1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250
|
\documentclass[12pt]{article}
\batchmode
\usepackage{url}
\urlstyle{sf}
\usepackage[svgnames]{xcolor}
\usepackage[colorlinks,linkcolor=Blue,citecolor=Blue,urlcolor=Blue]{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{framed}
\usepackage{mdframed}
% \usepackage{geometry}
% \usepackage{pdflscape}
\newmdenv[backgroundcolor=yellow]{alert}
\newmdenv[backgroundcolor=red]{note}
\hyphenation{Suite-Sparse}
\hyphenation{Graph-BLAS}
\hyphenation{Suite-Sparse-Graph-BLAS}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\csch}{csch}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arcCot}
\DeclareMathOperator{\arccsc}{arcCsc}
\DeclareMathOperator{\arccosh}{arcCosh}
\DeclareMathOperator{\arcsinh}{arcsinh}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsech}{arcsech}
\DeclareMathOperator{\arccsch}{arcCsch}
\DeclareMathOperator{\arccoth}{arcCoth}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\erfc}{erfc}
\newenvironment{packed_itemize}{
\begin{itemize}
\setlength{\itemsep}{1pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
}{\end{itemize}}
\title{User Guide for SuiteSparse:GraphBLAS}
\author{Timothy A. Davis \\
\small
davis@tamu.edu, Texas A\&M University. \\
\small
\url{http://suitesparse.com} \\
\small
\url{https://people.engr.tamu.edu/davis} \\
\small
\url{https://twitter.com/DocSparse}
}
% version and date are set by cmake
\input{GraphBLAS_version.tex}
%-------------------------------------------------------------------------------
\begin{document}
%-------------------------------------------------------------------------------
\maketitle
\begin{abstract}
SuiteSparse:GraphBLAS is a full implementation of the GraphBLAS standard,
which defines a set of sparse matrix operations on an extended algebra of
semirings using an almost unlimited variety of operators and types. When
applied to sparse adjacency matrices, these algebraic operations are equivalent
to computations on graphs. GraphBLAS provides a powerful and expressive
framework for creating high-performance graph algorithms based on the elegant
mathematics of sparse matrix operations on a semiring.
When compared with MATLAB R2021a, some methods in GraphBLAS are up to
a million times faster than MATLAB, even when using the same syntax.
Typical speedups are in the range 2x to 30x.
The statement \verb'C(M)=A' when using MATLAB sparse matrices takes
$O(e^2)$ time where $e$ is the number of entries in \verb'C'. GraphBLAS
can perform the same computation with the exact same syntax, but
in $O(e \log e)$ time (or $O(e)$ in some cases), and in practice that
means GraphBLAS can compute \verb'C(M)=A' for a large problem in under
a second, while MATLAB takes about 4 to 5 days.
SuiteSparse:GraphBLAS is under the Apache-2.0 license.
\end{abstract}
\newpage
{\small
\tableofcontents
}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{intro}
The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.
For example, consider the matrix-matrix multiplication, ${\bf C=AB}$. Suppose
${\bf A}$ and ${\bf B}$ are sparse $n$-by-$n$ Boolean adjacency matrices of two
undirected graphs. If the matrix multiplication is redefined to use logical
AND instead of scalar multiply, and if it uses the logical OR instead of add,
then the matrix ${\bf C}$ is the sparse Boolean adjacency matrix of a graph
that has an edge $(i,j)$ if node $i$ in ${\bf A}$ and node $j$ in ${\bf B}$
share any neighbor in common. The OR-AND pair forms an algebraic semiring, and
many graph operations like this one can be succinctly represented by matrix
operations with different semirings and different numerical types. GraphBLAS
provides a wide range of built-in types and operators, and allows the user
application to create new types and operators without needing to recompile the
GraphBLAS library.
For more details on SuiteSparse:GraphBLAS, and its use in LAGraph, see
\cite{Davis19,Davis22,Davis18b,DavisAznavehKolodziej19,Davis20,Mattson19}.
A full and precise definition of the GraphBLAS specification is provided in
{\em The GraphBLAS C API Specification} by {Ayd\i n Bulu\c{c}, Timothy Mattson,
Scott McMillan, Jos\'e Moreira, Carl Yang, and Benjamin Brock}
\cite{BulucMattsonMcMillanMoreiraYang17,spec,spec2}, based on {\em GraphBLAS
Mathematics} by Jeremy Kepner \cite{Kepner2017}. The GraphBLAS C API
Specification is available at \url{http://graphblas.org}.
This version of SuiteSparse:GraphBLAS conforms to Version
\input{GraphBLAS_API_version.tex} of {\em The GraphBLAS C API specification}.
In this User Guide, aspects of the GraphBLAS specification that would be true
for any GraphBLAS implementation are simply called ``GraphBLAS.'' Details
unique to this particular implementation are referred to as
SuiteSparse:GraphBLAS.
All functions, objects, and macros with a name of the form \verb'GxB_*' are
SuiteSparse-specific extensions to the specification.
\begin{alert}
{\bf SPEC:} Non-obvious deviations or additions to the GraphBLAS C API
Specification are highlighted in a box like this one, except for \verb'GxB*'
methods. They are not highlighted since their name makes it clear that they
are extensions to the GraphBLAS C API.
\end{alert}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Basic Concepts} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{basic}
Since the {\em GraphBLAS C API Specification} provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the {\em GraphBLAS C API Specification}.
However, including them here is not essential and the additional information on
the page might detract from a clearer view of the essential features of the
GraphBLAS functions.
This User Guide also assumes the reader is familiar with MATLAB/Octave.
MATLAB supports only the conventional plus-times semiring on sparse
double and complex matrices, but a MATLAB-like notation easily extends to the
arbitrary semirings used in GraphBLAS. The matrix multiplication in the
example in the Introduction can be written in MATLAB notation as
\verb'C=A*B', if the Boolean \verb'OR-AND' semiring is understood. Relying on
a MATLAB-like notation allows the description in this User Guide to be
expressive, easy to understand, and terse at the same time. {\em The GraphBLAS
C API Specification} also makes use of some MATLAB-like language, such
as the colon notation.
MATLAB notation will always appear here in fixed-width font, such as
\verb'C=A*B(:,j)'. In standard mathematical notation it would be written as
the matrix-vector multiplication ${\bf C = A b}_j$ where ${\bf b}_j$ is the
$j$th column of the matrix ${\bf B}$. The GraphBLAS standard is a C API and
SuiteSparse:GraphBLAS is written in C, and so a great deal of C syntax appears
here as well, also in fixed-width font. This User Guide alternates between all
three styles as needed.
%===============================================================================
\subsection{Graphs and sparse matrices} %=======================================
%===============================================================================
\label{sparse}
Graphs can be huge, with many nodes and edges. A dense adjacency matrix ${\bf
A}$ for a graph of $n$ nodes takes $O(n^2)$ memory, which is impossible if $n$
is, say, a million. Let $|{\bf A}|$ denote the number of entries in a matrix.
Most graphs arising in practice are sparse, however, with only $|{\bf A}|=O(n)$
edges, where $|{\bf A}|$ denotes the number of edges in the graph, or the
number of explicit entries present in the data structure for the matrix ${\bf
A}$. Sparse graphs with millions of nodes and edges can easily be created by
representing them as sparse matrices, where only explicit values need to be
stored. Some graphs are {\em hypersparse}, with ${|\bf A}| << n$.
SuiteSparse:GraphBLAS supports three kinds of sparse matrix formats: a regular
sparse format, taking $O(n+|{\bf A}|)$ space, a hypersparse format taking only
$O(|{\bf A}|)$ space, and a bitmap form, taking $O(n^2)$ space. Full matrices
are also represented in $O(n^2)$ space. Using its hypersparse format, creating
a sparse matrix of size $n$-by-$n$ where $n=2^{60}$ (about $10^{18}$) can be
done on quite easily on a commodity laptop, limited only by $|{\bf A}|$.
To the GraphBLAS user application, all matrices look alike, since these formats
are opaque, and SuiteSparse:GraphBLAS switches between them at will.
A sparse matrix data structure only stores a subset of the possible $n^2$
entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it
differs with different semirings. Explicit values are called {\em entries} and
they appear in the data structure. The {\em pattern} (also called the
{\em structure}) of a matrix defines where its explicit entries appear. It
will be referenced in one of two equivalent ways. It can be viewed as a set of
indices $(i,j)$, where $(i,j)$ is in the pattern of a matrix ${\bf A}$ if ${\bf
A}(i,j)$ is an explicit value. It can also be viewed as a Boolean matrix ${\bf
S}$ where ${\bf S}(i,j)$ is true if $(i,j)$ is an explicit entry and false
otherwise. In MATLAB notation, \verb'S=spones(A)' or \verb'S=(A~=0)', if the
implicit value is zero. The \verb'(i,j)' pairs, and their values, can also be
extracted from the matrix via the MATLAB expression \verb'[I,J,X]=find(A)',
where the \verb'k'th tuple \verb'(I(k),J(k),X(k))' represents the explicit
entry \verb'A(I(k),J(k))', with numerical value \verb'X(k)' equal to $a_{ij}$,
with row index $i$=\verb'I(k)' and column index $j$=\verb'J(k)'.
The entries in the pattern of ${\bf A}$ can take on any value, including the
implicit value, whatever it happens to be. This differs slightly from MATLAB,
which always drops all explicit zeros from its sparse matrices. This is a
minor difference but GraphBLAS cannot drop explicit zeros. For example, in the
max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that no
explicit entries are ever dropped because their explicit value happens to match
the implicit value.
{\em Graph Algorithms in the Language on Linear Algebra}, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations \cite{KepnerGilbert2011}. For additional
background on sparse matrix algorithms, see also \cite{Davis06book} and
\cite{DavisRajamanickamSidLakhdar16}.
%===============================================================================
\subsection{Overview of GraphBLAS methods and operations} %=====================
%===============================================================================
\label{overview}
GraphBLAS provides a collection of {\em methods} to create, query, and free its
of objects: sparse matrices, sparse vectors, scalars, types, operators,
monoids, semirings, and a descriptor object used for parameter settings.
Details are given in Section~\ref{objects}. Once these objects are created
they can be used in mathematical {\em operations} (not to be confused with the
how the term {\em operator} is used in GraphBLAS). A short summary of these
operations and their nearest MATLAB/Octave analog is given in the table below.
% \vspace{0.1in}
\begin{tabular}{ll}
operation & approximate MATLAB/Octave analog \\
\hline
matrix multiplication & \verb'C=A*B' \\
element-wise operations & \verb'C=A+B' and \verb'C=A.*B' \\
reduction to a vector or scalar & \verb's=sum(A)' \\
apply unary operator & \verb'C=-A' \\
transpose & \verb"C=A'" \\
submatrix extraction & \verb'C=A(I,J)' \\
submatrix assignment & \verb'C(I,J)=A' \\
select & \verb'C=tril(A)' \\
\hline
\end{tabular}
\vspace{0.1in}
GraphBLAS can do far more than what MATLAB/Octave can do in these rough
analogs, but the list provides a first step in describing what GraphBLAS can
do. Details of each GraphBLAS operation are given in Section~\ref{operations}.
With this brief overview, the full scope of GraphBLAS extensions of these
operations can now be described.
