1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
//------------------------------------------------------------------------------
// GB_AxB_dot3_cuda: compute C<M> = A'*B in parallel, on the GPU(s)
//------------------------------------------------------------------------------
// SPDX-License-Identifier: Apache-2.0
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2019, All Rights Reserved.
// http://suitesparse.com See GraphBLAS/Doc/License.txt for license.
//------------------------------------------------------------------------------
// This function computes C<M>=A'*B on the GPUs. The mask must be present,
// sparse or hypersparse, and not complemented. The mask is always applied. A
// and B can have any sparsity format. C is computed as sparse or hypersparse,
// with the same format as M.
extern "C"
{
#include "GB_mxm.h"
}
#include "GB_cuda.h"
#include "GB_jit_cache.h"
#include "GB_cuda_common_jitFactory.hpp"
#include "GB_cuda_reduce_jitFactory.hpp"
#include "GB_cuda_mxm_dot3_jitFactory.hpp"
#include "GB_cuda_type_wrap.hpp"
#include "test/GpuTimer.h"
/*
template<typename T, typename I>
void print_array(void *arr, I size, const char *name) {
std::cout << "Printing " << name << std::endl;
for(I i = 0; i < size; ++i) {
std::cout << static_cast<T*>(arr)[i] << ", ";
}
std::cout << std::endl << "Done." << std::endl;
}
*/
#undef GB_FREE_WORKSPACE
#define GB_FREE_WORKSPACE \
{ \
/* FIXME: use a stream pool instead */ \
CU_OK (cudaStreamSynchronize(stream)); \
CU_OK (cudaStreamDestroy(stream)); \
GB_FREE_WORK (&Nanobuckets, Nb_size) ; \
GB_FREE_WORK (&Blockbucket, Bb_size) ; \
GB_FREE_WORK (&Bucketp, Bup_size) ; \
GB_FREE_WORK (&offset, O_size) ; \
GB_FREE_WORK (&Bucket, Bu_size) ; \
}
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
GrB_Info GB_AxB_dot3_cuda // C<M> = A'*B using dot product method
(
GrB_Matrix C, // output matrix
const GrB_Matrix M, // mask matrix
const bool Mask_struct, // if true, use the only structure of M
const GrB_Matrix A, // input matrix
const GrB_Matrix B, // input matrix
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
GB_Context Context
)
{
// FIXME: pass in a stream instead, or checkout a stream
cudaStream_t stream = NULL ;
CU_OK (cudaStreamCreate(&stream));
GpuTimer kernel_timer;
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
// when CUDA is enabled, no static headers are used in all of GraphBLAS
GrB_Info info ;
ASSERT (C != NULL && !(C->static_header)) ;
ASSERT (M != NULL && !(M->static_header)) ;
ASSERT (A != NULL && !(A->static_header)) ;
ASSERT (B != NULL && !(B->static_header)) ;
ASSERT_MATRIX_OK (M, "M for dot3 cuda A'*B", GB2) ;
ASSERT_MATRIX_OK (A, "A for dot3 cuda A'*B", GB2) ;
ASSERT_MATRIX_OK (B, "B for dot3 cuda A'*B", GB2) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for dot3 numeric A'*B", GB2) ;
ASSERT (A->vlen == B->vlen) ;
GBURBLE ("(GPU dot3) ") ;
//printf ("\nM -------------\n") ; GxB_Matrix_fprint (M, "M", GxB_SHORT, stdout) ;
//printf ("\nA -------------\n") ; GxB_Matrix_fprint (A, "A", GxB_SHORT, stdout) ;
//printf ("\nB -------------\n") ; GxB_Matrix_fprint (B, "B", GxB_SHORT, stdout) ;
//--------------------------------------------------------------------------
// initializations
//--------------------------------------------------------------------------
int64_t *Nanobuckets = NULL ; size_t Nb_size = 0 ;
int64_t *Blockbucket = NULL ; size_t Bb_size = 0 ;
int64_t *Bucket = NULL ; size_t Bu_size = 0 ;
int64_t *Bucketp = NULL ; size_t Bup_size = 0 ;
int64_t *offset = NULL ; size_t O_size = 0 ;
int device = -1;
// FIXME: control the GPU to use via the descriptor
CU_OK (cudaSetDevice( 0 ));
CU_OK (cudaGetDevice(&device));
//--------------------------------------------------------------------------
// get M
//--------------------------------------------------------------------------
const int64_t mvlen = M->vlen ;
const int64_t mvdim = M->vdim ;
const int64_t mnz = GB_nnz (M) ;
const int64_t mnvec = M->nvec ;
const bool M_is_hyper = GB_IS_HYPERSPARSE( M ) ;
const int64_t anz = GB_nnz (A) ;
const int64_t anvec = A->nvec ;
const int64_t bnz = GB_nnz (B) ;
