1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef GB_MXM_DOT3_JITFACTORY_H
#define GB_MXM_DOT3_JITFACTORY_H
#pragma once
/**
* This file is responsible for picking all the parameters and what kernel variaiton we will use for a given instance
* - data types
* - semiring types
* - binary ops
* - monoids
*
* Kernel factory says "Here's the actual instance I want you to build with the given parameters"
*/
//AxB_dot3_phase1 kernel launchers
template<int threads_per_block, int chunk_size> class phase1launchFactory ;
template<int threads_per_block, int chunk_size> class dense_phase1launchFactory ;
//AxB_dot3_phase3 kernel launchers
//------------------------------------------------------------------------------
// dot3: dense_phase1launchFactory
//------------------------------------------------------------------------------
// Handles full/bitmap cases, which means we don't need buckets and zombies.
// This is a much simpler kernel as a result, it only does the i,j lookup
// and stores the values in Mi and Ci.
template<int threads_per_block=32, int chunk_size = 128>
class dense_phase1launchFactory
{
std::string kernel_name = "GB_jit_AxB_dot3_dense_phase1";
GB_cuda_mxm_factory &mxm_factory_;
public:
int get_number_of_blocks(GrB_Matrix M) {
int number_of_sms = GB_Global_gpu_sm_get (0);
int nblks = ( GB_nnz (M) + chunk_size - 1)/chunk_size;
return GB_IMIN( nblks, chunk_size * number_of_sms);
}
int get_threads_per_block() {
return threads_per_block;
}
// This assumes the needed state on the GB_cuda_mxm_factory
// has already been populated
dense_phase1launchFactory(GB_cuda_mxm_factory &mxm_factory): mxm_factory_(mxm_factory){}
bool jitGridBlockLaunch( GrB_Matrix C, GrB_Matrix M, GrB_Matrix A, GrB_Matrix B, cudaStream_t stream = 0) {
// Idea is to have each task work on a continguous block of columns of C
// Note: for small tests, mnz is small so ntasks is be governed by
// chunksize, not chunk_size*number_of_sms. For large problems in
// production, chunksize is less important since ntasks will likely be
// bounded by chunk_size*number_of_sms (say 128*80 = 10,240 on a V100, for
// the default chunk_size of 128).
// Defining dummy instance only so we can introspect type
// // (1) create the mxm code and name
// // (2) ensure the jitifier has "GB_mxm_[mymxm.sr_code].h"
jit::GBJitCache filecache = jit::GBJitCache::Instance() ;
filecache.getFile (mxm_factory_) ;
uint64_t sr_code = mxm_factory_.sr_code ;
int mask_ecode = GB_RSHIFT (sr_code, 20, 4) ;
bool mask_no_type = (mask_ecode < 4) ;
auto sr_code_str = std::to_string(sr_code) ;
std::vector<std::string> template_types = {
(mask_no_type) ? "bool" : M->type->name, sr_code_str };
std::stringstream string_to_be_jitted ;
string_to_be_jitted << kernel_name << std::endl <<
R"(#include ")" << jit::get_user_home_cache_dir() << "/" << mxm_factory_.filename << R"(")" << std::endl <<
R"(#include "templates/)" << kernel_name << R"(.cuh")" << std::endl;
bool result = false;
dim3 grid(get_number_of_blocks(M));
dim3 block(get_threads_per_block());
jit::launcher( kernel_name + "_" + sr_code_str + ".jtfy",
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback /* FIXME: make NULL */)
.set_kernel_inst( kernel_name, template_types)
.configure(grid, block, SMEM, stream)
.launch( C, M);
result = true;
return result;
}
};
//------------------------------------------------------------------------------
// dot3: phase1launchFactory
//------------------------------------------------------------------------------
// FIXME: We probably want to remove this type template altogether and provide
// a macro/function that can convert from a GrB_Type instance to the name of a
// type that the jitifier will accept.
