1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Source/wathen.c: a finite-element matrix on a regular mesh
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Create a finite-element matrix on an nx-by-ny 2D mesh, as computed by
// wathen.m.
#include "GraphBLAS.h"
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"
//------------------------------------------------------------------------------
// scale by rho
//------------------------------------------------------------------------------
double r = 0 ;
void rho_scale (double *f, const double *e)
{
(*f) = r * (*e) ;
}
//------------------------------------------------------------------------------
// Wathen function
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info wathen // construct a random Wathen matrix
(
GrB_Matrix *A_output, // output matrix
int64_t nx, // grid dimension nx
int64_t ny, // grid dimension ny
bool scale, // if true, scale the rows
int method, // 0 to 3
double *rho_given // nx-by-ny dense matrix, if NULL use random rho
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
if (nx < 0 || ny < 0 || A_output == NULL || method < 0 || method > 3)
{
return (GrB_INVALID_VALUE) ;
}
// macro to free all workspace. Not every method uses every object
#define FREE_ALL \
GrB_Matrix_free (&A) ; \
GrB_Matrix_free (&F) ; \
GrB_Matrix_free (&D) ; \
GrB_Matrix_free (&E) ; \
GrB_UnaryOp_free (&rho_op) ; \
if (rho_rand != NULL) free (rho_rand) ; \
if (I != NULL) free (I) ; \
if (J != NULL) free (J) ; \
if (X != NULL) free (X) ;
GrB_Info info ;
GrB_Matrix A = NULL, F = NULL, E = NULL, D = NULL ;
GrB_UnaryOp rho_op = NULL ;
double *rho_rand = NULL, *X = NULL, *rho ;
GrB_Index *I = NULL, *J = NULL ;
//--------------------------------------------------------------------------
// construct the coefficients
//--------------------------------------------------------------------------
#define d ((double) 45),
static const double e [8][8] = {
{ 6/d -6/d 2/d -8/d 3/d -8/d 2/d -6/d },
{ -6/d 32/d -6/d 20/d -8/d 16/d -8/d 20/d },
{ 2/d -6/d 6/d -6/d 2/d -8/d 3/d -8/d },
{ -8/d 20/d -6/d 32/d -6/d 20/d -8/d 16/d },
{ 3/d -8/d 2/d -6/d 6/d -6/d 2/d -8/d },
{ -8/d 16/d -8/d 20/d -6/d 32/d -6/d 20/d },
{ 2/d -8/d 3/d -8/d 2/d -6/d 6/d -6/d },
{ -6/d 20/d -8/d 16/d -8/d 20/d -6/d 32/d } } ;
//--------------------------------------------------------------------------
// A = sparse (n,n) ;
//--------------------------------------------------------------------------
int64_t n = 3*nx*ny + 2*nx + 2*ny +1 ;
OK (GrB_Matrix_new (&A, GrB_FP64, n, n)) ;
//--------------------------------------------------------------------------
// RHO = 100 * rand (nx,ny) ;
//--------------------------------------------------------------------------
// i and j are 1-based, so the same index computations from wathen.m
// can be used
#define RHO(i,j) rho [(i-1)+((j-1)*nx)]
if (rho_given == NULL)
{
// compute a random RHO matrix
rho_rand = (double *) malloc (nx * ny * sizeof (double)) ;
if (rho_rand == NULL)
{ // out of memory
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
rho = rho_rand ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
RHO (i,j) = 100 * simple_rand_x ( ) ;
}
}
}
else
{
// use rho_given on input
rho = rho_given ;
}
#define em(krow,kcol) (e [krow][kcol] * RHO (i,j))
//--------------------------------------------------------------------------
// nn = zeros (8,1) ;
//--------------------------------------------------------------------------
GrB_Index nn [8] ;
//--------------------------------------------------------------------------
// construct the Wathen matrix, using one of four equivalent methods
//--------------------------------------------------------------------------
switch (method)
{
//----------------------------------------------------------------------
// create tuples and use build, just like wathen.m
//----------------------------------------------------------------------
case 0:
{
// This method is fastest of the 4 methods here. The code here is
// nearly identical to the wathen.m M-file, except that here an
// adjustment to the indices must be made since GraphBLAS matrices
// are indexed starting at row and column 0, not 1. It requires
// more code on the part of the user application, however, as
// compared to methods 1, 2, and 3.