const int64_t bnvec = B->nvec ;
//--------------------------------------------------------------------------
// allocate C, the same size and # of entries as M
//--------------------------------------------------------------------------
// FUTURE: ctype need not be the op->ztype
GrB_Type ctype = semiring->add->op->ztype ;
int64_t cvlen = mvlen ;
int64_t cvdim = mvdim ;
int64_t cnz = mnz ;
int64_t cnvec = mnvec ;
int M_sparsity = (M_is_hyper) ? GxB_HYPERSPARSE : GxB_SPARSE ;
int C_sparsity = M_sparsity ;
bool C_iso = false ;
info = GB_new_bix (&C, // sparse or hyper (from M), existing header
ctype, cvlen, cvdim, GB_Ap_malloc, true,
M_sparsity, false, M->hyper_switch, cnvec,
cnz+1, // add one to cnz for GB_cumsum of Cwork
true, C_iso, Context) ;
if (info != GrB_SUCCESS)
{
// out of memory
GB_FREE_ALL ;
return (info) ;
}
// try this with GB_Ap_null, above in GB_new_bix
// C->p = M->p ; C->p_shallow = true ;
// C->h = M->h ; C->h_shallow = true ;
//--------------------------------------------------------------------------
// Pre-fetch arrays that will be used on the device
//--------------------------------------------------------------------------
// GB_cuda_matrix_advise (C, cnvec, cnz, which, what, device)
// advise C
CU_OK (cudaMemAdvise (C->p, (cnvec+1) * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, device)) ;
if (M_is_hyper)
{
CU_OK (cudaMemAdvise (C->h, cnvec * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, device)) ;
}
CU_OK (cudaMemAdvise (C->i, (cnz+1) * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, device)) ;
CU_OK (cudaMemAdvise (C->x, (C_iso ? 1: (cnz+1)) * C->type->size ,
cudaMemAdviseSetPreferredLocation, device)) ;
// prefetch M (if M hypersparse: using M->h not M->Y)
GB_OK (GB_cuda_matrix_prefetch (M,
Mask_struct ? GB_PREFETCH_PHBI : GB_PREFETCH_PHBIX, device, stream)) ;
//--------------------------------------------------------------------------
// copy Mp and Mh into C
//--------------------------------------------------------------------------
// FIXME: use shallow?
CU_OK (cudaMemcpyAsync (C->p, M->p, (cnvec+1) * sizeof (int64_t),
cudaMemcpyDefault, stream)) ;
if (M_is_hyper)
{
CU_OK (cudaMemcpyAsync (C->h, M->h, cnvec * sizeof (int64_t),
cudaMemcpyDefault, stream)) ;
}
C->nvals = cnz ;
C->magic = GB_MAGIC ;
C->nvec_nonempty = M->nvec_nonempty ;
C->jumbled = GB_JUMBLED (M) ; // C is jumbled if M is jumbled
GBURBLE ("(GPU C created and copied from M) ") ;
//--------------------------------------------------------------------------
// stringify the semiring and the mask
//--------------------------------------------------------------------------
GB_cuda_mxm_factory my_mxm_spec = GB_cuda_mxm_factory ( ) ;
// (1) create the mxm code and name
my_mxm_spec.mxm_factory ( C_iso, C_sparsity, ctype,
M, Mask_struct, false, semiring, flipxy, A, B) ;
// (2) ensure the jitifier has "GB_mxm_[my_mxm_spec.sr_code].h"
jit::GBJitCache filecache = jit::GBJitCache::Instance() ;
filecache.getFile (my_mxm_spec) ;
GBURBLE ("(GPU stringified srcode = %lu)\n", my_mxm_spec.sr_code) ;
//--------------------------------------------------------------------------
// get A and B
//--------------------------------------------------------------------------
// FIXME: add acode, bcode to the GB_cuda_mxm_factory object
int acode = GB_RSHIFT (my_mxm_spec.sr_code, 12, 4) ; // if 0: A is pattern
int bcode = GB_RSHIFT (my_mxm_spec.sr_code, 8, 4) ; // if 0: B is pattern
bool A_is_sparse = GB_IS_SPARSE (A) ;
bool A_is_hyper = GB_IS_HYPERSPARSE (A) ;
bool A_is_bitmap = GB_IS_BITMAP (A) ;
bool A_is_full = GB_IS_FULL (A) ;
bool A_is_sparse_or_hyper = A_is_sparse || A_is_hyper ;
bool A_is_bitmap_or_full = A_is_bitmap || A_is_full ;
bool A_is_pattern = (acode == 0) ;
bool B_is_sparse = GB_IS_SPARSE (B) ;
bool B_is_hyper = GB_IS_HYPERSPARSE (B) ;
bool B_is_bitmap = GB_IS_BITMAP (B) ;
bool B_is_full = GB_IS_FULL (B) ;
bool B_is_sparse_or_hyper = B_is_sparse || B_is_hyper ;
bool B_is_bitmap_or_full = B_is_bitmap || B_is_full ;
bool B_is_pattern = (bcode == 0) ;
// M might be very very sparse. A(:,i) is not needed if M(:,i) is empty.