template<int threads_per_block=32, int chunk_size = 128>
class phase1launchFactory
{
std::string kernel_name = "GB_jit_AxB_dot3_phase1";
GB_cuda_mxm_factory &mxm_factory_;
public:
int get_number_of_blocks(GrB_Matrix M) {
int number_of_sms = GB_Global_gpu_sm_get (0);
int nblks = ( GB_nnz (M) + chunk_size - 1)/chunk_size;
return GB_IMIN( nblks, chunk_size * number_of_sms);
}
int get_threads_per_block() {
return threads_per_block;
}
// This assumes the needed state on the GB_cuda_mxm_factory
// has already been populated
phase1launchFactory(GB_cuda_mxm_factory &mxm_factory): mxm_factory_(mxm_factory){}
bool jitGridBlockLaunch(int64_t *nanobuckets, int64_t *blockBucket,
GrB_Matrix C, GrB_Matrix M, GrB_Matrix A, GrB_Matrix B, cudaStream_t stream = 0) {
// Idea is to have each task work on a continguous block of columns of C
// Note: for small tests, mnz is small so ntasks is be governed by
// chunksize, not chunk_size*number_of_sms. For large problems in
// production, chunksize is less important since ntasks will likely be
// bounded by chunk_size*number_of_sms (say 128*80 = 10,240 on a V100, for
// the default chunk_size of 128).
// Defining dummy instance only so we can introspect type
// // (1) create the mxm code and name
// // (2) ensure the jitifier has "GB_mxm_[mymxm.sr_code].h"
jit::GBJitCache filecache = jit::GBJitCache::Instance() ;
filecache.getFile (mxm_factory_) ;
uint64_t sr_code = mxm_factory_.sr_code ;
int mask_ecode = GB_RSHIFT (sr_code, 20, 4) ;
bool mask_no_type = (mask_ecode < 4) ;
auto sr_code_str = std::to_string(sr_code) ;
std::vector<std::string> template_types = {
(mask_no_type) ? "bool" : M->type->name, sr_code_str };
std::stringstream string_to_be_jitted ;
string_to_be_jitted << kernel_name << std::endl <<
R"(#include ")" << jit::get_user_home_cache_dir() << "/" << mxm_factory_.filename << R"(")" << std::endl <<
R"(#include "templates/)" << kernel_name << R"(.cuh")" << std::endl;
bool result = false;
dim3 grid(get_number_of_blocks(M));
dim3 block(get_threads_per_block());
jit::launcher( kernel_name + "_" + sr_code_str + ".jtfy",
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback)
.set_kernel_inst( kernel_name, template_types)
.configure(grid, block, SMEM, stream)
.launch( nanobuckets, blockBucket, C, M, A, B);
result = true;
return result;
}
};
//------------------------------------------------------------------------------
// dot3: phase2launchFactory
//------------------------------------------------------------------------------
template<int threads_per_block = 32, int chunk_size = 128>
class phase2launchFactory
{
std::string base_name = "GB_jit";
std::string kernel_name = "AxB_phase2";
public:
int get_threads_per_block() {
return threads_per_block;
}
int get_number_of_blocks(GrB_Matrix M) {
const int64_t mnz = GB_nnz (M) ;
int ntasks = ( mnz +chunk_size -1)/chunk_size;
// Idea is to have each task work on a continguous block of columns of C
ntasks = GB_IMIN( ntasks, chunk_size*GB_Global_gpu_sm_get (0)) ; // ntasks will be grid.x
return (ntasks + threads_per_block - 1) / threads_per_block ;
}
int get_number_of_phase1_blocks( GrB_Matrix M){
const int64_t mnz = GB_nnz (M) ;
int number_of_sms = GB_Global_gpu_sm_get (0);
int nblks = ( GB_nnz (M) + chunk_size - 1)/chunk_size;
return GB_IMIN( nblks, chunk_size * number_of_sms);
}
bool jitGridBlockLaunch(// parameters to AxB_phase2:
int64_t *blockBucket, int64_t *offset, GrB_Matrix M, cudaStream_t stream = 0) {
bool result = false;
dim3 grid(get_number_of_blocks(M));
