1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Source/read_matrix.c: read a matrix from stdin
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Reads a matrix from stdin. For sample inputs, see the Matrix/* files.
// Each line has the form:
//
// i j x
//
// where i and j are the row and column indices, and x is the value.
// The matrix is read in double precision.
#include "GraphBLAS.h"
// free all workspace; this used by the OK(...) macro if an error occurs
#define FREE_ALL \
if (I != NULL) free (I) ; \
if (J != NULL) free (J) ; \
if (X != NULL) free (X) ; \
if (I2 != NULL) free (I2) ; \
if (J2 != NULL) free (J2) ; \
if (X2 != NULL) free (X2) ; \
GrB_UnaryOp_free (&scale2_op) ; \
GrB_Descriptor_free (&dt2) ; \
GrB_Descriptor_free (&dt1) ; \
GrB_Matrix_free (&A) ; \
GrB_Matrix_free (&B) ; \
GrB_Matrix_free (&C) ;
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"
//------------------------------------------------------------------------------
// unary operator to divide by 2
//------------------------------------------------------------------------------
void scale2 (double *z, const double *x)
{
(*z) = (*x) / 2.0 ;
}
//------------------------------------------------------------------------------
// read a matrix from a file
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info read_matrix // read a double-precision or boolean matrix
(
GrB_Matrix *A_output, // handle of matrix to create
FILE *f, // file to read the tuples from
bool make_symmetric, // if true, return A as symmetric
bool no_self_edges, // if true, then remove self edges from A
bool one_based, // if true, input matrix is 1-based
bool boolean, // if true, input is GrB_BOOL, otherwise GrB_FP64
bool pr // if true, print status to stdout
)
{
int64_t len = 256 ;
int64_t ntuples = 0 ;
double x ;
GrB_Index nvals ;
//--------------------------------------------------------------------------
// set all pointers to NULL so that FREE_ALL can free everything safely
//--------------------------------------------------------------------------
GrB_Matrix C = NULL, A = NULL, B = NULL ;
GrB_Descriptor dt1 = NULL, dt2 = NULL ;
GrB_UnaryOp scale2_op = NULL ;
//--------------------------------------------------------------------------
// allocate initial space for tuples
//--------------------------------------------------------------------------
size_t xsize = ((boolean) ? sizeof (bool) : sizeof (double)) ;
GrB_Index *I = (GrB_Index *) malloc (len * sizeof (GrB_Index)), *I2 = NULL ;
GrB_Index *J = (GrB_Index *) malloc (len * sizeof (GrB_Index)), *J2 = NULL ;
void *X = malloc (len * xsize) ;
bool *Xbool ;
double *Xdouble ;
void *X2 = NULL ;
if (I == NULL || J == NULL || X == NULL)
{
// out of memory
if (pr) printf ("out of memory for initial tuples\n") ;
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
Xbool = (bool *) X ;
Xdouble = (double *) X ;
//--------------------------------------------------------------------------
// read in the tuples from stdin, one per line
//--------------------------------------------------------------------------
// format warnings vary with compilers, so read in as double
double i2, j2 ;
while (fscanf (f, "%lg %lg %lg\n", &i2, &j2, &x) != EOF)
{
int64_t i = (int64_t) i2 ;
int64_t j = (int64_t) j2 ;
if (ntuples >= len)
{
I2 = (GrB_Index *) realloc (I, 2 * len * sizeof (GrB_Index)) ;
J2 = (GrB_Index *) realloc (J, 2 * len * sizeof (GrB_Index)) ;
X2 = realloc (X, 2 * len * xsize) ;
if (I2 == NULL || J2 == NULL || X2 == NULL)
{
if (pr) printf ("out of memory for tuples\n") ;
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
I = I2 ; I2 = NULL ;
J = J2 ; J2 = NULL ;
X = X2 ; X2 = NULL ;
len = len * 2 ;
Xbool = (bool *) X ;
Xdouble = (double *) X ;
}
if (one_based)
{
i-- ;
j-- ;
}
I [ntuples] = i ;
J [ntuples] = j ;
if (boolean)
{
Xbool [ntuples] = (x != 0) ;
}
else
{
Xdouble [ntuples] = x ;
}
ntuples++ ;
}
//--------------------------------------------------------------------------
// find the dimensions
//--------------------------------------------------------------------------
if (pr) printf ("ntuples: %.16g\n", (double) ntuples) ;
int64_t nrows = 0 ;
int64_t ncols = 0 ;
for (int64_t k = 0 ; k < ntuples ; k++)
{
nrows = MAX (nrows, I [k]) ;
ncols = MAX (ncols, J [k]) ;
}
nrows++ ;
ncols++ ;
if (pr) printf ("nrows %.16g ncols %.16g\n",
(double) nrows, (double) ncols) ;
//--------------------------------------------------------------------------
// prune self edges
//--------------------------------------------------------------------------