// Likewise, B(:,j) is not needed if M(:,j) is empty. For now, try this
// heuristic: if M is hypersparse, then do not prefetch A->b or A->x.
int prefetch_b = (M_is_hyper) ? 0 : GB_PREFETCH_B ;
int prefetch_x = (M_is_hyper) ? 0 : GB_PREFETCH_X ;
int prefetch_pybi = GB_PREFETCH_PYI + prefetch_b ;
// prefetch A (if A hypersparse: using A->Y)
GB_OK (GB_cuda_matrix_prefetch (A, prefetch_pybi +
(A_is_pattern ? 0 : prefetch_x), device, stream)) ;
// prefetch B (if B hypersparse: using B->Y)
GB_OK (GB_cuda_matrix_prefetch (B, prefetch_pybi +
(B_is_pattern ? 0 : prefetch_x), device, stream)) ;
//--------------------------------------------------------------------------
// C<M>=A'*B via jitified kernels
//--------------------------------------------------------------------------
if (A_is_bitmap_or_full && B_is_bitmap_or_full)
{
//----------------------------------------------------------------------
// (full or bitmap) times (full or bitmap)
//----------------------------------------------------------------------
dense_phase1launchFactory dp1lf(my_mxm_spec);
GBURBLE ("(GPU phase1 start nblk = %d) ", dp1lf.get_number_of_blocks(M)) ;
kernel_timer.Start();
dp1lf.jitGridBlockLaunch(C, M, A, B, stream);
CU_OK (cudaStreamSynchronize(stream));
kernel_timer.Stop();
GBURBLE ("(GPU phase1 done %12.6g ms )\n", kernel_timer.Elapsed()) ;
mxm_dense_launchFactory mdlf(my_mxm_spec);
GBURBLE ("(GPU Dense full x full launch ) ") ;
kernel_timer.Start();
mdlf.jitGridBlockLaunch( C, M, A, B, stream);
CU_OK (cudaStreamSynchronize(stream)); // only for timing
kernel_timer.Stop();
GBURBLE ("(GPU Dense full x full done %12.6g ms, rate=%12.6g)\n",
kernel_timer.Elapsed(), (mnvec)/(1000*kernel_timer.Elapsed())) ;
}
else
{
//----------------------------------------------------------------------
// (sparse or hyper) times (sparse or hyper)
// (sparse or hyper) times (bitmap or full)
// (bitmap or full) times (sparse or hyper)
//----------------------------------------------------------------------
//----------------------------------------------------------------------
// construct the tasks for phase1 and phase2
//----------------------------------------------------------------------
// on the CPU: nthreads = GB_nthreads (cnz, chunk, nthreads_max) ;
// on the GPU:
phase1launchFactory p1lf(my_mxm_spec);
phase2launchFactory p2lf;
phase2endlaunchFactory p2elf;
// # of threads in phase1 and phase2 kernel launches are related
// # by the size of the warp. ph2_task = ph1_task/32 for example
int nthrd = p2lf.get_threads_per_block();
int ntasks = p2elf.get_number_of_blocks(M);
int64_t nanobuckets_size = NBUCKETS * nthrd * ntasks;
int64_t blockbuckets_size = NBUCKETS * ntasks;
Nanobuckets = GB_MALLOC_WORK (nanobuckets_size, int64_t, &Nb_size) ;
Blockbucket = GB_MALLOC_WORK (blockbuckets_size, int64_t, &Bb_size) ;
Bucketp = GB_MALLOC_WORK (NBUCKETS+1, int64_t, &Bup_size) ;
offset = GB_MALLOC_WORK (NBUCKETS, int64_t, &O_size) ;
Bucket = GB_MALLOC_WORK (mnz, int64_t, &Bu_size) ;
if (Nanobuckets == NULL || Blockbucket == NULL || Bucketp == NULL
|| Bucket == NULL || offset == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// fixme: do async with streams
// FIXME: do we need any of these?