dim3 block(get_threads_per_block());
std::string hashable_name = base_name + "_" + kernel_name;
std::stringstream string_to_be_jitted ;
string_to_be_jitted <<
hashable_name << std::endl << R"(#include ")" << hashable_name << R"(.cuh")" << std::endl;
const int64_t mnz = GB_nnz (M) ;
jit::launcher( hashable_name,
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback)
.set_kernel_inst( kernel_name, {})
.configure(grid, block, SMEM, stream)
// parameters to AxB_phase2:
.launch( blockBucket, offset, get_number_of_phase1_blocks(M));
result= true;
return result;
}
};
//------------------------------------------------------------------------------
// dot3: phase2endlaunchFactory
//------------------------------------------------------------------------------
template< int threads_per_block = 32, int chunk_size = 128>
class phase2endlaunchFactory
{
std::string base_name = "GB_jit";
std::string kernel_name = "AxB_phase2end";
public:
int get_threads_per_block() {
return threads_per_block;
}
int get_number_of_blocks(GrB_Matrix M) {
const int64_t mnz = GB_nnz (M) ;
int ntasks = ( mnz +chunk_size -1)/chunk_size;
int number_of_sms = GB_Global_gpu_sm_get (0);
// Idea is to have each task work on a continguous block of columns of C
return GB_IMIN( ntasks, chunk_size*number_of_sms) ; // ntasks will be grid.x
}
bool jitGridBlockLaunch(int64_t *nanobuckets, int64_t *blockBucket,
int64_t *bucketp, int64_t *bucket, int64_t *offset,
GrB_Matrix C, GrB_Matrix M, cudaStream_t stream = 0)
{
bool result = false;
dim3 grid(get_number_of_blocks(M));
dim3 block(get_threads_per_block());
std::string hashable_name = base_name + "_" + kernel_name;
std::stringstream string_to_be_jitted ;
string_to_be_jitted <<
hashable_name << std::endl << R"(#include ")" << hashable_name << R"(.cuh")" << std::endl;
jit::launcher( hashable_name,
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback)
.set_kernel_inst( kernel_name , {})
.configure(grid, block, SMEM, stream)
.launch( nanobuckets, blockBucket, bucketp, bucket, offset, C, GB_nnz (M));
result= true;
return result;
}
};
//------------------------------------------------------------------------------
// dot3: mxm_dense_launchFactory
//------------------------------------------------------------------------------
class mxm_dense_launchFactory
{
std::string base_name = "GB_jit";
std::string kernel_name = "AxB_dot3_phase3_dndn";
GB_cuda_mxm_factory &mxm_factory_;
public:
/**
* This assumes the needed state on the GB_cuda_mxm_factory has already been populated.
* The `bucket_code` determines which kernel is launched
*/
mxm_dense_launchFactory(GB_cuda_mxm_factory &mymxmfactory):
mxm_factory_(mymxmfactory) {}
bool jitGridBlockLaunch( GrB_Matrix C, GrB_Matrix M, GrB_Matrix A, GrB_Matrix B,
cudaStream_t stream = 0) {
bool result = false;
//----------------------------------------------------------------------
// do the numerical work
//----------------------------------------------------------------------
const int64_t nz = GB_nnz(M); // number of dots in the mask
const int64_t mnvec = M->nvec ;
int gridsz, blocksz;
std::stringstream final_kernel_name_ss;
final_kernel_name_ss << kernel_name;
/**
* Configure geometry and kernel function name based on sparsity of C and number of vectors in M
*/
configure( nz, mnvec, final_kernel_name_ss, blocksz, gridsz);
auto sr_code = std::to_string(mxm_factory_.sr_code); // FIXME: make hexadecimal
GrB_BinaryOp mult = mxm_factory_.semiring->multiply ;