SuiteSparse:GraphBLAS has 13 built-in scalar types: Boolean, single and double
precision floating-point (real and complex), and 8, 16, 32, and 64-bit signed
and unsigned integers. In addition, user-defined scalar types can be created
from nearly any C \verb'typedef', as long as the entire type fits in a
fixed-size contiguous block of memory (of arbitrary size). All of these types
can be used to create GraphBLAS sparse matrices, vectors, or scalars.
The scalar addition of conventional matrix multiplication is replaced with a
{\em monoid}. A monoid is an associative and commutative binary operator
\verb'z=f(x,y)' where all three domains are the same (the types of \verb'x',
\verb'y', and \verb'z'), and where the operator has an identity value \verb'id'
such that \verb'f(x,id)=f(id,x)=x'. Performing matrix multiplication with a
semiring uses a monoid in place of the ``add'' operator, scalar addition being
just one of many possible monoids. The identity value of addition is zero,
since $x+0=0+x=x$. GraphBLAS includes many built-in operators suitable for
use as a monoid: min (with an identity value of positive infinity), max (whose
identity is negative infinity), add (identity is zero), multiply (with an
identity of one), four logical operators: AND, OR, exclusive-OR, and
Boolean equality (XNOR), four bitwise operators (AND, OR, XOR, and XNOR),
and the ANY operator
See Section~\ref{any_pair} for more details on the unusual ANY operator.
User-created monoids can be defined with any associative and
commutative operator that has an identity value.
Finally, a semiring can use any built-in or user-defined binary operator
\verb'z=f(x,y)' as its ``multiply'' operator, as long as the type of its
output, \verb'z' matches the type of the semiring's monoid.
The user application can create any semiring based on any types, monoids,
and multiply operators, as long these few rules are followed.
Just considering built-in types and operators, GraphBLAS can perform
\verb'C=A*B' in thousands of unique semirings. With typecasting, any of these
semirings can be applied to matrices \verb'C', \verb'A', and \verb'B' of 13
predefined types, in any combination. This results in millions of possible
kinds of sparse matrix multiplication supported by GraphBLAS, and this is
counting just built-in types and operators. By contrast, MATLAB provides just
two semirings for its sparse matrix multiplication \verb'C=A*B':
plus-times-double and plus-times-complex, not counting the typecasting that
MATLAB does when multiplying a real matrix times a complex matrix.
A monoid can also be used in a reduction operation, like \verb's=sum(A)' in
MATLAB. MATLAB provides the plus, times, min, and max reductions of a real or
complex sparse matrix as \verb's=sum(A)', \verb's=prod(A)', \verb's=min(A)',
and \verb's=max(A)', respectively. In GraphBLAS, any monoid can be used (min,
max, plus, times, AND, OR, exclusive-OR, equality, bitwise operators,
or any user-defined monoid on any user-defined type).
Element-wise operations are also expanded from what can be done in MATLAB.
Consider matrix addition, \verb'C=A+B' in MATLAB. The pattern of the result is
the set union of the pattern of \verb'A' and \verb'B'. In GraphBLAS, any
binary operator can be used in this set-union ``addition.'' The operator is
applied to entries in the intersection. Entries in \verb'A' but not \verb'B',
or visa-versa, are copied directly into \verb'C', without any application of
the binary operator. The accumulator operation for ${\bf Z = C \odot T}$
described in Section~\ref{accummask} is one example of this set-union
application of an arbitrary binary operator.
Consider element-wise multiplication, \verb'C=A.*B' in MATLAB. The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of \verb'C' just this set intersection. Entries in \verb'A' but not
\verb'B', or visa-versa, do not appear in \verb'C'. In GraphBLAS, any binary
operator can be used in this manner, not just scalar multiplication. The
difference between element-wise ``add'' and ``multiply'' is not the operators,
but whether or not the pattern of the result is the set union or the set
intersection. In both cases, the operator is only applied to the set
intersection.
Finally, GraphBLAS includes a {\em non-blocking} mode where operations can be
left pending, and saved for later. This is very useful for submatrix
assignment (\verb'C(I,J)=A' where \verb'I' and \verb'J' are integer vectors),
or scalar assignment (\verb'C(i,j)=x' where \verb'i' and \verb'j' are scalar
integers). Because of how MATLAB stores its matrices, adding and deleting
individual entries is very costly. For example, this is very slow in MATLAB,
taking $O(nz^2)$ time:
\begin{mdframed}
{\footnotesize
\begin{verbatim}
A = sparse (m,n) ; % an empty sparse matrix
for k = 1:nz
compute a value x, row index i, and column index j
A (i,j) = x ;
end\end{verbatim}}\end{mdframed}
The above code is very easy read and simple to write, but exceedingly slow. In
MATLAB, the method below is preferred and is far faster, taking at most
$O(|{\bf A}| \log |{\bf A}| +n)$ time. It can easily be a million times faster
than the method above. Unfortunately the second method below is a little
harder to read and a little less natural to write:
\begin{mdframed}
{\footnotesize
\begin{verbatim}
I = zeros (nz,1) ;
J = zeros (nz,1) ;
X = zeros (nz,1) ;
for k = 1:nz
compute a value x, row index i, and column index j
I (k) = i ;
J (k) = j ;
X (k) = x ;
end
A = sparse (I,J,X,m,n) ; \end{verbatim}} \end{mdframed}
GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its matrices in a
format that allows for pending computations, which are done later in bulk, and
as a result it can do both methods above equally as fast as the MATLAB
\verb'sparse' function, allowing the user to write simpler code.
%===============================================================================
\subsection{The accumulator and the mask} %=====================================
%===============================================================================
\label{accummask}
Most GraphBLAS operations can be modified via transposing input matrices, using
an accumulator operator, applying a mask or its complement, and by clearing all
entries the matrix \verb'C' after using it in the accumulator operator but
before the final results are written back into it. All of these steps are
optional, and are controlled by a descriptor object that holds parameter
settings (see Section~\ref{descriptor}) that control the following options:
\begin{itemize}
\item the input matrices \verb'A' and/or \verb'B' can be transposed first.
\item an accumulator operator can be used, like the plus in the statement
\verb'C=C+A*B'. The accumulator operator can be any binary operator, and
an element-wise ``add'' (set union) is performed using the operator.
\item an optional {\em mask} can be used to selectively write the results to
the output. The mask is a sparse Boolean matrix \verb'Mask' whose size is
the same size as the result. If \verb'Mask(i,j)' is true, then the
corresponding entry in the output can be modified by the computation. If
\verb'Mask(i,j)' is false, then the corresponding in the output is
protected and cannot be modified by the computation. The \verb'Mask'
matrix acts exactly like logical matrix indexing in MATLAB, with one
minor difference: in GraphBLAS notation, the mask operation is $\bf C
\langle M \rangle = Z$, where the mask $\bf M$ appears only on the
left-hand side. In MATLAB, it would appear on both sides as
\verb'C(Mask)=Z(Mask)'. If no mask is provided, the \verb'Mask' matrix is
implicitly all true. This is indicated by passing the value
\verb'GrB_NULL' in place of the \verb'Mask' argument in GraphBLAS
operations.
\end{itemize}
\noindent
This process can be described in mathematical notation as:
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> ${\bf A = A}^{\sf T}$, if requested via descriptor (first input option) \\
\> ${\bf B = B}^{\sf T}$, if requested via descriptor (second input option) \\
\> ${\bf T}$ is computed according to the specific operation \\
\> ${\bf C \langle M \rangle = C \odot T}$,
accumulating and writing the results back via the mask
\end{tabbing} }
\noindent
The application of the mask and the accumulator operator is written as
${\bf C \langle M \rangle = C \odot T}$ where ${\bf Z = C \odot T}$ denotes the
application of the accumulator operator, and
${\bf C \langle M \rangle = Z}$
denotes the mask operator via the Boolean matrix ${\bf M}$. The Accumulator
Phase, ${\bf Z = C \odot T}$, is performed as follows:
% \vspace{-0.2in}
% accum: Z = C odot T
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> {\bf Accumulator Phase}: compute ${\bf Z = C \odot T}$: \\
\> \> if \verb'accum' is \verb'NULL' \\
\> \>\> ${\bf Z = T}$ \\
\> \> else \\
\> \>\> ${\bf Z = C \odot T}$
\end{tabbing}}
The accumulator operator is $\odot$ in GraphBLAS notation, or \verb'accum'
in the code. The pattern of ${\bf C \odot T}$ is the set union of the
patterns of ${\bf C}$ and ${\bf T}$, and the operator is applied only on the
set intersection of ${\bf C}$ and ${\bf T}$. Entries in neither the pattern
of ${\bf C}$ nor ${\bf T}$ do not appear in the pattern of ${\bf Z}$. That is:
% \newpage
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf C \cap T}$
(that is, entries in both ${\bf C}$ and ${\bf T}$) \\
\> \> $z_{ij} = c_{ij} \odot t_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf C \setminus T}$
(that is, entries in ${\bf C}$ but not ${\bf T}$) \\
\> \> $z_{ij} = c_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf T \setminus C}$
(that is, entries in ${\bf T}$ but not ${\bf C}$) \\
\> \> $z_{ij} = t_{ij}$
\end{tabbing} }
The Accumulator Phase is followed by the Mask/Replace Phase,
${\bf C \langle M \rangle = Z}$
as controlled by the \verb'GrB_REPLACE' and \verb'GrB_COMP' descriptor options:
\vspace{-0.2in}
% mask/replace/scmp: C<M> = Z
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\>{\bf Mask/Replace Phase}: compute ${\bf C \langle M \rangle = Z}$: \\
\> \> if (\verb'GrB_REPLACE') delete all entries in ${\bf C}$ \\
\> \> if \verb'Mask' is \verb'NULL' \\
\> \>\> if (\verb'GrB_COMP') \\
\> \>\>\> ${\bf C}$ is not modified \\
\> \>\> else \\
\> \>\>\> ${\bf C = Z}$ \\
\> \> else \\
\> \>\> if (\verb'GrB_COMP') \\
\> \>\>\> ${\bf C \langle \neg M \rangle = Z}$ \\
\> \>\> else \\
\> \>\>\> ${\bf C \langle M \rangle = Z}$
\end{tabbing} }
Both phases of the accum/mask process are illustrated in MATLAB notation in
Figure~\ref{fig_accummask}.
\begin{figure}
\begin{mdframed}[leftmargin=-0.4in,userdefinedwidth=5.8in]
{\footnotesize
\begin{verbatim}
function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)
[m n] = size (C.matrix) ;
Z.matrix = zeros (m, n) ;
Z.pattern = false (m, n) ;
if (isempty (accum))
Z = T ; % no accum operator
else
% Z = accum (C,T), like Z=C+T but with an binary operator, accum
p = C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));
p = C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;
p = ~C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;
Z.pattern = C.pattern | T.pattern ;
end
% apply the mask to the values and pattern
C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;
C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;
end
function C = mask (C, Mask, Z, C_replace, Mask_complement)
% replace C if requested
if (C_replace)
C (:,:) = 0 ;
end
if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)
% implicitly, Mask = ones (size (C))
if (~Mask_complement)
C = Z ; % this is the default
else
C = C ; % Z need never have been computed
end
else
% apply the mask
if (~Mask_complement)
C (Mask) = Z (Mask) ;
else
C (~Mask) = Z (~Mask) ;
end
end
end \end{verbatim} }
\end{mdframed}
\caption{Applying the mask and accumulator, ${\bf C \langle M \rangle = C \odot T}$\label{fig_accummask}}
\end{figure}
A GraphBLAS operation starts with its primary
computation, producing a result \verb'T'; for matrix multiply, \verb'T=A*B', or
if \verb'A' is transposed first, \verb"T=A'*B", for example. Applying the
accumulator, mask (or its complement) to obtain the final result matrix
\verb'C' can be expressed in the MATLAB \verb'accum_mask' function shown in the
figure. This function is an exact, fully functional, and nearly-complete
description of the GraphBLAS accumulator/mask operation. The only aspects it
does not consider are typecasting (see Section~\ref{typecasting}), and the
value of the implicit identity (for those, see another version in the
\verb'Test' folder).
