less)
{
pleft++ ;
}
else
{
// pright++ ; // (not needed)
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
// If found is false then
// X [p_start ... pleft-1] < Pivot and
// X [pleft ... p_end-1] > Pivot holds,
// and pleft-1 == pright
// If X has no duplicates, then whether or not Pivot is found,
// X [p_start ... pleft-1] < Pivot and
// X [pleft ... p_end-1] >= Pivot holds.
// If X has duplicates, then whether or not Pivot is found,
// X [p_start ... pleft-1] <= Pivot and
// X [pleft ... p_end-1] >= Pivot holds.
return (pleft) ;
}
//------------------------------------------------------------------------------
// GB_SORT (create_merge_tasks)
//------------------------------------------------------------------------------
// Recursively constructs ntasks tasks to merge two arrays, Left and Right,
// into Sresult, where Left is L [pL_start...pL_end-1], Right is R
// [pR_start...pR_end-1], and Sresult is S [pS_start...pS_start+total_work-1],
// and where total_work is the total size of Left and Right.
//
// Task tid will merge L [L_task [tid] ... L_task [tid] + L_len [tid] - 1] and
// R [R_task [tid] ... R_task [tid] + R_len [tid] -1] into the merged output
// array S [S_task [tid] ... ]. The task tids created are t0 to
// t0+ntasks-1.
static void GB_SORT (create_merge_tasks)
(
// output:
int64_t *restrict L_task, // L_task [t0...t0+ntasks-1] computed
int64_t *restrict L_len, // L_len [t0...t0+ntasks-1] computed
int64_t *restrict R_task, // R_task [t0...t0+ntasks-1] computed
int64_t *restrict R_len, // R_len [t0...t0+ntasks-1] computed
int64_t *restrict S_task, // S_task [t0...t0+ntasks-1] computed
// input:
const int t0, // first task tid to create
const int ntasks, // # of tasks to create
const int64_t pS_start, // merge into S [pS_start...]
const GB_TYPE *restrict L_0, // Left = L [pL_start...pL_end-1]
const int64_t *restrict L_1,
const int64_t pL_start,
const int64_t pL_end,
const GB_TYPE *restrict R_0, // Right = R [pR_start...pR_end-1]
const int64_t *restrict R_1,
const int64_t pR_start,
const int64_t pR_end
#if GB_SORT_UDT
, size_t csize // size of GB_TYPE
, size_t xsize // size of op->xtype
, GxB_binary_function flt // function to test for < (ascend), > (descend)
, GB_cast_function fcast // cast entry to inputs of flt
#endif
)
{
//--------------------------------------------------------------------------
// get problem size
//--------------------------------------------------------------------------
int64_t nleft = pL_end - pL_start ; // size of Left array
int64_t nright = pR_end - pR_start ; // size of Right array
int64_t total_work = nleft + nright ; // total work to do
ASSERT (ntasks >= 1) ;
ASSERT (total_work > 0) ;
//--------------------------------------------------------------------------
// create the tasks
//--------------------------------------------------------------------------
if (ntasks == 1)
{
//----------------------------------------------------------------------
// a single task will merge all of Left and Right into Sresult
//----------------------------------------------------------------------
L_task [t0] = pL_start ; L_len [t0] = nleft ;
R_task [t0] = pR_start ; R_len [t0] = nright ;
S_task [t0] = pS_start ;
}
else
{
//----------------------------------------------------------------------
// partition the Left and Right arrays for multiple merge tasks
//----------------------------------------------------------------------
int64_t pleft, pright ;
if (nleft >= nright)
{
// split Left in half, and search for its pivot in Right
pleft = (pL_end + pL_start) >> 1 ;
pright = GB_SORT (binary_search) (
L_0, L_1, pleft,
R_0, R_1, pR_start, pR_end
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
else
{
// split Right in half, and search for its pivot in Left
pright = (pR_end + pR_start) >> 1 ;
pleft = GB_SORT (binary_search) (
R_0, R_1, pright,
L_0, L_1, pL_start, pL_end
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
//----------------------------------------------------------------------
// partition the tasks according to the work of each partition
//----------------------------------------------------------------------
// work0 is the total work in the first partition
int64_t work0 = (pleft - pL_start) + (pright - pR_start) ;
int ntasks0 = (int) round ((double) ntasks *
(((double) work0) / ((double) total_work))) ;
// ensure at least one task is assigned to each partition
ntasks0 = GB_IMAX (ntasks0, 1) ;
ntasks0 = GB_IMIN (ntasks0, ntasks-1) ;
int ntasks1 = ntasks - ntasks0 ;
//----------------------------------------------------------------------
// assign ntasks0 to the first half
//----------------------------------------------------------------------
// ntasks0 tasks merge L [pL_start...pleft-1] and R [pR_start..pright-1]
// into the result S [pS_start...work0-1].