std::string hashable_name = base_name + "_" + final_kernel_name_ss.str();
std::stringstream string_to_be_jitted ;
std::vector<std::string> template_types =
{
C->type->name, A->type->name, B->type->name,
mult->ztype->name, mult->xtype->name, mult->ytype->name,
sr_code
};
jit::GBJitCache filecache = jit::GBJitCache::Instance() ;
filecache.getFile (mxm_factory_) ;
string_to_be_jitted << hashable_name << std::endl <<
R"(#include ")" << jit::get_user_home_cache_dir() << "/" << mxm_factory_.filename << R"(")" << std::endl <<
R"(#include ")" << hashable_name << R"(.cuh")" << std::endl;
dim3 grid(gridsz);
dim3 block(blocksz);
GBURBLE ("(GPU dot3 mxm dense launch nblocks,blocksize= %d,%d )\n", gridsz,blocksz) ;
jit::launcher( hashable_name + "_" + sr_code,
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback)
.set_kernel_inst(final_kernel_name_ss.str(), template_types )
// { C->type->name,
// A->type->name,
// B->type->name })
.configure(grid, block, SMEM, stream) //if commented, use implicit 1D configure in launch
.launch(
C, // final output matrix
// inputs, not modified:
M, // Mi used for column index
A, // A matrix
B // B matrix
);
result= true;
return result;
}
private:
void configure(std::int64_t Cnz, std::int64_t mnvec, std::stringstream &opname,
int &blocksz, int &gridsz) {
int number_of_sms = GB_Global_gpu_sm_get (0) ;
int work_per_thread;
blocksz = 64;
work_per_thread = 8;
if( Cnz > 1024){
blocksz = 512;
work_per_thread = 64;
}
// gridsz = ceiling (Cnz / work_per_thread*blocksz)
gridsz = GB_ICEIL (Cnz, work_per_thread*blocksz) ;
}
};
//------------------------------------------------------------------------------
// dot3: mxm_sparse_dense_launchFactory
//------------------------------------------------------------------------------
class mxm_sparse_dense_launchFactory
{
std::string base_name = "GB_jit";
std::string kernel_name = "AxB_dot3";
GB_cuda_mxm_factory &mxm_factory_;
public:
/**
* This assumes the needed state on the GB_cuda_mxm_factory has already been populated.
* The `bucket_code` determines which kernel is launched
*/
mxm_sparse_dense_launchFactory(GB_cuda_mxm_factory &mymxmfactory):
mxm_factory_(mymxmfactory) {}
bool jitGridBlockLaunch( GrB_Matrix C, GrB_Matrix M, GrB_Matrix A, GrB_Matrix B,
cudaStream_t stream = 0) {
bool result = false;
//----------------------------------------------------------------------
// do the numerical work
//----------------------------------------------------------------------
const int64_t nz = GB_nnz(M); // number of dots in the mask
const int64_t mnvec = M->nvec ;
int gridsz, blocksz;
std::stringstream final_kernel_name_ss;
final_kernel_name_ss << kernel_name;
/**
* Configure geometry and kernel function name based on sparsity of C and number of vectors in M
*/
configure( nz, mnvec, final_kernel_name_ss, blocksz, gridsz);
auto sr_code = std::to_string(mxm_factory_.sr_code);
GrB_BinaryOp mult = mxm_factory_.semiring->multiply ;
std::string hashable_name = base_name + "_" + final_kernel_name_ss.str();
std::stringstream string_to_be_jitted ;
std::vector<std::string> template_types =
{
C->type->name, A->type->name, B->type->name,
mult->ztype->name, mult->xtype->name, mult->ytype->name,
sr_code
};
jit::GBJitCache filecache = jit::GBJitCache::Instance() ;
filecache.getFile (mxm_factory_) ;
string_to_be_jitted << hashable_name << std::endl <<
R"(#include ")" << jit::get_user_home_cache_dir() << "/" << mxm_factory_.filename << R"(")" << std::endl <<
R"(#include ")" << hashable_name << R"(.cuh")" << std::endl;