One aspect of GraphBLAS cannot be as easily expressed in a MATLAB sparse
matrix: namely, what is the implicit value of entries not in the pattern? To
accommodate this difference in the \verb'accum_mask' MATLAB function, each
sparse matrix \verb'A' is represented with its values \verb'A.matrix' and its
pattern, \verb'A.pattern'. The latter could be expressed as the sparse matrix
\verb'A.pattern=spones(A)' or \verb'A.pattern=(A~=0)' in MATLAB, if the
implicit value is zero. With different semirings, entries not in the pattern
can be \verb'1', \verb'+Inf', \verb'-Inf', or whatever is the identity value of
the monoid. As a result, Figure~\ref{fig_accummask} performs its computations
on two MATLAB matrices: the values in \verb'A.matrix' and the pattern in the
logical matrix \verb'A.pattern'. Implicit values are untouched.
The final computation in Figure~\ref{fig_accummask} with a complemented
\verb'Mask' is easily expressed in MATLAB as \verb'C(~Mask)=Z(~Mask)' but this
is costly if \verb'Mask' is very sparse (the typical case). It can be computed
much faster in MATLAB without complementing the sparse \verb'Mask' via:
{\footnotesize
\begin{verbatim}
R = Z ; R (Mask) = C (Mask) ; C = R ; \end{verbatim} }
A set of MATLAB functions that precisely compute the ${\bf C \langle M \rangle
= C \odot T}$ operation according to the full GraphBLAS specification is
provided in SuiteSparse:GraphBLAS as \verb'GB_spec_accum.m', which computes
${\bf Z=C\odot T}$, and \verb'GB_spec_mask.m', which computes ${\bf C \langle M
\rangle = Z}$. SuiteSparse:GraphBLAS includes a complete list of
\verb'GB_spec_*' functions that illustrate every GraphBLAS operation.
The methods in Figure~\ref{fig_accummask} rely heavily on MATLAB's logical
matrix indexing. For those unfamiliar with logical indexing in MATLAB, here is
short summary. Logical matrix indexing in MATLAB is written as \verb'A(Mask)'
where \verb'A' is any matrix and \verb'Mask' is a logical matrix the same size
as \verb'A'. The expression \verb'x=A(Mask)' produces a column vector \verb'x'
consisting of the entries of \verb'A' where \verb'Mask' is true. On the
left-hand side, logical submatrix assignment \verb'A(Mask)=x' does the
opposite, copying the components of the vector \verb'x' into the places in
\verb'A' where \verb'Mask' is true. For example, to negate all values greater
than 10 using logical indexing in MATLAB:
\begin{mdframed}
{\footnotesize
\begin{verbatim}
>> A = magic (4)
A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> A (A>10) = - A (A>10)
A =
-16 2 3 -13
5 -11 10 8
9 7 6 -12
4 -14 -15 1 \end{verbatim} } \end{mdframed}
In MATLAB, logical indexing with a sparse matrix \verb'A' and sparse logical
matrix \verb'Mask' is a built-in method. The Mask operator in GraphBLAS works
identically as sparse logical indexing in MATLAB, but is typically far faster
in SuiteSparse:GraphBLAS than the same operation using MATLAB sparse matrices.
%===============================================================================
\subsection{Typecasting} %======================================================
%===============================================================================
\label{typecasting}
If an operator \verb'z=f(x)' or \verb'z=f(x,y)' is used with inputs that do not
match its inputs \verb'x' or \verb'y', or if its result \verb'z' does not match
the type of the matrix it is being stored into, then the values are typecasted.
Typecasting in GraphBLAS extends beyond just operators. Almost all GraphBLAS
methods and operations are able to typecast their results, as needed.
If one type can be typecasted into the other, they are said to be {\em
compatible}. All built-in types are compatible with each other. GraphBLAS
cannot typecast user-defined types thus any user-defined type is only
compatible with itself. When GraphBLAS requires inputs of a specific type, or
when one type cannot be typecast to another, the GraphBLAS function returns an
error code, \verb'GrB_DOMAIN_MISMATCH' (refer to Section~\ref{error} for a
complete list of error codes). Typecasting can only be done between built-in
types, and it follows the rules of the ANSI C language (not MATLAB) wherever
the rules of ANSI C are well-defined.
However, unlike MATLAB, the ANSI C11 language specification states that the
results of typecasting a \verb'float' or \verb'double' to an integer type is
not always defined. In SuiteSparse:GraphBLAS, whenever C leaves the result
undefined the rules used in MATLAB are followed. In particular \verb'+Inf'
converts to the largest integer value, \verb'-Inf' converts to the smallest
(zero for unsigned integers), and \verb'NaN' converts to zero. Positive values
outside the range of the integer are converted to the largest positive integer,
and negative values less than the most negative integer are converted to that
most negative integer. Other than these special cases, SuiteSparse:GraphBLAS
trusts the C compiler for the rest of its typecasting.
Typecasting to \verb'bool' is fully defined in the C language specification,
even for \verb'NaN'. The result is \verb'false' if the value compares equal to
zero, and true otherwise. Thus \verb'NaN' converts to \verb'true'. This is
unlike MATLAB, which does not allow a typecast of a \verb'NaN' to the MATLAB
logical type.
\begin{alert}
{\bf SPEC:} the GraphBLAS API C Specification states that typecasting follows
the rules of ANSI C. Yet C leaves some typecasting undefined. All typecasting
between built-in types in SuiteSparse:GraphBLAS is precisely defined, as an
extension to the specification.
\end{alert}
\begin{alert}
{\bf SPEC:} Some functions do not make use of all of their inputs; in
particular the binary operators \verb'FIRST', \verb'SECOND', and \verb'ONEB',
and many of the index unary operators. The Specification requires that the
inputs to these operators must be compatible with (that is, can be typecasted
to) the inputs to the operators, even if those inputs are not used and no
typecasting would ever occur. As an extension to the specification,
SuiteSparse:GraphBLAS does not perform this error check on unused inputs of
built-in operators. For example, the \verb'GrB_FIRST_INT64' operator can be
used in \verb'GrB_eWiseAdd(C,..,A,B,...)' on a matrix \verb'B' of any type,
including user-defined types. For this case, the matrix \verb'A' must be
compatible with \verb'GrB_INT64'.
\end{alert}
%===============================================================================
\subsection{Notation and list of GraphBLAS operations} %========================
%===============================================================================
\label{list}
As a summary of what GraphBLAS can do, the following table lists all GraphBLAS
operations. Upper case letters denote a matrix, lower case letters are
vectors, and ${\bf AB}$ denote the multiplication of two matrices over a
semiring.
Each operation takes an optional \verb'GrB_Descriptor' argument that modifies
the operation. The input matrices ${\bf A}$ and ${\bf B}$ can be optionally
transposed, the mask ${\bf M}$ can be complemented, and ${\bf C}$ can be
cleared of its entries after it is used in ${\bf Z = C \odot T}$ but before
the ${\bf C \langle M \rangle = Z}$ assignment.
Vectors are never transposed via the descriptor.
Let ${\bf A \oplus B}$ denote the element-wise operator that produces a set
union pattern (like \verb'A+B' in MATLAB). Any binary operator can be used
this way in GraphBLAS, not just plus. Let ${\bf A \otimes B}$ denote the
element-wise operator that produces a set intersection pattern (like
\verb'A.*B' in MATLAB); any binary operator can be used this way, not just
times.
Reduction of a matrix ${\bf A}$ to a vector reduces the $i$th row of ${\bf A}$
to a scalar $w_i$. This is like \verb"w=sum(A')" since by default, MATLAB
reduces down the columns, not across the rows.
\vspace{0.05in}
{\footnotesize
\begin{tabular}{lll}
\hline
\verb'GrB_mxm' & matrix-matrix multiply & ${\bf C \langle M \rangle = C \odot AB}$ \\
\verb'GrB_vxm' & vector-matrix multiply & ${\bf w^{\sf T}\langle m^{\sf T}\rangle = w^{\sf T}\odot u^{\sf T}A}$ \\
\verb'GrB_mxv' & matrix-vector multiply & ${\bf w \langle m \rangle = w \odot Au}$ \\
\hline
\verb'GrB_eWiseMult' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \otimes B)}$ \\
& set intersection & ${\bf w \langle m \rangle = w \odot (u \otimes v)}$ \\
\hline
\verb'GrB_eWiseAdd' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \oplus B)}$ \\
& set union & ${\bf w \langle m \rangle = w \odot (u \oplus v)}$ \\
\hline
\verb'GxB_eWiseUnion'& element-wise, & ${\bf C \langle M \rangle = C \odot (A \oplus B)}$ \\
& set union & ${\bf w \langle m \rangle = w \odot (u \oplus v)}$ \\
\hline
\verb'GrB_extract' & extract submatrix & ${\bf C \langle M \rangle = C \odot A(I,J)}$ \\
& & ${\bf w \langle m \rangle = w \odot u(i)}$ \\
\hline
\verb'GxB_subassign' & assign submatrix & ${\bf C (I,J) \langle M \rangle = C(I,J) \odot A}$ \\
& (with submask for ${\bf C(I,J)}$)
& ${\bf w (i) \langle m \rangle = w(i) \odot u}$ \\
\hline
\verb'GrB_assign' & assign submatrix & ${\bf C \langle M \rangle (I,J) = C(I,J) \odot A}$ \\
& (with mask for ${\bf C}$)
& ${\bf w \langle m \rangle (i) = w(i) \odot u}$ \\
\hline
\verb'GrB_apply' & apply unary operator & ${\bf C \langle M \rangle = C \odot} f{\bf (A)}$ \\
& & ${\bf w \langle m \rangle = w \odot} f{\bf (u)}$ \\
& apply binary operator & ${\bf C \langle M \rangle = C \odot} f({\bf A},y)$ \\
& & ${\bf C \langle M \rangle = C \odot} f(x,{\bf A})$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},y)$ \\
& & ${\bf w \langle m \rangle = w \odot} f(x,{\bf u})$ \\
& apply index-unary op & ${\bf C \langle M \rangle = C \odot} f({\bf A},i,j,k)$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},i,0,k)$ \\
\hline
\verb'GrB_select' & select entries & ${\bf C \langle M \rangle = C \odot} \mbox{select}({\bf A},i,j,k)$ \\
& & ${\bf w \langle m \rangle = w \odot} \mbox{select}({\bf u},i,0,k)$ \\
\hline
\verb'GrB_reduce' & reduce to vector & ${\bf w \langle m \rangle = w \odot} [{\oplus}_j {\bf A}(:,j)]$ \\
& reduce to scalar & $s = s \odot [{\oplus}_{ij} {\bf A}(i,j)]$ \\
\hline
\verb'GrB_transpose' & transpose & ${\bf C \langle M \rangle = C \odot A^{\sf T}}$ \\
\hline
\verb'GrB_kronecker' & Kronecker product & ${\bf C \langle M \rangle = C \odot \mbox{kron}(A, B)}$ \\
\hline
\end{tabular}
}
\vspace{0.15in}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Interfaces to MATLAB, Octave, Python, Julia, Java} %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The MATLAB/Octave interface to SuiteSparse:GraphBLAS is included with this
distribution, described in Section~\ref{octave}.
