1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
//------------------------------------------------------------------------------
// AxB_dot3_phase3_dndn.cu
//------------------------------------------------------------------------------
// This CUDA kernel produces the semi-ring product of two
// dense matrices of types T_A and T_B and common index space size n, to a
// output matrix of type T_C. The matrices are dense, with uniform
// non-zeros and sparsity patterns.
// ie. we want to produce C = A'*B in the sense of the given semi-ring.
// This version uses a simple warp-based dense dot product algorithm, when the
// vectors coming from both A and B are dense, for any size of N.
// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x
// Let b = blockIdx.x, and let s be blockDim.x. s= 32 with a variable number
// of active threads = min( min(nzA, nzB), 32)
// Thus, threadblock b owns a semi-ring dot product on a pair of vectors.
// The work is to load the data, do the multiply and add work and finally
// reduce this data to a scalar, and write it to Cx[pair].
// int64_t start <- start of vector pairs for this kernel
// int64_t end <- end of vector pairs for this kernel
// int64_t *Bucket <- array of pair indices for all kernels
// GrB_Matrix C <- result matrix
// GrB_Matrix M <- mask matrix
// GrB_Matrix A <- input matrix A
// GrB_Matrix B <- input matrix B
// int sz <- size parameter (not used)
/* fixme: This kernel needs to be split into 4 methods:
(A bitmap) * (B bitmap)
(A full ) * (B bitmap)
(A bitmap) * (B full)
(A full) * (B full)
The buckets are not needed at all. A single pass can be done.
C and M would still be sparse or hypersparse.
See also denseDotProduct.cu.
*/
#pragma once
#include <limits>
#include <cstdint>
#include "GB_cuda_kernel.h"
#include <cooperative_groups.h>
// Using tile size fixed at compile time, we don't need shared memory
#define tile_sz 32
using namespace cooperative_groups;
template< typename T, int warp_sz>
__inline__ __device__ T warp_ReduceSum(thread_block_tile<warp_sz> g, T val)
{
// Each iteration halves the number of active threads
// Each thread adds its partial sum[i] to sum[lane+i]
for (int i = g.size() / 2; i > 0; i /= 2)
{
T next = g.shfl_down( val, i) ;
GB_ADD( val, val, next );
}
return val; // note: only thread 0 will return full sum
}
template<typename T, int warpSize >
__inline__ __device__
T block_ReduceSum(thread_block g, T val, T Ident)
{
static __shared__ T shared[warpSize]; // Shared mem for 32 partial sums
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;
thread_block_tile<warpSize> tile = tiled_partition<warpSize>(g);
// Each warp performs partial reduction
val = warp_ReduceSum< T, warpSize>(tile, val);
if (lane==0) shared[wid] = val; // Write reduced value to shared memory
//tile.sync(); // Wait for all partial reductions
if (wid > 0 ) return val;
//read from shared memory only if that warp existed
val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : Ident ;
if (wid==0) val = warp_ReduceSum< T, warpSize>(tile,val); //Final reduce within first warp
return val;
}
template<
typename T_C, typename T_A, typename T_B,
typename T_Z, typename T_X, typename T_Y,
uint64_t srcode>
__global__ void AxB_dot3_phase3_dndn
(
GrB_Matrix C,
GrB_Matrix M,
GrB_Matrix A,
GrB_Matrix B
)
{
// TODO: Figure out how to use graphblas-specific INFINITY macro
#ifndef INFINITY
#define INFINITY std::numeric_limits<T_C>::max()
#endif
const T_A *__restrict__ Ax = (T_A *)A->x ;
const T_B *__restrict__ Bx = (T_B *)B->x ;