dim3 grid(gridsz);
dim3 block(blocksz);
GBURBLE ("(GPU dot3 mxm sparse_dense launch nblocks,blocksize= %d,%d )\n", gridsz,blocksz) ;
jit::launcher( hashable_name + "_" + sr_code,
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback)
.set_kernel_inst(final_kernel_name_ss.str(), template_types )
// { C->type->name,
// A->type->name,
// B->type->name })
.configure(grid, block, SMEM, stream) //if commented, use implicit 1D configure in launch
.launch(
C, // final output matrix
// inputs, not modified:
M, // Mi used for column index
A, // A matrix
B // B matrix
);
result= true;
return result;
}
private:
void configure(std::int64_t Cnz, std::int64_t mnvec, std::stringstream &opname,
int &blocksz, int &gridsz) {
int number_of_sms = GB_Global_gpu_sm_get (0) ;
int work_per_thread;
blocksz = 64;
work_per_thread = 8;
if( Cnz > 1024){
blocksz = 512;
work_per_thread = 64;
}
// gridsz = ceiling (Cnz / work_per_thread*blocksz)
gridsz = GB_ICEIL (Cnz, work_per_thread*blocksz) ;
}
};
//------------------------------------------------------------------------------
// dot3: phase3launchFactory
//------------------------------------------------------------------------------
class phase3launchFactory
{
std::string base_name = "GB_jit";
std::string kernel_name = "AxB_dot3";
GB_cuda_mxm_factory &mxm_factory_;
GB_bucket_code bucket_code_;
public:
std::string Opname;
/**
* This assumes the needed state on the GB_cuda_mxm_factory has already been populated.
* The `bucket_code` determines which kernel is launched
*/
phase3launchFactory(GB_cuda_mxm_factory &mymxmfactory, GB_bucket_code bucket_code):
mxm_factory_(mymxmfactory), bucket_code_(bucket_code) {}
bool jitGridBlockLaunch(int64_t start, int64_t end, int64_t *bucketp, int64_t *bucket,
GrB_Matrix C, GrB_Matrix M, GrB_Matrix A, GrB_Matrix B,
cudaStream_t stream = 0) {
bool result = false;
//----------------------------------------------------------------------
// phase3: do the numerical work
//----------------------------------------------------------------------
const int64_t nz = end - start; // number of dots in this bucket
const int64_t mnvec = M->nvec ;
int gridsz, blocksz, sz = 4;
std::stringstream final_kernel_name_ss;
final_kernel_name_ss << kernel_name << "_";
/**
* Configure geometry and kernel function name based on sparsity of C and number of vectors in M
*/
auto sr_code = std::to_string(mxm_factory_.sr_code);
configure2( nz, mnvec, final_kernel_name_ss, blocksz, gridsz, sz, mxm_factory_.sr_code);
GrB_BinaryOp mult = mxm_factory_.semiring->multiply ;
std::string hashable_name = base_name + "_" + final_kernel_name_ss.str();
std::stringstream string_to_be_jitted ;
std::vector<std::string> template_types =
{
C->type->name, A->type->name, B->type->name,
mult->ztype->name, mult->xtype->name, mult->ytype->name,
sr_code
};
jit::GBJitCache filecache = jit::GBJitCache::Instance() ;
filecache.getFile (mxm_factory_) ;
string_to_be_jitted << hashable_name << std::endl <<
R"(#include ")" << jit::get_user_home_cache_dir() << "/" << mxm_factory_.filename << R"(")" << std::endl <<
R"(#include ")" << hashable_name << R"(.cuh")" << std::endl;
dim3 grid(gridsz);
dim3 block(blocksz);
GBURBLE ("(GPU phase3 launch %s st,end=%ld,%ld nblocks,blocksize= %d,%d )\n", this->Opname.c_str(),
start,end,gridsz,blocksz) ;
jit::launcher( hashable_name + "_" + sr_code,
string_to_be_jitted.str(),
header_names,
compiler_flags,
file_callback)
.set_kernel_inst(final_kernel_name_ss.str(), template_types )
// { C->type->name,