//CU_OK (cudaMemsetAsync(Nanobuckets, 0,
// nanobuckets_size * sizeof(int64_t), stream));
//CU_OK (cudaMemsetAsync(Blockbucket, 0,
// blockbuckets_size * sizeof(int64_t), stream));
CU_OK (cudaMemsetAsync(Bucketp, 0,
(NBUCKETS+1) * sizeof(int64_t), stream));
CU_OK (cudaMemsetAsync(offset, 0,
NBUCKETS * sizeof(int64_t), stream));
//CU_OK (cudaMemsetAsync(Bucket, 0,
// mnz * sizeof(int64_t), stream));
//----------------------------------------------------------------------
// phase1 and phase2: place each C(i,j) in a bucket
//----------------------------------------------------------------------
CU_OK (cudaMemAdvise( Bucketp, (NBUCKETS+1) * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId));
CU_OK (cudaMemAdvise( Bucketp, (NBUCKETS+1) * sizeof ( int64_t),
cudaMemAdviseSetAccessedBy, device));
CU_OK (cudaMemAdvise( offset, NBUCKETS * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId));
CU_OK (cudaMemAdvise( offset, NBUCKETS * sizeof ( int64_t),
cudaMemAdviseSetAccessedBy, device));
//----------------------------------------------------------------------
// phase1: assign each C(i,j) to a bucket, and count them
//----------------------------------------------------------------------
GBURBLE ("(GPU phase1 start nblk = %d) ", p1lf.get_number_of_blocks(M)) ;
kernel_timer.Start();
p1lf.jitGridBlockLaunch(Nanobuckets, Blockbucket, C, M, A, B, stream);
CU_OK (cudaStreamSynchronize(stream));
kernel_timer.Stop();
GBURBLE ("(GPU phase1 done %12.6g ms )\n", kernel_timer.Elapsed()) ;
//--------------------------------------------------------------------------
// phase2: cumsum across the blockbuckets, propagate to thread level
//--------------------------------------------------------------------------
GBURBLE ("(GPU phase2 start nblk=%d ) ", ntasks) ;
kernel_timer.Start();
p2lf.jitGridBlockLaunch(Blockbucket, offset, M, stream);
kernel_timer.Stop();
CU_OK (cudaStreamSynchronize(stream));
int64_t s= offset[0];
C->nzombies = s;
bool all_in_one = false;
for ( int bucket = 1 ; bucket < NBUCKETS+1; ++bucket)
{
Bucketp[bucket] = s;
s += offset[bucket];
if ( (Bucketp[bucket] - Bucketp[bucket-1] ) == mnz ) all_in_one = true;
}
GBURBLE ("(GPU phase2 done %12.6g ms )\n", kernel_timer.Elapsed()) ;
if (!all_in_one)
{
GBURBLE ("(GPU phase2end start nblk=%d) ", ntasks) ;
kernel_timer.Start();
p2elf.jitGridBlockLaunch(Nanobuckets, Blockbucket,
Bucketp, Bucket, offset, C, M, stream);
CU_OK (cudaStreamSynchronize(stream));
kernel_timer.Stop();
GBURBLE ("(GPU phase2end done %12.6g ms)\n",kernel_timer.Elapsed()) ;
}
//--------------------------------------------------------------------------
// phase3: do the numerical work
//--------------------------------------------------------------------------
for ( int bucket = 1 ; bucket < NBUCKETS; ++bucket)
{
int64_t start = Bucketp[bucket];
int64_t end = Bucketp[bucket + 1 ];
if (end - start > 0)
{
// TODO: Use stream pool
phase3launchFactory p3lf(my_mxm_spec, (GB_bucket_code)bucket);
GBURBLE ("(GPU phase3 bucket %d launch ) ", bucket) ;
kernel_timer.Start();
p3lf.jitGridBlockLaunch(start, end, Bucketp, Bucket, C, M, A, B, stream);
CU_OK (cudaStreamSynchronize(stream)); // only for timing
kernel_timer.Stop();
GBURBLE ("(GPU phase3 bucket %d done %12.6g ms, rate=%12.6g)\n", bucket, kernel_timer.Elapsed(), (end-start)/(1000*kernel_timer.Elapsed())) ;
}
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
return GrB_SUCCESS;
}
|