It is fully polished, and fully tested, but does have
some limitations that will be addressed in future releases.
Two Python interfaces are now available, as is a
Julia interface. These are not part of the SuiteSparse:GraphBLAS distribution.
See the links below (see Sections \ref{python} and \ref{julia}).
%===============================================================================
\subsection{MATLAB/Octave Interface}
%===============================================================================
\label{octave}
An easy-to-use MATLAB/Octave interface for SuiteSparse:GraphBLAS is available;
see the documentation in the \verb'GraphBLAS/GraphBLAS' folder for details.
Start with the \verb'README.md' file in that directory. An easy-to-read output
of the MATLAB demos can be found in \verb'GraphBLAS/GraphBLAS/demo/html'.
The MATLAB/Octave interface adds the \verb'@GrB' class, which is an opaque
MATLAB/Octave object that contains a GraphBLAS matrix, either double or single
precision (real or complex), boolean, or any of the built-in integer types.
MATLAB/Octave sparse and full matrices can be arbitrarily mixed with GraphBLAS
matrices. The following overloaded operators and methods all work as you would
expect for any matrix. The matrix multiplication \verb'A*B' uses the
conventional \verb'PLUS_TIMES' semiring.
{\footnotesize
\begin{verbatim}
A+B A-B A*B A.*B A./B A.\B A.^b A/b C=A(I,J)
-A +A ~A A' A.' A&B A|B b\A C(I,J)=A
A~=B A>B A==B A<=B A>=B A<B [A,B] [A;B] A(1:end,1:end) \end{verbatim}}
For a list of overloaded operations and static methods, type
\verb'methods GrB' in MATLAB/Octave, or \verb'help GrB' for more details.
{\bf Limitations:}
Some features for MATLAB/Octave sparse matrices are not yet available for
GraphBLAS matrices. Some of these may be added in future releases.
\begin{packed_itemize}
\item \verb'GrB' matrices with dimension larger than \verb'2^53' do not
display properly in the \verb'whos' command. The size is displayed
correctly with \verb'disp' or \verb'display'.
\item Non-blocking mode is not exploited.
% ; this would require
% a MATLAB/Octave mexFunction to modify its inputs, which is
% technically possible but not permitted by the MATLAB/Octave API.
% This can have significant impact on performance, if an
% m-file makes many repeated tiny changes to a matrix. This
% can be done in the C API but not MATLAB/Octave.
\item Linear indexing: \verb'A(:)' for a 2D matrix, and \verb'I=find(A)'.
\item Singleton expansion.
\item Dynamically growing arrays, where \verb'C(i)=x' can increase
the size of \verb'C'.
\item Saturating element-wise binary and unary operators for integers.
For \verb'C=A+B' with MATLAB \verb'uint8' matrices, results
saturate if they exceed 255. This is not compatible with
a monoid for \verb'C=A*B', and thus MATLAB does not support
matrix-matrix multiplication with \verb'uint8' matrices.
In GraphBLAS, \verb'uint8' addition acts in a modulo fashion.
\item Solvers, so that \verb'x=A\b' could return a GF(2) solution,
for example.
\item Sparse matrices with dimension higher than 2.
\end{packed_itemize}
%===============================================================================
\subsection{Python Interface}
%===============================================================================
\label{python}
See Michel Pelletier's Python interface at
\url{https://github.com/michelp/pygraphblas};
it also appears at
\url{https://anaconda.org/conda-forge/pygraphblas}.
See Jim Kitchen and Erik Welch's (both from Anaconda, Inc.) Python interface at
\url{https://github.com/python-graphblas/python-graphblas} (formerly known as grblas).
See also \\
\url{https://anaconda.org/conda-forge/graphblas}.
Both of them allow for pending work to be left pending in a \verb'GrB_Matrix'.
%===============================================================================
\subsection{Julia Interface}
%===============================================================================
\label{julia}
The Julia interface is at
\url{https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl}, developed by Will
Kimmerer, Abhinav Mehndiratta, Miha Zgubic, and Viral Shah.
Unlike the MATLAB/Octave interface (and like the Python interfaces) the Julia
interface can keep pending work (zombies, pending tuples, jumbled state) in
a \verb'GrB_Matrix'. This makes Python and Julia the best high-level interfaces
for SuiteSparse:GraphBLAS. MATLAB is not as well suited, since it does not
allow inputs to a function or mexFunction to be modified, so any pending
work must be finished before a matrix can be used as input.
%===============================================================================
\subsection{Java Interface}
%===============================================================================
\label{java}
Fabian Murariu is working on a Java interface.
See \newline
\url{https://github.com/fabianmurariu/graphblas-java-native}.
%===============================================================================
\section{Performance of MATLAB versus GraphBLAS}
%===============================================================================
\label{matlab_performance}
MATLAB R2021a includes v3.3 of SuiteSparse:GraphBLAS as a built-in library, but
uses it only for \verb'C=A*B' when both \verb'A' and \verb'B' are sparse. In
prior versions of MATLAB, \verb'C=A*B' relied on the \verb'SFMULT' and
\verb'SSMULT' packages in SuiteSparse, which are single-threaded (also written
by this author). The GraphBLAS \verb'GrB_mxm' is up to 30x faster on a 20-core
Intel Xeon, compared with \verb'C=A*B' in MATLAB R2020b and earlier. With
MATLAB R2021a and later, the performance of \verb'C=A*B' when using MATLAB
sparse matrices is identical to the performance for GraphBLAS matrices, since
the same code is being used by both (\verb'GrB_mxm').
Other methods in GraphBLAS are also faster, some {\em extremely} so, but are
not yet exploited as built-in operations MATLAB. In particular, the statement
\verb'C(M)=A' (where \verb'M' is a logical matrix) takes under a second for a
large sparse problem when using GraphBLAS via its \verb'@GrB' interface. By
stark contrast, MATLAB would take about 4 or 5 days, a speedup of about
500,000x. For a smaller problem, GraphBLAS takes 0.4 seconds while MATLAB
takes 28 hours (a speedup of about 250,000x). Both cases use the same
statement with the same syntax (\verb'C(M)=A') and compute exactly the same
result. Below are the results for \verb'n'-by-\verb'n' matrices in GraphBLAS
v5.0.6 and MATLAB R2020a, on a Dell XPS13 laptop (16GB RAM, Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz with 4 hardware cores). GraphBLAS is using 4 threads.
\vspace{0.10in}
{\scriptsize
\begin{tabular}{rrr|rrr}
\hline
\verb'n' & \verb'nnz(C)' & \verb'nnz(M)' & GraphBLAS (sec) & MATLAB (sec) & speedup \\
\hline
2,048 & 20,432 & 2,048 & 0.005 & 0.024 & 4.7 \\
4,096 & 40,908 & 4,096 & 0.003 & 0.115 & 39 \\
8,192 & 81,876 & 8,191 & 0.009 & 0.594 & 68 \\
16,384 & 163,789 & 16,384 & 0.009 & 2.53 & 273 \\
32,768 & 327,633 & 32,767 & 0.014 & 12.4 & 864 \\
65,536 & 655,309 & 65,536 & 0.025 & 65.9 & 2,617 \\
131,072 & 1,310,677 & 131,070 & 0.055 & 276.2 & 4,986 \\
262,144 & 2,621,396 & 262,142 & 0.071 & 1,077 & 15,172 \\
524,288 & 5,242,830 & 524,288 & 0.114 & 5,855 & 51,274 \\
1,048,576 & 10,485,713 & 1,048,576 & 0.197 & 27,196 & 137,776 \\
2,097,152 & 20,971,475 & 2,097,152 & 0.406 & 100,799 & 248,200 \\
4,194,304 & 41,942,995 & 4,194,304 & 0.855 & 4 to 5 days? & 500,000?\\
\hline
\end{tabular}}
\vspace{0.10in}
The assignment \verb'C(I,J)=A' in MATLAB, when using \verb'@GrB' objects, is up
to 1000x faster than the same statement with the same syntax, when using MATLAB
sparse matrices instead. Matrix concatenation \verb'C = [A B]' is about 17
times faster in GraphBLAS, on a 20-core Intel Xeon. For more details, see the
\verb'GraphBLAS/GraphBLAS/demo' folder and its contents.
Below is a comparison of other methods in SuiteSparse:GraphBLAS, compared with
MATLAB 2021a. SuiteSparse:GraphBLAS: v6.1.4 (Jan 12, 2022), was used, compiled
with gcc 11.2.0. The system is an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
(20 hardware cores, 40 threads), Ubuntu 20.04, 256GB RAM. Full details appear
in the \verb'GraphBLAS/GraphBLAS/demo/benchmark' folder. For this matrix,
SuiteSparse:GraphBLAS is anywhere from 3x to 17x faster than the built-in
methods in MATLAB. This matrix is not special, but is typical of the relative
performance of many large matrices. Note that two of these (\verb'C=L*S' and
\verb'C=S*R') rely on an older version of SuiteSparse:GraphBLAS (v3.3.3) built
into MATLAB R2021a.
{\footnotesize
\begin{verbatim}
Legend:
S: large input sparse matrix (n-by-n), the GAP-twitter matrix
x: dense vector (1-by-n or n-by-1)
F: dense matrix (4-by-n or n-by-4)
L: 8-by-n sparse matrix, about 1000 entries
R: n-by-8 sparse matrix, about 1000 entries
B: n-by-n sparse matrix, about nnz(S)/10 entries
p,q: random permutation vectors
GAP/GAP-twitter: n: 61.5784 million nnz: 1468.36 million
(run time in seconds):
y=S*x: MATLAB: 22.8012 GrB: 2.4018 speedup: 9.49
y=x*S: MATLAB: 16.1618 GrB: 1.1610 speedup: 13.92
C=S*F: MATLAB: 30.6121 GrB: 9.7052 speedup: 3.15
C=F*S: MATLAB: 26.4044 GrB: 1.5245 speedup: 17.32
C=L*S: MATLAB: 19.1228 GrB: 2.4301 speedup: 7.87
C=S*R: MATLAB: 0.0087 GrB: 0.0020 speedup: 4.40
C=S' MATLAB: 224.7268 GrB: 22.6855 speedup: 9.91
C=S+S: MATLAB: 14.3368 GrB: 1.5539 speedup: 9.23
C=S+B: MATLAB: 15.5600 GrB: 1.5098 speedup: 10.31
C=S(p,q) MATLAB: 95.6219 GrB: 15.9468 speedup: 6.00 \end{verbatim}
}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Context and Sequence} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{context}
A user application that directly relies on GraphBLAS must include the
\verb'GraphBLAS.h' header file:
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
#include "GraphBLAS.h"
\end{verbatim}
} \end{mdframed}
The \verb'GraphBLAS.h' file defines functions, types, and macros prefixed with
\verb'GrB_' and \verb'GxB_' that may be used in user applications. The prefix
\verb'GrB_' denotes items that appear in the official {\em GraphBLAS C API
Specification}. The prefix \verb'GxB_' refers to SuiteSparse-specific
extensions to the GraphBLAS API.
