1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
//------------------------------------------------------------------------------
// AxB_dot3_phase3_mp.cu
//------------------------------------------------------------------------------
// This CUDA kernel produces the semi-ring product of two
// sparse matrices of types T_A and T_B and common index space size n, to a
// output matrix of type T_C. The matrices are sparse, with different numbers
// of non-zeros and different sparsity patterns.
// ie. we want to produce C = A'*B in the sense of the given semi-ring.
// This version uses a merge-path algorithm, when the sizes nnzA and nnzB are
// relatively close in size, neither is very sparse nor dense, for any size of N.
// Handles arbitrary sparsity patterns with guaranteed load balance.
// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x
// Let b = blockIdx.x, and let s be blockDim.x. s= 32 with a variable number
// of active threads = min( min(g_xnz, g_ynz), 32)
// Thus, threadblock b owns a part of the index set spanned by g_xi and g_yi. Its job
// is to find the intersection of the index sets g_xi and g_yi, perform the semi-ring dot
// product on those items in the intersection, and finally reduce this data to a scalar,
// on exit write it to g_odata [b].
// int64_t start <- start of vector pairs for this kernel
// int64_t end <- end of vector pairs for this kernel
// int64_t *Bucket <- array of pair indices for all kernels
// matrix<T_C> *C <- result matrix
// matrix<T_M> *M <- mask matrix
// matrix<T_A> *A <- input matrix A
// matrix<T_B> *B <- input matrix B
#pragma once
#include <limits>
#include <cstdint>
#include <cooperative_groups.h>
#include "GB_cuda_kernel.h"
#include "GB_hash.h"
#include "GB_hyper_hash_lookup.h"
// Using tile size fixed at compile time, we don't need shared memory
#define tile_sz 32
using namespace cooperative_groups;
// FIXME: for the ANY monoid, GB_reduce_sum becomes trivial.
// or, if terminal condition is hit.
template< typename T, int warp_sz>
__device__ __inline__
T GB_reduce_sum(thread_block_tile<warp_sz> g, T val)
{
// Each iteration halves the number of active threads
// Each thread adds its partial sum[i] to sum[lane+i]
// Temporary T is necessary to handle arbirary ops
#pragma unroll
for (int i = warp_sz >> 1; i > 0; i >>= 1)
{
T next = g.shfl_down( val, i);
GB_ADD( val, val, next );
}
return val;
}
template< typename T, int warp_sz>
__device__ __inline__
T reduce_plus(thread_block_tile<warp_sz> g, T val)
{
// Each iteration halves the number of active threads
// Each thread adds its partial sum[i] to sum[lane+i]
#pragma unroll
for (int i = warp_sz >> 1; i > 0; i >>= 1)
{
val += g.shfl_down( val, i) ;
}
return val; // note: only thread 0 will return full sum and flag value
}
template<
typename T_C, typename T_A, typename T_B,
typename T_Z, typename T_X, typename T_Y,
uint64_t srcode>
__global__ void AxB_dot3_phase3_mp
(
int64_t start,
int64_t end,
int64_t *Bucket, // do the work in Bucket [start:end-1]
GrB_Matrix C,
GrB_Matrix M,
GrB_Matrix A,
GrB_Matrix B,
int sz
)
{
// TODO: Figure out how to use graphblas-specific INFINITY macro
#ifndef INFINITY
#define INFINITY std::numeric_limits<T_C>::max()