// A->type->name,
// B->type->name })
.configure(grid, block, SMEM, stream) //if commented, use implicit 1D configure in launch
.launch(
start, // input/output:
end, // global bucket cumsum, of size NBUCKETS+1
bucket, // global buckets, of size cnz (== mnz)
C, // final output matrix
// inputs, not modified:
M, // Mi used for column index
A, // A matrix
B, // B matrix
sz // only used for sparse-sparse cases
);
result= true;
return result;
}
private:
void configure2(std::int64_t Cnz, std::int64_t mnvec, std::stringstream &opname,
int &blocksz, int &gridsz, int &sz, uint64_t sr_code) {
int number_of_sms = GB_Global_gpu_sm_get (0) ;
int work_per_thread;
// 0:hyper, 1:sparse, 2:bitmap, 3:full
int asparsity = GB_RSHIFT (sr_code, 2, 2) ;
int bsparsity = GB_RSHIFT (sr_code, 0, 2) ;
if (asparsity <= 1 && bsparsity <= 1)
{
// both A and B are sparse/hyper
switch (bucket_code_)
{
//--------------------------------------------------------------
// not a bucket ... bring out your dead:
//--------------------------------------------------------------
case GB_BUCKET_ZOMBIE : // C(i,j) is a zombie (not a bucket)
break ;
//--------------------------------------------------------------
// CUDA kernel: vsvs bucket:
//--------------------------------------------------------------
case GB_BUCKET_VSVS :
Opname = "phase3_vsvs" ;
blocksz = 256;
work_per_thread = 4;
if( Cnz > (2<<12)){
blocksz = 512;
work_per_thread = 4;
}
// gridsz = ceiling (Cnz / work_per_thread*blocksz)
gridsz = GB_ICEIL (Cnz, work_per_thread*blocksz) ;
if (gridsz > 256*number_of_sms) gridsz = 256*number_of_sms;
break ;
//--------------------------------------------------------------
// CUDA kernel: mp, use the merge-path method:
//--------------------------------------------------------------
case GB_BUCKET_MERGEPATH :
Opname = "phase3_mp" ;
blocksz = 32;
work_per_thread = 256 ;
if( Cnz > (2<<20)){
work_per_thread = 1024;
}
gridsz = GB_ICEIL (Cnz, work_per_thread) ;
if ((gridsz < number_of_sms) && (Cnz > (2<<20)))
{
gridsz = number_of_sms;
}
if (gridsz > 256*number_of_sms) gridsz = 256*number_of_sms;
break ;
default:
break ;
}
}
else
{
// either A or B are bitmap/full
switch (bucket_code_)
{
//--------------------------------------------------------------
// not a bucket ... bring out your dead:
//--------------------------------------------------------------
case GB_BUCKET_ZOMBIE : // C(i,j) is a zombie (not a bucket)
break ;
//--------------------------------------------------------------
// CUDA kernel: vsdn bucket: one thread per C(i,j) dot product
//--------------------------------------------------------------
case GB_BUCKET_VSDN :
Opname = "phase3_vsdn" ;
// FIXME:
blocksz = 256;
work_per_thread = 4;
if( Cnz > (2<<12)){
blocksz = 512;
work_per_thread = 4;
}
// gridsz = ceiling (Cnz / work_per_thread*blocksz)
gridsz = GB_ICEIL (Cnz, work_per_thread*blocksz) ;
if (gridsz > 256*number_of_sms) gridsz = 256*number_of_sms;
break ;
//--------------------------------------------------------------
// CUDA kernel: spdn bucket: one warp per C(i,j) dot product
//--------------------------------------------------------------
case GB_BUCKET_SPDN :
Opname = "phase3_spdn" ;
// FIXME:
blocksz = 32;
work_per_thread = 256 ;
if( Cnz > (2<<20)){
work_per_thread = 1024;
}
gridsz = GB_ICEIL (Cnz, work_per_thread) ;
if ((gridsz < number_of_sms) && (Cnz > (2<<20)))
{
gridsz = number_of_sms;
}
if (gridsz > 256*number_of_sms) gridsz = 256*number_of_sms;
break ;
default:
break ;
}
}
opname << Opname;
}
};
#endif
|