The \verb'GraphBLAS.h' file includes all the definitions required to use
GraphBLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.
There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the {\em GraphBLAS C API Specification} it
conforms to, and the version of the implementation itself. These can
be used in the following manner in a user application:
{\footnotesize
\begin{verbatim}
#if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)
... use features in GraphBLAS specification 2.0.3 ...
#else
... only use features in early specifications
#endif
#if GxB_IMPLEMENTATION >= GxB_VERSION (5,2,0)
... use features from version 5.2.0 (or later)
of a specific GraphBLAS implementation
#endif \end{verbatim}}
SuiteSparse:GraphBLAS also defines the following strings with \verb'#define'.
Refer to the \verb'GraphBLAS.h' file for details.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
Macro & purpose \\
\hline
\verb'GxB_IMPLEMENTATION_ABOUT'
& this particular implementation, copyright, and URL \\
\verb'GxB_IMPLEMENTATION_DATE'
& the date of this implementation \\
\verb'GxB_SPEC_ABOUT'
& the GraphBLAS specification for this implementation \\
\verb'GxB_SPEC_DATE'
& the date of the GraphBLAS specification \\
\verb'GxB_IMPLEMENTATION_LICENSE'
& the license for this particular implementation \\
\hline
\end{tabular}
}
\vspace{0.2in}
Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
\verb'GxB_SUITESPARSE_GRAPHBLAS' that the user application can use in
\verb'#ifdef' tests. This is helpful in case a particular implementation
provides non-standard features that extend the GraphBLAS specification, such as
additional predefined built-in operators, or if a GraphBLAS implementation does
not yet fully implement all of the GraphBLAS specification.
For example, SuiteSparse:GraphBLAS predefines additional built-in operators not
in the specification. If the user application wishes to use these in any
GraphBLAS implementation, an \verb'#ifdef' can control when they are used.
Refer to the examples in the \verb'GraphBLAS/Demo' folder.
As another example, the GraphBLAS API states that an
implementation need not define the order in which \verb'GrB_Matrix_build'
assembles duplicate tuples in its \verb'[I,J,X]' input arrays. As a result, no
particular ordering should be relied upon in general. However,
SuiteSparse:GraphBLAS does guarantee an ordering, and this guarantee will be
kept in future versions of SuiteSparse:GraphBLAS as well. Since not all
implementations will ensure a particular ordering, the following can be used to
exploit the ordering returned by SuiteSparse:GraphBLAS.
{\footnotesize
\begin{verbatim}
#ifdef GxB_SUITESPARSE_GRAPHBLAS
// duplicates in I, J, X assembled in a specific order;
// results are well-defined even if op is not associative.
GrB_Matrix_build (C, I, J, X, nvals, op) ;
#else
// duplicates in I, J, X assembled in no particular order;
// results are undefined if op is not associative.
GrB_Matrix_build (C, I, J, X, nvals, op) ;
#endif \end{verbatim}}
The remainder of this section describes GraphBLAS functions that start or finalize GraphBLAS,
error handling, and the GraphBLAS integer.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function/type & purpose & Section \\
\hline
\verb'GrB_Index' & the GraphBLAS integer & \ref{grbindex} \\
\verb'GrB_init' & start up GraphBLAS & \ref{init} \\
\verb'GrB_getVersion'& C API supported by the library & \ref{getVersion} \\
\verb'GxB_init' & start up GraphBLAS with different \verb'malloc' & \ref{xinit} \\
\verb'GrB_Info' & status code returned by GraphBLAS functions & \ref{info} \\
\verb'GrB_error' & get more details on the last error & \ref{error} \\
\verb'GrB_finalize' & finish GraphBLAS & \ref{finalize} \\
\hline
\end{tabular}
}
\vspace{0.2in}
%===============================================================================
\subsection{{\sf GrB\_Index:} the GraphBLAS integer} %==========================
%===============================================================================
\label{grbindex}
Matrix and vector dimensions and indexing rely on a specific integer,
\verb'GrB_Index', which is defined in \verb'GraphBLAS.h' as
{\footnotesize
\begin{verbatim}
typedef uint64_t GrB_Index ; \end{verbatim}}
Row and column indices of an \verb'nrows'-by-\verb'ncols' matrix range from
zero to the \verb'nrows-1' for the rows, and zero to \verb'ncols-1' for the
columns. Indices are zero-based, like C, and not one-based, like
MATLAB/Octave. In SuiteSparse:GraphBLAS, the largest permitted index value
is \verb'GrB_INDEX_MAX', defined as $2^{60}-1$. The largest permitted
matrix or vector dimension is $2^{60}$ (that is, \verb'GrB_INDEX_MAX+1').
The largest \verb'GrB_Matrix' that
SuiteSparse: GraphBLAS can construct is thus $2^{60}$-by-$2^{60}$. An
$n$-by-$n$ matrix $\bf A$ that size can easily be constructed in practice with
$O(|{\bf A}|)$ memory requirements, where $|{\bf A}|$ denotes the number of
entries that explicitly appear in the pattern of ${\bf A}$. The time and
memory required to construct a matrix that large does not depend on $n$, since
SuiteSparse:GraphBLAS can represent ${\bf A}$ in hypersparse form (see
Section~\ref{hypersparse}). The largest \verb'GrB_Vector' that can be
constructed is $2^{60}$-by-1.
%===============================================================================
\subsection{{\sf GrB\_init:} initialize GraphBLAS} %============================
%===============================================================================
\label{init}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
typedef enum
{
GrB_NONBLOCKING = 0, // methods may return with pending computations
GrB_BLOCKING = 1 // no computations are ever left pending
}
GrB_Mode ;
\end{verbatim}
}\end{mdframed}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_init // start up GraphBLAS
(
GrB_Mode mode // blocking or non-blocking mode
) ;
\end{verbatim}
}\end{mdframed}
\hypertarget{link:init}{\mbox{ }}%
\verb'GrB_init' must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user application.
With non-blocking mode, operations can be left pending, and are computed only
when needed. Non-blocking mode can be much faster than blocking mode, by many
orders of magnitude in extreme cases. Blocking mode should be used only when
debugging a user application. The mode cannot be changed once it is set by
\verb'GrB_init'.
GraphBLAS objects are opaque. This allows GraphBLAS to
postpone operations and then do them later in a more efficient manner by
rearranging them and grouping them together. In non-blocking mode, the
computations required to construct an opaque GraphBLAS object might not be
finished when the GraphBLAS method or operation returns to the user. However,
user-provided arrays are not opaque, and GraphBLAS methods and operations that
read them (such as \verb'GrB_Matrix_build') or write to them (such as
\verb'GrB_Matrix_extractTuples') always finish reading them, or creating them,
when the method or operation returns to the user application.
All methods and operations that extract values from a GraphBLAS object and
return them into non-opaque user arrays always ensure that the user-visible
arrays are fully populated when they return: \verb'GrB_*_reduce' (to scalar),
\verb'GrB_*_nvals', \verb'GrB_*_extractElement', and
\verb'GrB_*_extractTuples'. These functions do {\em not} guarantee that the
opaque objects they depend on are finalized. To do that, use
\verb'GrB_wait' instead.
SuiteSparse:GraphBLAS is multithreaded internally, via OpenMP, and it is also
safe to use in a multithreaded user application. See Section~\ref{sec:install}
for details.
User threads must not operate on the same matrices at the same time, with one
exception. Multiple user threads can use the same matrices or vectors as
read-only inputs to GraphBLAS operations or methods, but only if they have no
pending operations (use \verb'GrB_wait'
first). User threads cannot simultaneously modify a matrix or vector via any
GraphBLAS operation or method.
It is safe to use the internal parallelism in SuiteSparse:GraphBLAS on
matrices, vectors, and scalars that are not yet completed. The library
handles this on its own. The \verb'GrB_wait' function is only
needed when a user application makes multiple calls to GraphBLAS in parallel,
from multiple user threads.
With multiple user threads, exactly one user thread must call \verb'GrB_init'
before any user thread may call any \verb'GrB_*' or \verb'GxB_*' function.
When the user application is finished, exactly one user thread must call
\verb'GrB_finalize', after which no user thread may call any \verb'GrB_*' or
\verb'GxB_*' function.
The mode of a GraphBLAS session can be queried with \verb'GxB_get';
see Section~\ref{options} for details.
%===============================================================================
\subsection{{\sf GrB\_getVersion:} determine the C API Version} %===============
%===============================================================================
\label{getVersion}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_getVersion // runtime access to C API version number
(
unsigned int *version, // returns GRB_VERSION
unsigned int *subversion // returns GRB_SUBVERSION
) ;
\end{verbatim}
}\end{mdframed}
GraphBLAS defines two compile-time constants that
define the version of the C API Specification
that is implemented by the library:
\verb'GRB_VERSION' and \verb'GRB_SUBVERSION'.
If the user program was compiled with one
version of the library but linked with a different one later on, the
compile-time version check with \verb'GRB_VERSION' would be stale.
\verb'GrB_getVersion' thus provides a runtime access of the version of the C
API Specification supported by the library.
\newpage
%===============================================================================
\subsection{{\sf GxB\_init:} initialize with alternate malloc} %================
%===============================================================================
\label{xinit}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_init // start up GraphBLAS and also define malloc
(
GrB_Mode mode, // blocking or non-blocking mode
// pointers to memory management functions.
void * (* user_malloc_function ) (size_t),
void * (* user_calloc_function ) (size_t, size_t),
void * (* user_realloc_function ) (void *, size_t),
void (* user_free_function ) (void *)
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_init' is identical to \verb'GrB_init', except that it also redefines
the memory management functions that SuiteSparse:GraphBLAS will use. Giving
the user application control over this is particularly important when using the
\verb'GxB_*pack',
\verb'GxB_*unpack', and \verb'GxB_*serialize' functions described in
Sections \ref{serialize_deserialize} and \ref{pack_unpack},
since they require the user application and
GraphBLAS to use the same memory manager.
\verb'user_calloc_function' and \verb'user_realloc_function' are optional, and
may be \verb'NULL'. If \verb'NULL', then the \verb'user_malloc_function' is
relied on instead, for all memory allocations.
These functions can only be set once, when GraphBLAS starts. Either
\verb'GrB_init' or \verb'GxB_init' must be called before any other GraphBLAS
operation, but not both. The functions passed to \verb'GxB_init' must be
thread-safe.
The following usage is identical to \verb'GrB_init(mode)':
{\footnotesize
\begin{verbatim}
GxB_init (mode, malloc, calloc, realloc, free) ; \end{verbatim}}
\newpage
%===============================================================================
\subsection{{\sf GrB\_Info:} status code returned by GraphBLAS} %===============
%===============================================================================
\label{info}
Each GraphBLAS method and operation returns its status to the caller as its
return value, an enumerated type (an \verb'enum') called \verb'GrB_Info'. The
first two values in the following table denote a successful status, the rest
are error codes.
Not all GraphBLAS methods or operations can return all status codes.
In the discussions of each method and operation in this User Guide, most of the
obvious error code returns are not discussed. For example, if a required input
is a \verb'NULL' pointer, then \verb'GrB_NULL_POINTER' is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to {\em The GraphBLAS C API Specification} \cite{spec,spec2}.