#endif
const T_A *__restrict__ Ax = (T_A *)A->x ;
const T_B *__restrict__ Bx = (T_B *)B->x ;
T_C *__restrict__ Cx = (T_C *)C->x ;
int64_t *__restrict__ Ci = C->i ;
const int64_t *__restrict__ Mi = M->i ;
#if GB_M_IS_HYPER
const int64_t *__restrict__ Mh = M->h ;
#endif
// A and B are either sparse or hypersparse
const int64_t *__restrict__ Ai = A->i ;
const int64_t *__restrict__ Bi = B->i ;
const int64_t *__restrict__ Ap = A->p ;
const int64_t *__restrict__ Bp = B->p ;
ASSERT (GB_A_IS_HYPER || GB_A_IS_SPARSE) ;
ASSERT (GB_B_IS_HYPER || GB_B_IS_SPARSE) ;
#if GB_A_IS_HYPER
const int64_t *__restrict__ A_Yp = A->Y->p ;
const int64_t *__restrict__ A_Yi = A->Y->i ;
const int64_t *__restrict__ A_Yx = (int64_t *) A->Y->x ;
const int64_t A_hash_bits = A->Y->vdim - 1 ;
#endif
#if GB_B_IS_HYPER
const int64_t *__restrict__ B_Yp = B->Y->p ;
const int64_t *__restrict__ B_Yi = B->Y->i ;
const int64_t *__restrict__ B_Yx = (int64_t *) B->Y->x ;
const int64_t B_hash_bits = B->Y->vdim - 1 ;
#endif
// zombie count
int64_t zc = 0;
int64_t pair_id;
// set thread ID
int tid_global = threadIdx.x+ blockDim.x* blockIdx.x;
int tid = threadIdx.x;
int b = blockIdx.x ;
// total items to be inspected
int64_t ainz = 0;
int64_t bjnz = 0;
thread_block_tile<tile_sz> tile = tiled_partition<tile_sz>( this_thread_block());
int all_in_one = ( (end - start) == (M->p)[(M->nvec)] ) ;
// Main loop over pairs
int64_t kk ;
for (kk = start+ blockIdx.x; // warp per C(i,j)=A(:,i)'*B(:,j) dot product
kk < end;
kk += gridDim.x )
{
pair_id = all_in_one ? kk : Bucket [kk] ;
int64_t i = Mi[pair_id];
int64_t k = Ci[pair_id] >> 4;
// j = k or j = Mh [k] if C and M are hypersparse
#if GB_M_IS_HYPER
int64_t j = Mh [k] ;
#else
int64_t j = k ;
#endif
// find A(:,i)
int64_t pA_start, pA_end ;
#if GB_A_IS_HYPER
GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx, A_hash_bits,
i, &pA_start, &pA_end) ;
#else
pA_start = Ap[i] ;
pA_end = Ap[i+1] ;
#endif
ainz = pA_end - pA_start ;
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
#if !GB_C_ISO
// T_Z cij = GB_IDENTITY ;
GB_DECLARE_MONOID_IDENTITY (cij) ;
#endif
int cij_exists = 0 ; // FIXME: make a bool
#define shared_vector_size 128
__shared__ int64_t Ai_s[shared_vector_size];
int shared_steps_A = (ainz + shared_vector_size -1)/shared_vector_size;
int64_t step_end = (shared_steps_A <= 1? ainz : shared_vector_size);
for ( int64_t i = tid; i< step_end; i+= blockDim.x)
{
Ai_s[i] = Ai[ i + pA_start];
}
this_thread_block().sync();
// find B(:,j)
int64_t pB_start, pB_end ;
#if GB_B_IS_HYPER
GB_hyper_hash_lookup (Bp, B_Yp, B_Yi, B_Yx, B_hash_bits,
j, &pB_start, &pB_end) ;
#else
pB_start = Bp[j] ;
pB_end = Bp[j+1] ;
#endif
bjnz = pB_end - pB_start; // bjnz
int shared_steps_B = (bjnz + shared_vector_size -1)/shared_vector_size;
__shared__ int64_t Bj_s[shared_vector_size];
step_end = (shared_steps_B <= 1 ? bjnz : shared_vector_size);
for ( int64_t i =tid; i< step_end; i+= blockDim.x)
{
Bj_s[i] = Bi[ i + pB_start];
}
this_thread_block().sync();
//if (threadIdx.x ==0 ) {
// printf("block %d doing dot %lld i,j= %lld,%lld\n", blockIdx.x, pair_id, i, j);
// printf("block %d doing dot %lld ainz,bjnz= %lld,%lld, A_steps=%d, B_steps=%d\n",