GB_SORT (create_merge_tasks) (
L_task, L_len, R_task, R_len, S_task, t0, ntasks0, pS_start,
L_0, L_1, pL_start, pleft,
R_0, R_1, pR_start, pright
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
//----------------------------------------------------------------------
// assign ntasks1 to the second half
//----------------------------------------------------------------------
// ntasks1 tasks merge L [pleft...pL_end-1] and R [pright...pR_end-1]
// into the result S [pS_start+work0...pS_start+total_work].
int t1 = t0 + ntasks0 ; // first task id of the second set of tasks
int64_t pS_start1 = pS_start + work0 ; // 2nd set starts here in S
GB_SORT (create_merge_tasks) (
L_task, L_len, R_task, R_len, S_task, t1, ntasks1, pS_start1,
L_0, L_1, pleft, pL_end,
R_0, R_1, pright, pR_end
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
}
//------------------------------------------------------------------------------
// GB_SORT (merge): merge two sorted lists via a single thread
//------------------------------------------------------------------------------
// merge Left [0..nleft-1] and Right [0..nright-1] into S [0..nleft+nright-1] */
static void GB_SORT (merge)
(
GB_TYPE *restrict S_0, // output of length nleft + nright
int64_t *restrict S_1,
const GB_TYPE *restrict Left_0, // left input of length nleft
const int64_t *restrict Left_1,
const int64_t nleft,
const GB_TYPE *restrict Right_0, // right input of length nright
const int64_t *restrict Right_1,
const int64_t nright
#if GB_SORT_UDT
, size_t csize // size of GB_TYPE
, size_t xsize // size of op->xtype
, GxB_binary_function flt // function to test for < (ascend), > (descend)
, GB_cast_function fcast // cast entry to inputs of flt
#endif
)
{
int64_t p, pleft, pright ;
// merge the two inputs, Left and Right, while both inputs exist
for (p = 0, pleft = 0, pright = 0 ; pleft < nleft && pright < nright ; p++)
{
// left0 = Left_0 [pleft]
GB_GET (left0, Left_0, pleft) ;
// right0 = Right_0 [pright]
GB_GET (right0, Right_0, pright) ;
bool less ;
// less = (left0, Left_1 [pleft]) < (right0, Right_1 [pright])
GB_LT (less, left0, Left_1 [pleft], right0, Right_1 [pright]) ;
if (less)
{
// S [p] = Left [pleft++]
GB_COPY (S_0, p, Left_0, pleft) ;
S_1 [p] = Left_1 [pleft] ;
pleft++ ;
}
else
{
// S [p] = Right [pright++]
GB_COPY (S_0, p, Right_0, pright) ;
S_1 [p] = Right_1 [pright] ;
pright++ ;
}
}
// either input is exhausted; copy the remaining list into S
if (pleft < nleft)
{
int64_t nremaining = (nleft - pleft) ;
memcpy (GB_ADDR (S_0, p),
GB_ADDR (Left_0, pleft), nremaining * GB_SIZE) ;
memcpy (S_1 + p, Left_1 + pleft, nremaining * sizeof (int64_t)) ;
}
else if (pright < nright)
{
int64_t nremaining = (nright - pright) ;
memcpy (GB_ADDR (S_0, p),
GB_ADDR (Right_0, pright), nremaining * GB_SIZE) ;
memcpy (S_1 + p, Right_1 + pright, nremaining * sizeof (int64_t)) ;
}
}
//------------------------------------------------------------------------------
// GB_SORT (vector) parallel mergesort of a single vector
//------------------------------------------------------------------------------
static void GB_SORT (vector) // sort the pair of arrays A_0, A_1
(
GB_TYPE *restrict A_0, // size n array
int64_t *restrict A_1, // size n array
GB_TYPE *restrict W_0, // workspace of size n * GB_SIZE bytes
int64_t *restrict W, // int64_t workspace of size n+6*ntasks+1