\vspace{0.2in}
\noindent
{\small
\begin{tabular}{lrp{2.8in}}
\hline
Error & value & description \\
\hline
\verb'GrB_SUCCESS' & 0 & the method or operation was successful \\
\verb'GrB_NO_VALUE' & 1 & the method was successful, but the entry \\
& & does not appear in the matrix or vector. \\
\verb'GxB_EXHAUSTED' & 2 & the iterator is exhausted \\
\hline
\hline
\verb'GrB_UNINITIALIZED_OBJECT' & -1 & object has not been initialized \\
\verb'GrB_NULL_POINTER' & -2 & input pointer is \verb'NULL' \\
\verb'GrB_INVALID_VALUE' & -3 & generic error code; some value is bad \\
\verb'GrB_INVALID_INDEX' & -4 & a row or column index is out of bounds \\
\verb'GrB_DOMAIN_MISMATCH' & -5 & object domains are not compatible \\
\verb'GrB_DIMENSION_MISMATCH' & -6 & matrix dimensions do not match \\
\verb'GrB_OUTPUT_NOT_EMPTY' & -7 & output matrix already has values in it \\
\verb'GrB_NOT_IMPLEMENTED' & -8 & not implemented in SS:GrB \\
\verb'GrB_PANIC' & -101 & unrecoverable error \\
\verb'GrB_OUT_OF_MEMORY' & -102 & out of memory \\
\verb'GrB_INSUFFICIENT_SPACE' & -103 & output array not large enough \\
\verb'GrB_INVALID_OBJECT' & -104 & object is corrupted \\
\verb'GrB_INDEX_OUT_OF_BOUNDS' & -105 & a row or column index is out of bounds \\
\verb'GrB_EMPTY_OBJECT' & -106 & a input scalar has no entry \\
\hline
\end{tabular}
\vspace{0.2in}
}
\newpage
%===============================================================================
\subsection{{\sf GrB\_error:} get more details on the last error} %=============
%===============================================================================
\label{error}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_error // return a string describing the last error
(
const char **error, // error string
<type> object // a GrB_matrix, GrB_Vector, etc.
) ;
\end{verbatim}
}\end{mdframed}
Each GraphBLAS method and operation returns a \verb'GrB_Info' error code. The
\verb'GrB_error' function returns additional information on the error for a
particular object in a null-terminated string. The string returned by
\verb'GrB_error' is never a \verb'NULL' string, but it may have length zero
(with the first entry being the \verb"'\0'" string-termination value). The
string must not be freed or modified.
{\footnotesize
\begin{verbatim}
info = GrB_some_method_here (C, ...) ;
if (! (info == GrB_SUCCESS || info == GrB_NO_VALUE))
{
char *err ;
GrB_error (&err, C) ;
printf ("info: %d error: %s\n", info, err) ;
} \end{verbatim}}
If \verb'C' has no error status, or if the error is not recorded in
the string, an empty non-null string is returned. In particular,
out-of-memory conditions result in an empty string from \verb'GrB_error'.
SuiteSparse:GraphBLAS reports many helpful details via \verb'GrB_error'. For
example, if a row or column index is out of bounds, the report will state what
those bounds are. If a matrix dimension is incorrect, the mismatching
dimensions will be provided. \verb'GrB_BinaryOp_new', \verb'GrB_UnaryOp_new',
and \verb'GrB_IndexUnaryOp_new' record the name the function passed to them, and
\verb'GrB_Type_new' records the name of its type parameter, and these are
printed if the user-defined types and operators are used incorrectly. Refer to
the output of the example programs in the \verb'Demo' and \verb'Test' folder,
which intentionally generate errors to illustrate the use of \verb'GrB_error'.
The only functions in GraphBLAS that return an error string are functions that
have a single input/output argument \verb'C', as a \verb'GrB_Matrix',
\verb'GrB_Vector', \verb'GrB_Scalar', or \verb'GrB_Descriptor'. Methods that
create these objects (such as \verb'GrB_Matrix_new') return a \verb'NULL'
object on failure, so these methods cannot also return an error string in
\verb'C'.
Any subsequent GraphBLAS method that modifies the object \verb'C' clears the
error string.
Note that \verb'GrB_NO_VALUE' is an not error, but an informational status.
\verb'GrB_*_extractElment(&x,A,i,j)', which does \verb'x=A(i,j)', returns this
value to indicate that \verb'A(i,j)' is not present in the matrix. That
method does not have an input/output object so it cannot return an error
string.
% The \verb'GrB_error' function is a polymorphic function for the
% following variants:
% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Type_error (const char **err, const GrB_Type type) ;
% GrB_Info GrB_UnaryOp_error (const char **err, const GrB_UnaryOp op) ;
% GrB_Info GrB_BinaryOp_error (const char **err, const GrB_BinaryOp op) ;
% GrB_Info GrB_IndexUnaryOp_error (const char **err, const GrB_IndexUnaryOp op) ;
% GrB_Info GrB_Monoid_error (const char **err, const GrB_Monoid monoid) ;
% GrB_Info GrB_Semiring_error (const char **err, const GrB_Semiring semiring) ;
% GrB_Info GrB_Scalar_error (const char **err, const GrB_Scalar s) ;
% GrB_Info GrB_Vector_error (const char **err, const GrB_Vector v) ;
% GrB_Info GrB_Matrix_error (const char **err, const GrB_Vector A) ;
% GrB_Info GrB_Descriptor_error (const char **err, const GrB_Descriptor d) ;
% \end{verbatim}
% }\end{mdframed}
% Currently, only \verb'GrB_Matrix_error', \verb'GrB_Vector_error',
% \verb'GrB_Scalar_error', and \verb'GrB_Descriptor_error' are able to return
% non-empty error strings. The latter can return an error string only from
% \verb'GrB_Descriptor_set' and \verb'GxB_set(d,...)'.
% The only GraphBLAS methods (Section~\ref{objects}) that return an error string
% are \verb'*setElement', \verb'*removeElement',
% \verb'GxB_Matrix_Option_set(A,...)', \newline
% \verb'GxB_Vector_Option_set(v,...)', \verb'GrB_Descriptor_set', and
% \verb'GxB_Desc_set(d,...)'. All GraphBLAS operations discussed in
% Section~\ref{operations} can return an error string in their input/output
% object, except for \verb'GrB_reduce' when reducing to a scalar.
\newpage
%===============================================================================
\subsection{{\sf GrB\_finalize:} finish GraphBLAS} %============================
%===============================================================================
\label{finalize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_finalize ( ) ; // finish GraphBLAS
\end{verbatim}
}\end{mdframed}
\verb'GrB_finalize' must be called as the last GraphBLAS operation, even after
all calls to \verb'GrB_free'. All GraphBLAS objects created by the user
application should be freed first, before calling \verb'GrB_finalize' since
\verb'GrB_finalize' will not free those objects. In non-blocking mode,
GraphBLAS may leave some computations as pending. These computations can be
safely abandoned if the user application frees all GraphBLAS objects it has
created and then calls \verb'GrB_finalize'. When the user application is
finished, exactly one user thread must call \verb'GrB_finalize'.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Objects and their Methods} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{objects}
GraphBLAS defines ten different objects to represent matrices, vectors,
scalars, data types, operators (binary, unary, and index-unary), monoids,
semirings, and a {\em descriptor} object used to specify optional parameters
that modify the behavior of a GraphBLAS operation.
The GraphBLAS API makes a distinction between {\em methods} and {\em
operations}. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.
\vspace{0.1in}
\noindent
{\small
\begin{tabular}{ll}
\hline
\verb'GrB_Type' & a scalar data type \\
\verb'GrB_UnaryOp' & a unary operator $z=f(x)$, where $z$ and $x$ are scalars\\
\verb'GrB_BinaryOp' & a binary operator $z=f(x,y)$, where $z$, $x$, and $y$ are scalars\\
\verb'GrB_IndexUnaryOp' & an index-unary operator \\
\verb'GrB_Monoid' & an associative and commutative binary operator \\
& and its identity value \\
\verb'GrB_Semiring' & a monoid that defines the ``plus'' and a binary operator\\
& that defines the ``multiply'' for an algebraic semiring \\
\verb'GrB_Matrix' & a 2D sparse matrix of any type \\
\verb'GrB_Vector' & a 1D sparse column vector of any type \\
\verb'GrB_Scalar' & a scalar of any type \\
\verb'GrB_Descriptor'& a collection of parameters that modify an operation \\
\hline
\end{tabular}
}
\vspace{0.1in}
Each of these objects is implemented in C as an opaque handle, which is a
pointer to a data structure held by GraphBLAS. User applications may not
examine the content of the object directly; instead, they can pass the handle
back to GraphBLAS which will do the work. Assigning one handle to another
is valid but it does not make a copy of the underlying object.
\newpage
%===============================================================================
\subsection{The GraphBLAS type: {\sf GrB\_Type}} %==============================
%===============================================================================
\label{type}
A GraphBLAS \verb'GrB_Type' defines the type of scalar values that a matrix or
vector contains, and the type of scalar operands for a unary or binary
operator. There are 13 built-in types, and a user application can define
any types of its own as well. The built-in types correspond to built-in types
in C (in the \verb'#include' files \verb'stdbool.h', \verb'stdint.h', and
\verb'complex.h') as listed in the following table.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{llll}
\hline
GraphBLAS & C type & description & range \\
type & & & \\
\hline
\verb'GrB_BOOL' & \verb'bool' & Boolean & true (1), false (0) \\
\hline
\verb'GrB_INT8' & \verb'int8_t' & 8-bit signed integer & -128 to 127 \\
\verb'GrB_INT16' & \verb'int16_t' & 16-bit integer & $-2^{15}$ to $2^{15}-1$ \\
\verb'GrB_INT32' & \verb'int32_t' & 32-bit integer & $-2^{31}$ to $2^{31}-1$ \\
\verb'GrB_INT64' & \verb'int64_t' & 64-bit integer & $-2^{63}$ to $2^{63}-1$ \\
\hline
\verb'GrB_UINT8' & \verb'uint8_t' & 8-bit unsigned integer & 0 to 255 \\
\verb'GrB_UINT16' & \verb'uint16_t' & 16-bit unsigned integer & 0 to $2^{16}-1$ \\
\verb'GrB_UINT32' & \verb'uint32_t' & 32-bit unsigned integer & 0 to $2^{32}-1$ \\
\verb'GrB_UINT64' & \verb'uint64_t' & 64-bit unsigned integer & 0 to $2^{64}-1$ \\
\hline
\verb'GrB_FP32' & \verb'float' & 32-bit IEEE 754 & \verb'-Inf' to \verb'+Inf'\\
\verb'GrB_FP64' & \verb'double' & 64-bit IEEE 754 & \verb'-Inf' to \verb'+Inf'\\
\hline
\verb'GxB_FC32' & \verb'float complex' & 32-bit complex & \verb'-Inf' to \verb'+Inf'\\
\verb'GxB_FC64' & \verb'double complex' & 64-bit complex & \verb'-Inf' to \verb'+Inf'\\
\hline
\end{tabular}
}
\vspace{0.2in}
The ANSI C11 definitions of \verb'float complex' and \verb'double complex'
are not always available. The \verb'GraphBLAS.h' header defines them as
\verb'GxB_FC32_t' and \verb'GxB_FC64_t', respectively.