// blockIdx.x, pair_id, ainz, bjnz, shared_steps_A, shared_steps_B);
//}
//this_thread_block().sync();
//we want more than one intersection per thread
while ( (shared_steps_A > 0) && (shared_steps_B > 0) )
{
int64_t awork = pA_end - pA_start;
int64_t bwork = pB_end - pB_start;
if ( shared_steps_A > 1) awork = shared_vector_size;
if ( shared_steps_B > 1) bwork = shared_vector_size;
int64_t nxy = awork + bwork;
int work_per_thread = (nxy + blockDim.x -1)/blockDim.x; // ceil Divide by 32 = blockDim.x
int diag = GB_IMIN( work_per_thread*tid, nxy);
int diag_end = GB_IMIN( diag + work_per_thread, nxy);
//printf(" thd%d parts = %u wpt = %u diag, diag_end = %u,%u\n",tid, blockDim.x, work_per_thread, diag, diag_end);
//if (1) //(threadIdx.x == 0)
//{
// printf ("pair %ld tid%d work_per_thread %d nxy %ld parts %d diag %d diag_end %d Astep=%d, Bstep=%d\n",
// pair_id, threadIdx.x, work_per_thread, nxy, blockDim.x, diag, diag_end,shared_steps_A,shared_steps_B) ;
//}
//this_thread_block().sync();
int x_min = GB_IMAX( (diag - bwork) , 0); //bwork takes place of bjnz
int x_max = GB_IMIN( diag, awork); //awork takes place of ainz
while ( x_min < x_max)
{
//binary search for correct diag break
int pivot = (x_min +x_max) >> 1;
//printf("start search thd%u piv=%u xmin,xmax = %u,%u diag_end=%d\n", tid_global, pivot, x_min, x_max, diag_end);
int64_t Apiv = Ai_s[pivot] ;
int64_t Bpiv = Bj_s[diag -pivot -1] ;
// if ( Apiv < Bpiv ) {
// x_min = pivot +1;
// }
// else {
// x_max = pivot;
// }
x_min = (pivot + 1)* (Apiv < Bpiv) + x_min * (1 - (Apiv < Bpiv));
x_max = pivot * (1 - (Apiv < Bpiv)) + x_max * (Apiv < Bpiv);
}
//printf("start search thd%u xcoord= %u diag=%d, diag_end=%d\n", tid_global, x_min, diag, diag_end);
int xcoord = x_min;
int ycoord = diag -x_min -1;
int64_t Atest = Ai_s[xcoord] ;
int64_t Btest = Bj_s[ycoord] ;
if ( (diag > 0) && (diag < nxy ) && (ycoord >= 0 ) && (Atest == Btest))
{
diag--; //adjust for intersection incrementing both pointers
}
// two start points are known now
int tx_start = xcoord; // +pA_start;
int ty_start = diag -xcoord; // +pB_start;
//if (x_start != y_start)
// printf("start thd%u xs,ys = %i,%i\n", tid_global, x_start, y_start);
x_min = GB_IMAX( (diag_end - bwork), 0); //bwork replace bjnz
x_max = GB_IMIN( diag_end, awork); //awork replace ainz
while ( x_min < x_max)
{
int pivot = (x_min +x_max) >> 1;
int64_t Apiv = Ai_s[pivot] ;
int64_t Bpiv = Bj_s[diag_end -pivot -1] ;
//if ( Apiv < Bpiv ) {
// x_min = pivot +1;
//}
//else {
// x_max = pivot;
//}
x_min = (pivot + 1)* (Apiv < Bpiv) + x_min * (1 - (Apiv < Bpiv));
x_max = pivot * (1 - (Apiv < Bpiv)) + x_max * (Apiv < Bpiv);
}
//printf("end search thd%u x_coord = %u diag=%d, diag_end=%d\n", tid_global, x_min, diag, diag_end);
xcoord = x_min;
ycoord = diag_end -x_min -1;
// two end points are known now
int tx_end = xcoord; // +pA_start;
int ty_end = diag_end - xcoord; // + pB_start;
//merge-path dot product
int64_t pA = tx_start; // pA
int64_t pB = ty_start; // pB
//if (1) // threadIdx.x == 0)
//{
// printf ("%d tx_start %d\n", threadIdx.x, tx_start) ;
// printf ("%d tx_end %d\n", threadIdx.x, tx_end ) ;
// printf ("%d ty_start %d\n", threadIdx.x, ty_start) ;
// printf ("%d ty_end %d\n", threadIdx.x, ty_end ) ;