T_C *__restrict__ Cx = (T_C *)C->x ;
int64_t *__restrict__ Ci = C->i ;
const int64_t *__restrict__ Mi = M->i ;
#if GB_M_IS_HYPER
const int64_t *__restrict__ Mh = M->h ;
#endif
// A and B are either bitmap or full
#if GB_A_IS_BITMAP
const int8_t *__restrict__ Ab = A->b ;
#endif
#if GB_B_IS_BITMAP
const int8_t *__restrict__ Bb = B->b ;
#endif
// zombie count
int64_t zc = 0;
int64_t start = 0;
int64_t end = M->p[M->nvec];
// total items to be inspected
int64_t nnzA = A->vlen;
int64_t nnzB = B->vlen;
int s = blockDim.x;
// Main loop over pairs
for ( int64_t pair_id = start + blockIdx.x; //warp per pair
pair_id < end;
pair_id += gridDim.x )
{
// get M(i,j) and C(i,j)
int64_t i = Mi[pair_id];
int64_t kk = Ci[pair_id] >> 4; // FIXME: can remove ">> 4"
bool cij_exists = false ;
// T_Z cij = GB_IDENTITY ;
GB_DECLARE_MONOID_IDENTITY (cij) ;
// skip if C(i,j) is a prezombie
if (kk >= 0)
{
// j = kk or j = Mh [kk] if C and M are hypersparse
#if GB_M_IS_HYPER
int64_t j = Mh [kk] ;
#else
int64_t j = kk ;
#endif
int64_t pA = (A->vlen)*i;
int64_t pA_end = pA +(A->vlen);
int64_t pB = (B->vlen)*j;
int64_t pB_end = pB +(B->vlen);
// if (threadIdx.x == 0 ){
// printf("tid=%d, i,j = %d,%d nnzA= %d, nnzB=%d\n",
// threadIdx.x, (int)i,(int)j, (int)nnzA, (int)nnzB);
// }
// __syncthreads();
// convert global data pointer to the local pointer of this block
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
#if GB_A_IS_FULL && GB_B_IS_FULL
{
cij_exists = true ;
for ( k = threadIdx.x ; k < nnzA ; k += s)
{
// cij += A(k,i) * B(k,j)
GB_GETA (aki, Ax, pA+k) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k) ; // bkj = B(k,j)
GB_MULTADD ( cij, aki, bkj, i, k, j ) ; // cij += aki * bkj
}
}
#elif GB_A_IS_BITMAP && GB_B_IS_BITMAP
{
for ( int64_t k = threadIdx.x ; k < nnzA ; k += s)
{
GB_GETA (aki, Ax, pA+k) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k) ; // bkj = B(k,j)
int8_t b = (Ab [pA+k] && Bb [pB+k]) ;
cij_exists |= b ;
if (b)
{
GB_MULTADD ( cij, aki, bkj, i, k, j ) ; // cij += aki * bkj
}
}
}
#elif GB_A_IS_FULL && GB_B_IS_BITMAP
{
for ( int64_t k = threadIdx.x ; k < nnzA ; k += s)
{
if (Bb [pB+k])
{
GB_GETA (aki, Ax, pA+k) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k) ; // bkj = B(k,j)
GB_MULTADD ( cij, aki, bkj, i, k, j ) ; // cij += aki * bkj
cij_exists = true ;
}
}
}
#elif GB_A_IS_BITMAP && GB_B_IS_FULL
{
for ( int64_t k = threadIdx.x ; k < nnzA ; k += s)
{
if (Ab [pB+k])
{
GB_GETA (aki, Ax, pA+k) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k) ; // bkj = B(k,j)
GB_MULTADD ( cij, aki, bkj, i, k, j ) ; // cij += aki * bkj
cij_exists = true ;
}
}
}
#endif
}
//--------------------------------------------------------------------------
// reduce per-thread sums to a single scalar
//--------------------------------------------------------------------------
// Do vote here for control.
thread_block_tile<32> tile = tiled_partition<32>( this_thread_block() );
cij_exists = tile.any( cij_exists);
tile.sync();
#if !GB_C_ISO
cij = warp_ReduceSum<T_Z, 32> ( tile, cij);
#endif
// write result for this block to global mem
if (threadIdx.x == 0)
{
if (cij_exists)
{
//printf("tid: %d final sum after reduce = %d\n", threadIdx.x, sum);
GB_PUTC( Cx[pair_id]=(T_C)cij ) ;
Ci[pair_id]=i ;
}
else
{
zc++;
Ci[pair_id]=GB_FLIP (i) ;
}
}
//__syncthreads ( ) ;
if( tid ==0 && zc > 0)
{
// printf("warp %d zombie count = %d, nzombies = %d\n", blockIdx.x, zc, C->nzombies);
atomicAdd( (unsigned long long int*)&(C->nzombies), (unsigned long long int)zc);
// printf(" Czombie = %lld\n",C->nzombies);
}
}
}
|