const int64_t n,
const int kk,
const int ntasks,
const int nthreads // # of threads to use
#if GB_SORT_UDT
, size_t csize // size of GB_TYPE
, size_t xsize // size of op->xtype
, GxB_binary_function flt // function to test for < (ascend), > (descend)
, GB_cast_function fcast // cast entry to inputs of flt
#endif
)
{
//--------------------------------------------------------------------------
// split up workspace
//--------------------------------------------------------------------------
ASSERT (nthreads > 2 && n >= GB_BASECASE) ;
int64_t *T = W ;
int64_t *restrict W_1 = T ; T += n ;
int64_t *restrict L_task = T ; T += ntasks ;
int64_t *restrict L_len = T ; T += ntasks ;
int64_t *restrict R_task = T ; T += ntasks ;
int64_t *restrict R_len = T ; T += ntasks ;
int64_t *restrict S_task = T ; T += ntasks ;
int64_t *restrict Slice = T ; T += (ntasks+1) ;
//--------------------------------------------------------------------------
// partition and sort the leaves
//--------------------------------------------------------------------------
GB_eslice (Slice, n, ntasks) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t leaf = Slice [tid] ;
int64_t leafsize = Slice [tid+1] - leaf ;
uint64_t seed = tid ;
GB_SORT (quicksort) (GB_ADDR (A_0, leaf), A_1 + leaf, leafsize, &seed
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
//--------------------------------------------------------------------------
// merge each level
//--------------------------------------------------------------------------
int nt = 1 ;
for (int k = kk ; k >= 2 ; k -= 2)
{
//----------------------------------------------------------------------
// merge level k into level k-1, from A into W
//----------------------------------------------------------------------
// TODO: skip k and k-1 for each group of 4 sublists of A if they are
// already sorted with respect to each other.
// this could be done in parallel if ntasks was large
for (tid = 0 ; tid < ntasks ; tid += 2*nt)
{
// create 2*nt tasks to merge two A sublists into one W sublist
GB_SORT (create_merge_tasks) (
L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
A_0, A_1, Slice [tid], Slice [tid+nt],
A_0, A_1, Slice [tid+nt], Slice [tid+2*nt]
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
// merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
int64_t pL = L_task [tid], nL = L_len [tid] ;
int64_t pR = R_task [tid], nR = R_len [tid] ;
int64_t pS = S_task [tid] ;
GB_SORT (merge) (
GB_ADDR (W_0, pS), W_1 + pS,
GB_ADDR (A_0, pL), A_1 + pL, nL,
GB_ADDR (A_0, pR), A_1 + pR, nR
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
nt = 2*nt ;
//----------------------------------------------------------------------
// merge level k-1 into level k-2, from W into A
//----------------------------------------------------------------------
// this could be done in parallel if ntasks was large
for (tid = 0 ; tid < ntasks ; tid += 2*nt)
{
// create 2*nt tasks to merge two W sublists into one A sublist
GB_SORT (create_merge_tasks) (
L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
W_0, W_1, Slice [tid], Slice [tid+nt],
W_0, W_1, Slice [tid+nt], Slice [tid+2*nt]
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
// merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
int64_t pL = L_task [tid], nL = L_len [tid] ;