// but not if creating the augmented system aka a bipartite graph
if (no_self_edges && ! (make_symmetric && nrows != ncols))
{
int64_t ntuples2 = 0 ;
for (int64_t k = 0 ; k < ntuples ; k++)
{
if (I [k] != J [k])
{
// keep this off-diagonal edge
I [ntuples2] = I [k] ;
J [ntuples2] = J [k] ;
if (boolean)
{
Xbool [ntuples2] = Xbool [k] ;
}
else
{
Xdouble [ntuples2] = Xdouble [k] ;
}
ntuples2++ ;
}
}
ntuples = ntuples2 ;
}
//--------------------------------------------------------------------------
// build the matrix, summing up duplicates, and then free the tuples
//--------------------------------------------------------------------------
GrB_Type xtype ;
GrB_BinaryOp xop, xop_first ;
if (boolean)
{
xtype = GrB_BOOL ;
xop = GrB_LOR ;
xop_first = GrB_FIRST_BOOL ;
}
else
{
xtype = GrB_FP64 ;
xop = GrB_PLUS_FP64 ;
xop_first = GrB_FIRST_FP64 ;
}
GrB_Info info ;
OK (GrB_Matrix_new (&C, xtype, nrows, ncols)) ;
if (boolean)
{
OK (GrB_Matrix_build_BOOL (C, I, J, Xbool, ntuples, xop)) ;
}
else
{
OK (GrB_Matrix_build_FP64 (C, I, J, Xdouble, ntuples, xop)) ;
}
free (I) ; I = NULL ;
free (J) ; J = NULL ;
free (X) ; X = NULL ;
//--------------------------------------------------------------------------
// construct the descriptors
//--------------------------------------------------------------------------
// descriptor dt2: transpose the 2nd input
OK (GrB_Descriptor_new (&dt2)) ;
OK (GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN)) ;
// descriptor dt1: transpose the 1st input
OK (GrB_Descriptor_new (&dt1)) ;
OK (GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN)) ;
//--------------------------------------------------------------------------
// create the output matrix
//--------------------------------------------------------------------------
if (make_symmetric)
{
//----------------------------------------------------------------------
// ensure the matrix is symmetric
//----------------------------------------------------------------------
if (pr) printf ("make symmetric\n") ;
if (nrows == ncols)
{
//------------------------------------------------------------------
// A = (C+C')/2
//------------------------------------------------------------------
if (pr) printf ("A = (C+C')/2\n") ;
OK (GrB_Matrix_new (&A, xtype, nrows, nrows)) ;
OK (GrB_Matrix_eWiseAdd_BinaryOp (A, NULL, NULL, xop, C, C, dt2)) ;
OK (GrB_Matrix_free (&C)) ;
if (boolean)
{
*A_output = A ;
A = NULL ;
}
else
{
OK (GrB_Matrix_new (&C, xtype, nrows, nrows)) ;
OK (GrB_UnaryOp_new (&scale2_op,
(GxB_unary_function) scale2, xtype, xtype)) ;
OK (GrB_Matrix_apply (C, NULL, NULL, scale2_op, A, NULL)) ;
OK (GrB_Matrix_free (&A)) ;
OK (GrB_UnaryOp_free (&scale2_op)) ;
*A_output = C ;
C = NULL ;
}
}
else
{
//------------------------------------------------------------------
// A = [0 C ; C' 0], a bipartite graph
//------------------------------------------------------------------
// no self edges will exist
if (pr) printf ("A = [0 C ; C' 0], a bipartite graph\n") ;
int64_t n = nrows + ncols ;
OK (GrB_Matrix_new (&A, xtype, n, n)) ;
GrB_Index I_range [3], J_range [3] ;
I_range [GxB_BEGIN] = 0 ;
I_range [GxB_END ] = nrows-1 ;
J_range [GxB_BEGIN] = nrows ;
J_range [GxB_END ] = ncols+nrows-1 ;
// A (nrows:n-1, 0:nrows-1) += C'
OK (GrB_Matrix_assign (A, NULL, xop_first, // or NULL,
C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1)) ;
// A (0:nrows-1, nrows:n-1) += C
OK (GrB_Matrix_assign (A, NULL, xop_first, // or NULL,
C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL)) ;
// force completion; if this statement does not appear, the
// timing will not account for the final build, which would be
// postponed until A is used by the caller in another GraphBLAS
// operation.
GrB_Matrix_nvals (&nvals, A) ;
*A_output = A ;
// set A to NULL so the FREE_ALL macro does not free *A_output
A = NULL ;
}
}
else
{
//----------------------------------------------------------------------
// return the matrix as-is
//----------------------------------------------------------------------
if (pr) printf ("leave A as-is\n") ;
*A_output = C ;
// set C to NULL so the FREE_ALL macro does not free *A_output
C = NULL ;
}
//--------------------------------------------------------------------------
// success: free everything except the result, and return it to the caller
//--------------------------------------------------------------------------
FREE_ALL ;
if (pr) printf ("\nMatrix from file:\n") ;
GxB_Matrix_fprint (*A_output, "*A_output", pr ? GxB_SHORT : GxB_SILENT,
stdout) ;
return (GrB_SUCCESS) ;
}
|