//}
//this_thread_block().sync();
// if(threadIdx.x == 0 ) {
// printf("blk%d, thd%d k=%d, l=%d, tx_start=%d, ty_start=%d, tx_end=%d, ty_end=%d\n",
// blockIdx.x, tid_global, k, l, tx_start, ty_start, tx_end, ty_end);
// }
// this_thread_block().sync();
while ( pA < tx_end && pB < ty_end )
{
int64_t Aind = Ai_s[pA] ;
int64_t Bind = Bj_s[pB] ;
#if GB_IS_PLUS_PAIR_REAL_SEMIRING && GB_ZTYPE_IGNORE_OVERFLOW
cij += (Aind == Bind) ;
#else
if (Aind == Bind)
{
// cij += aki + bkj
GB_DOT_MERGE (pA + pA_start, pB + pB_start) ;
// TODO check terminal condition, using tile.any
}
#endif
pA += (Aind <= Bind) ;
pB += (Aind >= Bind) ;
}
GB_CIJ_EXIST_POSTCHECK ;
this_thread_block().sync();
if ( (shared_steps_A >= 1)
&& (shared_steps_B >= 1)
&& ( Ai_s[awork-1] == Bj_s[bwork-1]) )
{
pA_start += shared_vector_size;
shared_steps_A -= 1;
if (shared_steps_A == 0) break;
pB_start += shared_vector_size;
shared_steps_B -= 1;
if (shared_steps_B == 0) break;
step_end = ( (pA_end - pA_start) < shared_vector_size ? (pA_end - pA_start) : shared_vector_size);
for ( int64_t i = tid; i< step_end; i+= blockDim.x)
{
Ai_s[i] = Ai[ i + pA_start];
}
this_thread_block().sync();
step_end = ( (pB_end - pB_start) < shared_vector_size ? (pB_end - pB_start) : shared_vector_size);
for ( int64_t i = tid; i< step_end; i+= blockDim.x)
{
Bj_s[i] = Bi[ i + pB_start];
}
this_thread_block().sync();
}
else if ( (shared_steps_A >= 1) && (Ai_s[awork-1] < Bj_s[bwork-1] ))
{
pA_start += shared_vector_size;
shared_steps_A -= 1;
if (shared_steps_A == 0) break;
step_end= ( (pA_end - pA_start) < shared_vector_size ? (pA_end - pA_start) : shared_vector_size);
for ( int64_t i = tid; i< step_end; i+= blockDim.x)
{
Ai_s[i] = Ai[ i + pA_start];
}
this_thread_block().sync();
}
else if ( (shared_steps_B >= 1) && (Bj_s[bwork-1] < Ai_s[awork-1]) )
{
pB_start += shared_vector_size;
shared_steps_B -= 1;
if (shared_steps_B == 0) break;
step_end = ( (pB_end - pB_start) < shared_vector_size ? (pB_end - pB_start) : shared_vector_size);
for ( int64_t i = tid; i< step_end; i+= blockDim.x)
{
Bj_s[i] = Bi[ i + pB_start];
}
this_thread_block().sync();
}
} // end while shared_steps A > 0 && shared_steps_B >0
//tile.sync( ) ;
//----------------------------------------------------------------------
// reduce sum per-thread values to a single scalar, get OR of flag
//----------------------------------------------------------------------
/*
if (tid == 0)
{
printf ("reduce %d : %d exists = %d\n", b, cij, cij_exists) ;
}
__syncthreads();
*/
// Do vote here for control.
cij_exists = tile.any (cij_exists) ;
tile.sync ( ) ;
#if !GB_C_ISO
if (cij_exists)
{
cij = GB_reduce_sum<T_Z, tile_sz>( tile, cij );
}
#endif
// write result for this block to global mem
if (tid == 0)
{
if (cij_exists)
{
GB_PUTC ( Cx[pair_id]=(T_C)cij ) ;
Ci[pair_id] = i ;
}
else
{
zc++;
Ci[pair_id]=GB_FLIP (i) ;
}
}
//__syncthreads();
}
//--------------------------------------------------------------------------
if( tid ==0 && zc > 0)
{
// printf("warp %d zombie count = %d, nzombies = %d\n", blockIdx.x, zc, C->nzombies);
atomicAdd( (unsigned long long int*)&(C->nzombies), (unsigned long long int)zc);
// printf(" Czombie = %lld\n",C->nzombies);
}
//__syncthreads();
}
|