int64_t pR = R_task [tid], nR = R_len [tid] ;
int64_t pS = S_task [tid] ;
GB_SORT (merge) (
GB_ADDR (A_0, pS), A_1 + pS,
GB_ADDR (W_0, pL), W_1 + pL, nL,
GB_ADDR (W_0, pR), W_1 + pR, nR
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
nt = 2*nt ;
}
}
//------------------------------------------------------------------------------
// sort all vectors in a matrix
//------------------------------------------------------------------------------
#undef GB_FREE_WORKSPACE
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Werk, int64_t) ; \
GB_FREE_WORK (&C_skipped, C_skipped_size) ; \
GB_FREE_WORK (&W_0, W_0_size) ; \
GB_FREE_WORK (&W, W_size) ; \
}
static GrB_Info GB_SORT (matrix)
(
GrB_Matrix C, // matrix sorted in-place
#if GB_SORT_UDT
GrB_BinaryOp op, // comparator for user-defined types only
#endif
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C to sort", GB0) ;
ASSERT (GB_JUMBLED_OK (C)) ;
ASSERT (GB_IS_SPARSE (C) || GB_IS_HYPERSPARSE (C)) ;
#if GB_SORT_UDT
ASSERT_BINARYOP_OK (op, "op", GB0) ;
ASSERT (op->ztype == GrB_BOOL) ;
ASSERT (op->xtype == op->ytype) ;
#endif
int64_t cnz = GB_nnz (C) ;
if (C->iso || cnz <= 1)
{
// nothing to do
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// get input
//--------------------------------------------------------------------------
int64_t cnvec = C->nvec ;
int64_t *restrict Cp = C->p ;
int64_t *restrict Ci = C->i ;
GB_TYPE *restrict Cx = (GB_TYPE *) C->x ;
// workspace
GB_TYPE *restrict W_0 = NULL ; size_t W_0_size = 0 ;
int64_t *restrict W = NULL ; size_t W_size = 0 ;
int64_t *restrict C_skipped = NULL ;
size_t C_skipped_size = 0 ;
GB_WERK_DECLARE (Werk, int64_t) ;
#if GB_SORT_UDT
// get typesize, and function pointers for operators and typecasting
GrB_Type ctype = C->type ;
size_t csize = ctype->size ;
size_t xsize = op->xtype->size ;
GxB_binary_function flt = op->binop_function ;
GB_cast_function fcast = GB_cast_factory (op->xtype->code, ctype->code) ;
#endif
//==========================================================================
// phase1: sort all short vectors
//==========================================================================
// slice the C matrix into tasks for phase 1
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (cnz, chunk, nthreads_max) ;
int ntasks = (nthreads == 1) ? 1 : (32 * nthreads) ;
ntasks = GB_IMIN (ntasks, cnvec) ;
ntasks = GB_IMAX (ntasks, 1) ;
GB_WERK_PUSH (Werk, 3*ntasks + 2, int64_t) ;
if (Werk == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
int64_t *restrict C_max = Werk ; // size ntasks
int64_t *restrict C_skip = Werk + ntasks ; // size ntasks+1
int64_t *restrict C_slice = Werk + 2*ntasks + 1; // size ntasks+1
GB_pslice (C_slice, Cp, cnvec, ntasks, false) ;
// sort all short vectors in parallel, one thread per vector
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
const int64_t kfirst = C_slice [tid] ;
const int64_t klast = C_slice [tid+1] ;
int64_t task_max_length = 0 ;
int64_t n_skipped = 0 ;
for (int64_t k = kfirst ; k < klast ; k++)
{
// sort the vector C(:,k), unless it is too long
const int64_t pC_start = Cp [k] ;
const int64_t pC_end = Cp [k+1] ;
const int64_t cknz = pC_end - pC_start ;
if (cknz <= GB_BASECASE || nthreads == 1)
{
uint64_t seed = k ;
GB_SORT (quicksort) (GB_ADDR (Cx, pC_start), Ci + pC_start,
cknz, &seed