The user application can also define new types based on any \verb'typedef' in
the C language whose values are held in a contiguous region of memory of fixed
size. For example, a user-defined \verb'GrB_Type' could be created to hold any
C \verb'struct' whose content is self-contained. A C \verb'struct' containing
pointers might be problematic because GraphBLAS would not know to dereference
the pointers to traverse the entire ``scalar'' entry, but this can be done if
the objects referenced by these pointers are not moved. A user-defined complex
type with real and imaginary types can be defined, or even a ``scalar'' type
containing a fixed-sized dense matrix (see Section~\ref{type_new}). The
possibilities are endless. GraphBLAS can create and operate on sparse matrices
and vectors in any of these types, including any user-defined ones. For
user-defined types, GraphBLAS simply moves the data around itself (via
\verb'memcpy'), and then passes the values back to user-defined functions when
it needs to do any computations on the type. The next sections describe the
methods for the \verb'GrB_Type' object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Type_new' & create a user-defined type & \ref{type_new} \\
\verb'GxB_Type_new' & create a user-defined type,
with name and definition & \ref{type_new_named} \\
\verb'GrB_Type_wait' & wait for a user-defined type & \ref{type_wait} \\
\verb'GxB_Type_size' & return the size of a type & \ref{type_size} \\
\verb'GxB_Type_name' & return the name of a type & \ref{type_name} \\
\verb'GxB_Type_from_name'& return the type from its name & \ref{type_from_name} \\
\verb'GrB_Type_free' & free a user-defined type & \ref{type_free} \\
\hline
\end{tabular}
}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_new:} create a user-defined type}
%-------------------------------------------------------------------------------
\label{type_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Type_new // create a new GraphBLAS type
(
GrB_Type *type, // handle of user type to create
size_t sizeof_ctype // size = sizeof (ctype) of the C type
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_Type_new' creates a new user-defined type. The \verb'type' is a
handle, or a pointer to an opaque object. The handle itself must not be
\verb'NULL' on input, but the content of the handle can be undefined. On
output, the handle contains a pointer to a newly created type.
The \verb'ctype' is the type in C that will be used to construct the new
GraphBLAS type. It can be either a built-in C type, or defined by a
\verb'typedef'.
The second parameter should be passed as \verb'sizeof(ctype)'. The only
requirement on the C type is that \verb'sizeof(ctype)' is valid in C, and
that the type reside in a contiguous block of memory so that it can be moved
with \verb'memcpy'. For example, to create a user-defined type called
\verb'Complex' for double-precision complex values using the ANSI C11
\verb'double complex' type, the following can be used. A complete example can
be found in the \verb'usercomplex.c' and \verb'usercomplex.h' files in the
\verb'Demo' folder.
{\footnotesize
\begin{verbatim}
#include <math.h>
#include <complex.h>
GrB_Type Complex ;
GrB_Type_new (&Complex, sizeof (double complex)) ; \end{verbatim} }
To demonstrate the flexibility of the \verb'GrB_Type', consider a ``scalar''
consisting of 4-by-4 floating-point matrix and a string. This type might be
useful for the 4-by-4 translation/rotation/scaling matrices that arise in
computer graphics, along with a string containing a description or even a
regular expression that can be parsed and executed in a user-defined operator.
All that is required is a fixed-size type, where \verb'sizeof(ctype)' is
a constant.
{\footnotesize
\begin{verbatim}
typedef struct
{
float stuff [4][4] ;
char whatstuff [64] ;
}
wildtype ;
GrB_Type WildType ;
GrB_Type_new (&WildType, sizeof (wildtype)) ; \end{verbatim} }
With this type a sparse matrix can be created in which each entry consists of a
4-by-4 dense matrix \verb'stuff' and a 64-character string \verb'whatstuff'.
GraphBLAS treats this 4-by-4 as a ``scalar.'' Any GraphBLAS method or operation
that simply moves data can be used with this type without any further
information from the user application. For example, entries of this type can
be assigned to and extracted from a matrix or vector, and matrices containing
this type can be transposed. A working example (\verb'wildtype.c'
in the \verb'Demo' folder) creates matrices and multiplies them with
a user-defined semiring with this type.
Performing arithmetic on matrices and vectors with user-defined types requires
operators to be defined. Refer to Section~\ref{user} for more details on these
example user-defined types.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_new:} create a user-defined type (with name and definition)}
%-------------------------------------------------------------------------------
\label{type_new_named}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_new // create a new named GraphBLAS type
(
GrB_Type *type, // handle of user type to create
size_t sizeof_ctype, // size = sizeof (ctype) of the C type
const char *type_name, // name of the type (max 128 characters)
const char *type_defn // typedef for the type (no max length)
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_Type_new' creates a type with a name and definition that are known to
GraphBLAS, as strings. The \verb'type_name' is any valid string (max length of 128
characters, including the required null-terminating character) that may
appear as the name of a C type created by a C \verb'typedef' statement. It must
not contain any white-space characters. For example, to create a type of size
16*4+1 = 65 bytes, with a 4-by-4 dense float array and a 32-bit integer:
{\footnotesize
\begin{verbatim}
typedef struct { float x [4][4] ; int color ; } myquaternion ;
GrB_Type MyQtype ;
GxB_Type_new (&MyQtype, sizeof (myquaternion), "myquaternion",
"typedef struct { float x [4][4] ; int color ; } myquaternion ;") ; \end{verbatim}}
The \verb'type_name' and \verb'type_defn' are both null-terminated strings.
Currently, \verb'type_defn' is unused, but it will be required for best
performance when a JIT is implemented in SuiteSparse:GraphBLAS (both on the CPU
and GPU). User defined types created by \verb'GrB_Type_new' will not work with
a JIT.
At most \verb'GxB_MAX_NAME_LEN' characters are accessed in \verb'type_name';
characters beyond that limit are silently ignored.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_wait:} wait for a type}
%-------------------------------------------------------------------------------
\label{type_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a user-defined type
(
GrB_Type type, // type to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined type, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that \verb'type' is valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_size:} return the size of a type}
%-------------------------------------------------------------------------------
\label{type_size}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_size // determine the size of the type
(
size_t *size, // the sizeof the type
GrB_Type type // type to determine the sizeof
) ;
\end{verbatim}
}\end{mdframed}
This function acts just like \verb'sizeof(type)' in the C language. For
example \verb'GxB_Type_size (&s, GrB_INT32)' sets \verb's' to 4, the same as
\verb'sizeof(int32_t)'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_name:} return the name of a type}
%-------------------------------------------------------------------------------
\label{type_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_name // return the name of a GraphBLAS type
(
char *type_name, // name of the type (char array of size at least
// GxB_MAX_NAME_LEN, owned by the user application).
const GrB_Type type
) ;
\end{verbatim}
}\end{mdframed}
Returns the name of a type, as a string. For built-in types, the name is
the same as the C type. For example, \verb'GxB_Type_name(type_name,GrB_FP32)'
returns the name as \verb'"float"'. The following table lists the
names of the 13 built-in types.
\vspace{0.2in}
{\small
\begin{tabular}{ll}
\hline
Type name & GraphBLAS type \\
\hline
\verb'"bool"' & \verb'GrB_BOOL' \\
\verb'"int8_t"' & \verb'GrB_INT8' \\
\verb'"int16_t"' & \verb'GrB_INT16' \\
\verb'"int32_t"' & \verb'GrB_INT32' \\
\verb'"int64_t"' & \verb'GrB_INT64' \\
\verb'"uint8_t"' & \verb'GrB_UINT8' \\
\verb'"uint16_t"' & \verb'GrB_UINT16' \\
\verb'"uint32_t"' & \verb'GrB_UINT32' \\
\verb'"uint64_t"' & \verb'GrB_UINT64' \\
\verb'"float"' & \verb'GrB_FP32' \\
\verb'"double"' & \verb'GrB_FP64' \\
\verb'"float complex"' & \verb'GxB_FC32' \\
\verb'"double complex"' & \verb'GxB_FC64' \\
\hline
\end{tabular}}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_from\_name:} return the type from its name}
%-------------------------------------------------------------------------------
\label{type_from_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_from_name // return the built-in GrB_Type from a name
(
GrB_Type *type, // built-in type, or NULL if user-defined
const char *type_name // array of size at least GxB_MAX_NAME_LEN
) ;
\end{verbatim}
}\end{mdframed}
Returns the built-in type from the corresponding name of the type. For
example, \verb'GxB_Type_from_name (&type, "bool")' returns \verb'GrB_BOOL'. If
the name is from a user-defined type, the \verb'type' is returned as
\verb'NULL'. This is not an error condition. The user application must itself
do this translation since GraphBLAS does not keep a registry of all
user-defined types.
With this function, a user application can manage the translation for
both built-in types and its own user-defined types, as in the following
example.
{\footnotesize
\begin{verbatim}
typedef struct { double x ; char stuff [16] ; } myfirsttype ;
typedef struct { float z [4][4] ; int color ; } myquaternion ;
GrB_Type MyType1, MyQType ;
GxB_Type_new (&MyType1, sizeof (myfirsttype), "myfirsttype",
"typedef struct { double x ; char stuff [16] ; } myfirsttype ;") ;
GxB_Type_new (&MyQType, sizeof (myquaternion), "myquaternion",
"typedef struct { float z [4][4] ; int color ; } myquaternion ;") ;
GrB_Matrix A ;
// ... create a matrix A of some built-in or user-defined type
// later on, to query the type of A:
size_t typesize ;
GxB_Type_size (&typesize, type) ; // works for any type
GrB_Type atype ;
char atype_name [GxB_MAX_NAME_LEN] ;
GxB_Matrix_type_name (atype_name, A) ;
GxB_Type_from_name (&atype, atype_name) ;
if (atype == NULL)
{
// This is not yet an error. It means that A has a user-defined type.
if ((strcmp (atype_name, "myfirsttype")) == 0) atype = MyType1 ;
else if ((strcmp (atype_name, "myquaternion")) == 0) atype = MyQType ;
else { ... this is now an error ... the type of A is unknown. }
}\end{verbatim} }
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_free:} free a user-defined type}
%-------------------------------------------------------------------------------
\label{type_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-defined type
(
GrB_Type *type // handle of user-defined type to free
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_Type_free' frees a user-defined type.
Either usage:
{\small
\begin{verbatim}
GrB_Type_free (&type) ;
GrB_free (&type) ; \end{verbatim}}
\noindent
frees the user-defined \verb'type' and
sets \verb'type' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'type == NULL' on input.
It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS silently
ignores the request and returns \verb'GrB_SUCCESS'. A user-defined type should
not be freed until all operations using the type are completed.
SuiteSparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended.
Operations on such objects whose type has been freed leads to undefined
behavior.
It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.
The function signature of \verb'GrB_Type_free' uses the generic name
\verb'GrB_free', which can free any GraphBLAS object. See Section~\ref{free}
details. GraphBLAS includes many such generic functions. When describing a
specific variation, a function is described with its specific name in this User
Guide (such as \verb'GrB_Type_free'). When discussing features applicable to
all specific forms, the generic name is used instead (such as \verb'GrB_free').
\newpage
%===============================================================================
\subsection{GraphBLAS unary operators: {\sf GrB\_UnaryOp}, $z=f(x)$} %==========
%===============================================================================
\label{unaryop}
A unary operator is a scalar function of the form $z=f(x)$. The domain (type)
of $z$ and $x$ need not be the same.