// allocate the tuples
int64_t ntriplets = nx*ny*64 ;
I = (GrB_Index *) malloc (ntriplets * sizeof (GrB_Index)) ;
J = (GrB_Index *) malloc (ntriplets * sizeof (GrB_Index)) ;
X = (double *) malloc (ntriplets * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{ // out of memory
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
ntriplets = 0 ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
I [ntriplets] = nn [krow] ;
J [ntriplets] = nn [kcol] ;
X [ntriplets] = em (krow,kcol) ;
ntriplets++ ;
}
}
}
}
// A = sparse (I,J,X,n,n) ;
OK (GrB_Matrix_build_FP64 (A, I, J, X, ntriplets, GrB_PLUS_FP64)) ;
}
break ;
//----------------------------------------------------------------------
// scalar assignment
//----------------------------------------------------------------------
case 1:
{
// This method is the simplest, and only takes about 2x the time as
// method 0. It would be impossibly slow in the equivalent MATLAB.
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// A (nn[krow],nn[kcol]) += em (krow,kcol)
OK (GrB_Matrix_assign_FP64 (A, NULL,
GrB_PLUS_FP64, em (krow,kcol),
(&nn [krow]), 1, (&nn [kcol]), 1, NULL)) ;
}
}
}
}
}
break ;
//----------------------------------------------------------------------
// matrix assignment, create F one entry at a time
//----------------------------------------------------------------------
case 2:
{
// This method constructs F and then assigns it all at once into A.
// It is about 2x to 3x slower than method 1.
// create a single 8-by-8 finite-element matrix F
OK (GrB_Matrix_new (&F, GrB_FP64, 8, 8)) ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// F (krow,kcol) = em (krow, kcol)
OK (GrB_Matrix_setElement_FP64 (F,
em (krow,kcol), krow, kcol)) ;
}
}
// A (nn,nn) += F
OK (GrB_Matrix_assign (A, NULL, GrB_PLUS_FP64,
F, nn, 8, nn, 8, NULL)) ;
}
}
}
break ;
//----------------------------------------------------------------------
// matrix assignment, create F all at once
//----------------------------------------------------------------------
case 3:
{
// This method is as fast as method 2 (that is, 2x to 3x slower
// than method 1). It is very flexible since any method can be
// used to construct the finite-element matrix. Then A(nn,nn)+=F
// is very efficient when F is a matrix.
// create a single 8-by-8 finite-element matrix F
OK (GrB_Matrix_new (&F, GrB_FP64, 8, 8)) ;
// create a single 8-by-8 coefficient matrix E
OK (GrB_Matrix_new (&E, GrB_FP64, 8, 8)) ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
double ex = e [krow][kcol] ;
OK (GrB_Matrix_setElement_FP64 (E, ex, krow, kcol)) ;
}
}
// create a unary operator to scale by RHO(i,j)
OK (GrB_UnaryOp_new (&rho_op,
(GxB_unary_function) rho_scale, GrB_FP64, GrB_FP64)) ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
// F = E * RHO(i,j)
// note that this computation on F does not force
// A to be assembled.
r = RHO (i,j) ;
OK (GrB_Matrix_apply (F, NULL, NULL, rho_op, E, NULL)) ;
// A (nn,nn) += F
OK (GrB_Matrix_assign (A, NULL, GrB_PLUS_FP64,
F, nn, 8, nn, 8, NULL)) ;
}
}
}
break ;
default:
CHECK (false, GrB_INVALID_VALUE) ;
break ;
}
//--------------------------------------------------------------------------
// scale the matrix, if requested
//--------------------------------------------------------------------------
// An alternative to multiplying by the inverse of the diagonal would be to
// compute A=A/D using the PLUS_DIV_FP64 semiring, which scales the columns
// instead of the rows, and then transposing the result, since A is
// symmetric but D\A and A/D are not. Alternatively, a user-defined
// operator z=f(x,y) that computes z=y/x could be used, along with a
// user-defined semiring.
if (scale)
{
// D = sparse (n,n)
OK (GrB_Matrix_new (&D, GrB_FP64, n, n)) ;
for (int64_t i = 0 ; i < n ; i++)
{
// D (i,i) = 1 / A (i,i) ;
double di ;
OK (GrB_Matrix_extractElement_FP64 (&di, A, i, i)) ;
OK (GrB_Matrix_setElement_FP64 (D, 1/di, i, i)) ;
}
// A = D*A
OK (GrB_mxm (A, NULL, NULL, GxB_PLUS_TIMES_FP64, D, A, NULL)) ;
}
// force completion
OK (GrB_Matrix_wait (A, GrB_MATERIALIZE)) ;
//--------------------------------------------------------------------------
// free workspace and return the result
//--------------------------------------------------------------------------
*A_output = A ;
A = NULL ;
FREE_ALL ;
return (GrB_SUCCESS) ;
}
|