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
else
{
n_skipped++ ;
}
task_max_length = GB_IMAX (task_max_length, cknz) ;
}
C_max [tid] = task_max_length ;
C_skip [tid] = n_skipped ;
}
// find max vector length and return if all vectors are now sorted
int64_t max_length = 0 ;
for (tid = 0 ; tid < ntasks ; tid++)
{
max_length = GB_IMAX (max_length, C_max [tid]) ;
}
if (max_length <= GB_BASECASE || nthreads == 1)
{
// all vectors are sorted
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
//==========================================================================
// phase2: sort all long vectors in parallel
//==========================================================================
//--------------------------------------------------------------------------
// construct a list of vectors that must still be sorted
//--------------------------------------------------------------------------
GB_cumsum (C_skip, ntasks, NULL, 1, Context) ;
int64_t total_skipped = C_skip [ntasks] ;
C_skipped = GB_MALLOC_WORK (total_skipped, int64_t, &C_skipped_size) ;
if (C_skipped == NULL)
{
// out of memory
GB_FREE_WORKSPACE ;
return (GrB_OUT_OF_MEMORY) ;
}
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
const int64_t kfirst = C_slice [tid] ;
const int64_t klast = C_slice [tid+1] ;
int64_t n_skipped = C_skip [tid] ;
for (int64_t k = kfirst ; k < klast ; k++)
{
const int64_t pC_start = Cp [k] ;
const int64_t pC_end = Cp [k+1] ;
const int64_t cknz = pC_end - pC_start ;
if (cknz > GB_BASECASE)
{
// C(:,k) was not sorted
C_skipped [n_skipped++] = k ;
}
}
}
//--------------------------------------------------------------------------
// determine # of tasks for each vector in phase 2
//--------------------------------------------------------------------------
// determine the number of levels to create, which must always be an
// even number. The # of levels is chosen to ensure that the # of leaves
// of the task tree is between 4*nthreads and 16*nthreads.
// 2 to 4 threads: 4 levels, 16 quicksort leaves
// 5 to 16 threads: 6 levels, 64 quicksort leaves
// 17 to 64 threads: 8 levels, 256 quicksort leaves
// 65 to 256 threads: 10 levels, 1024 quicksort leaves
// 256 to 1024 threads: 12 levels, 4096 quicksort leaves
// ...
int kk = (int) (2 + 2 * ceil (log2 ((double) nthreads) / 2)) ;
int ntasks2 = 1 << kk ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
W = GB_MALLOC_WORK (max_length + 6*ntasks2 + 1, int64_t, &W_size) ;
W_0 = (GB_TYPE *) GB_MALLOC_WORK (max_length * GB_SIZE, GB_void,
&W_0_size) ;
if (W == NULL || W_0 == NULL)
{
// out of memory
GB_FREE_WORKSPACE ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// sort each long vector using all available threads
//--------------------------------------------------------------------------
for (int64_t t = 0 ; t < total_skipped ; t++)
{
const int64_t k = C_skipped [t] ;
const int64_t pC_start = Cp [k] ;
const int64_t pC_end = Cp [k+1] ;
const int64_t cknz = pC_end - pC_start ;
ASSERT (cknz > GB_BASECASE) ;
GB_SORT (vector) (GB_ADDR (Cx, pC_start), Ci + pC_start,
W_0, W, cknz, kk, ntasks2, nthreads
#if GB_SORT_UDT
, csize, xsize, flt, fcast
#endif
) ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
C->jumbled = true ;
ASSERT_MATRIX_OK (C, "C sorted by value", GB0) ;
return (GrB_SUCCESS) ;
}
#undef GB_SORT
#undef GB_TYPE
|