In the notation in the tables
below, $T$ is any of the 13 built-in types and is a place-holder for
\verb'BOOL', \verb'INT8', \verb'UINT8', ...
\verb'FP32', \verb'FP64', \verb'FC32', or \verb'FC64'.
For example, \verb'GrB_AINV_INT32' is a unary operator that computes
\verb'z=-x' for two values \verb'x' and \verb'z' of type \verb'GrB_INT32'.
The notation $R$ refers to any real type (all but \verb'FC32' and \verb'FC64'),
$I$ refers to any integer type (\verb'INT*' and \verb'UINT*'),
$F$ refers to any real or complex floating point type
(\verb'FP32', \verb'FP64', \verb'FC32', or \verb'FC64'),
$Z$ refers to any complex floating point type
(\verb'FC32' or \verb'FC64'),
and $N$ refers to \verb'INT32' or \verb'INT64'.
The logical negation operator \verb'GrB_LNOT' only works on Boolean types. The
\verb'GxB_LNOT_'$R$ functions operate on inputs of type $R$, implicitly
typecasting their input to Boolean and returning result of type $R$, with a
value 1 for true and 0 for false. The operators \verb'GxB_LNOT_BOOL' and
\verb'GrB_LNOT' are identical.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for all types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_ONE_'$T$ & $T \rightarrow T$ & $z = 1$ & one \\
\verb'GrB_IDENTITY_'$T$ & $T \rightarrow T$ & $z = x$ & identity \\
\verb'GrB_AINV_'$T$ & $T \rightarrow T$ & $z = -x$ & additive inverse \\
\verb'GrB_MINV_'$T$ & $T \rightarrow T$ & $z = 1/x$ & multiplicative inverse \\
\hline
\end{tabular}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for real and integer types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GrB_ABS_'$T$ & $R \rightarrow R$ & $z = |x|$ & absolute value \\
\verb'GrB_LNOT' & \verb'bool'
$\rightarrow$
\verb'bool' & $z = \lnot x$ & logical negation \\
\verb'GxB_LNOT_'$R$ & $R \rightarrow R$ & $z = \lnot (x \ne 0)$ & logical negation \\
\verb'GrB_BNOT_'$I$ & $I \rightarrow I$ & $z = \lnot x$ & bitwise negation \\
\hline
\end{tabular}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Positional unary operators for any type (including user-defined)} \\
\hline
GraphBLAS name & types (domains) & $z=f(a_{ij})$ & description \\
\hline
\verb'GxB_POSITIONI_'$N$ & $ \rightarrow N$ & $z = i$ & row index (0-based) \\
\verb'GxB_POSITIONI1_'$N$ & $ \rightarrow N$ & $z = i+1$ & row index (1-based) \\
\verb'GxB_POSITIONJ_'$N$ & $ \rightarrow N$ & $z = j$ & column index (0-based) \\
\verb'GxB_POSITIONJ1_'$N$ & $ \rightarrow N$ & $z = j+1$ & column index (1-based) \\
\hline
\end{tabular}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for floating-point types (real and complex)} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_SQRT_'$F$ & $F \rightarrow F$ & $z = \sqrt(x)$ & square root \\
\verb'GxB_LOG_'$F$ & $F \rightarrow F$ & $z = \log_e(x)$ & natural logarithm \\
\verb'GxB_EXP_'$F$ & $F \rightarrow F$ & $z = e^x$ & natural exponent \\
\hline
\verb'GxB_LOG10_'$F$ & $F \rightarrow F$ & $z = \log_{10}(x)$ & base-10 logarithm \\
\verb'GxB_LOG2_'$F$ & $F \rightarrow F$ & $z = \log_2(x)$ & base-2 logarithm \\
\verb'GxB_EXP2_'$F$ & $F \rightarrow F$ & $z = 2^x$ & base-2 exponent \\
\hline
\verb'GxB_EXPM1_'$F$ & $F \rightarrow F$ & $z = e^x - 1$ & natural exponent - 1 \\
\verb'GxB_LOG1P_'$F$ & $F \rightarrow F$ & $z = \log(x+1)$ & natural log of $x+1$ \\
\hline
\verb'GxB_SIN_'$F$ & $F \rightarrow F$ & $z = \sin(x)$ & sine \\
\verb'GxB_COS_'$F$ & $F \rightarrow F$ & $z = \cos(x)$ & cosine \\
\verb'GxB_TAN_'$F$ & $F \rightarrow F$ & $z = \tan(x)$ & tangent \\
\hline
\verb'GxB_ASIN_'$F$ & $F \rightarrow F$ & $z = \sin^{-1}(x)$ & inverse sine \\
\verb'GxB_ACOS_'$F$ & $F \rightarrow F$ & $z = \cos^{-1}(x)$ & inverse cosine \\
\verb'GxB_ATAN_'$F$ & $F \rightarrow F$ & $z = \tan^{-1}(x)$ & inverse tangent \\
\hline
\verb'GxB_SINH_'$F$ & $F \rightarrow F$ & $z = \sinh(x)$ & hyperbolic sine \\
\verb'GxB_COSH_'$F$ & $F \rightarrow F$ & $z = \cosh(x)$ & hyperbolic cosine \\
\verb'GxB_TANH_'$F$ & $F \rightarrow F$ & $z = \tanh(x)$ & hyperbolic tangent \\
\hline
\verb'GxB_ASINH_'$F$ & $F \rightarrow F$ & $z = \sinh^{-1}(x)$ & inverse hyperbolic sine \\
\verb'GxB_ACOSH_'$F$ & $F \rightarrow F$ & $z = \cosh^{-1}(x)$ & inverse hyperbolic cosine \\
\verb'GxB_ATANH_'$F$ & $F \rightarrow F$ & $z = \tanh^{-1}(x)$ & inverse hyperbolic tangent \\
\hline
\verb'GxB_SIGNUM_'$F$ & $F \rightarrow F$ & $z = \sgn(x)$ & sign, or signum function \\
\verb'GxB_CEIL_'$F$ & $F \rightarrow F$ & $z = \lceil x \rceil $ & ceiling function \\
\verb'GxB_FLOOR_'$F$ & $F \rightarrow F$ & $z = \lfloor x \rfloor $ & floor function \\
\verb'GxB_ROUND_'$F$ & $F \rightarrow F$ & $z = \mbox{round}(x)$ & round to nearest \\
\verb'GxB_TRUNC_'$F$ & $F \rightarrow F$ & $z = \mbox{trunc}(x)$ & round towards zero \\
\hline
\verb'GxB_ISINF_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isinf}(x)$ & true if $\pm \infty$ \\
\verb'GxB_ISNAN_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isnan}(x)$ & true if \verb'NaN' \\
\verb'GxB_ISFINITE_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isfinite}(x)$ & true if finite \\
\hline
\end{tabular}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for floating-point types (real only)} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_LGAMMA_'$R$ & $R \rightarrow R$ & $z = \log(|\Gamma (x)|)$ & log of gamma function \\
\verb'GxB_TGAMMA_'$R$ & $R \rightarrow R$ & $z = \Gamma(x)$ & gamma function \\
\verb'GxB_ERF_'$R$ & $R \rightarrow R$ & $z = \erf(x)$ & error function \\
\verb'GxB_ERFC_'$R$ & $R \rightarrow R$ & $z = \erfc(x)$ & complimentary error function \\
\verb'GxB_CBRT_'$R$ & $R \rightarrow R$ & $z = x^{1/3}$ & cube root \\
\hline
\verb'GxB_FREXPX_'$R$ & $R \rightarrow R$ & $z = \mbox{frexpx}(x)$ & normalized fraction \\
\verb'GxB_FREXPE_'$R$ & $R \rightarrow R$ & $z = \mbox{frexpe}(x)$ & normalized exponent \\
\hline
\end{tabular}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for complex types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_CONJ_'$Z$ & $Z \rightarrow Z$ & $z = \overline{x}$ & complex conjugate \\
\verb'GxB_ABS_'$Z$ & $Z \rightarrow F$ & $z = |x|$ & absolute value \\
\verb'GxB_CREAL_'$Z$ & $Z \rightarrow F$ & $z = \mbox{real}(x)$ & real part \\
\verb'GxB_CIMAG_'$Z$ & $Z \rightarrow F$ & $z = \mbox{imag}(x)$ & imaginary part \\
\verb'GxB_CARG_'$Z$ & $Z \rightarrow F$ & $z = \mbox{carg}(x)$ & angle \\
\hline
\end{tabular}
}
\vspace{0.2in}
A positional unary operator return the row or column index of an entry. For a
matrix $z=f(a_{ij})$ returns $z = i$ or $z = j$, or +1 for 1-based indices.
The latter is useful in the MATLAB/Octave interface, where row and column indices are
1-based. When applied to a vector, $j$ is always zero, and $i$ is the index in
the vector. Positional unary operators come in two types: \verb'INT32' and
\verb'INT64', which is the type of the output, $z$. The functions are agnostic
to the type of their inputs; they only depend on the position of the entries,
not their values.
User-defined positional operators cannot be defined by \verb'GrB_UnaryOp_new'.
\verb'GxB_FREXPX' and \verb'GxB_FREXPE' return the mantissa and exponent,
respectively, from the ANSI C11 \verb'frexp' function. The exponent is
returned as a floating-point value, not an integer.
The operators \verb'GxB_EXPM1_FC*' and \verb'GxB_LOG1P_FC*' for complex
types are currently not accurate. They will be revised in a future version.
The functions \verb'casin', \verb'casinf', \verb'casinh', and \verb'casinhf'
provided by Microsoft Visual Studio for computing $\sin^{-1}(x)$ and
$\sinh^{-1}(x)$ when $x$ is complex do not compute the correct result. Thus,
the unary operators \verb'GxB_ASIN_FC32', \verb'GxB_ASIN_FC64'
\verb'GxB_ASINH_FC32', and \verb'GxB_ASINH_FC64' do not work properly if the MS
Visual Studio compiler is used. These functions work properly if the gcc, icc,
or clang compilers are used on Linux or MacOS.
Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary
\verb'GrB_DIV_'$T$ operators.
\begin{alert}
{\bf SPEC:} The definition of integer division by zero is an extension to the
specification.
\end{alert}
The next sections define the following methods for the \verb'GrB_UnaryOp'
object:
\vspace{0.1in}
{\footnotesize
\noindent
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_UnaryOp_new' & create a user-defined unary operator & \ref{unaryop_new} \\
\verb'GxB_UnaryOp_new' & create a named user-defined unary operator & \ref{unaryop_new_named} \\
\verb'GrB_UnaryOp_wait' & wait for a user-defined unary operator & \ref{unaryop_wait} \\
\verb'GxB_UnaryOp_ztype_name' & return the name of the type of the output $z$ for $z=f(x)$ & \ref{unaryop_ztype_name} \\
\verb'GxB_UnaryOp_xtype_name' & return the name of the type of the input $x$ for $z=f(x)$ & \ref{unaryop_xtype_name} \\
\verb'GrB_UnaryOp_free' & free a user-defined unary operator & \ref{unaryop_free} \\
\hline
\end{tabular}
}
\vspace{0.1in}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_new:} create a user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_UnaryOp_new // create a new user-defined unary operator
(
GrB_UnaryOp *unaryop, // handle for the new unary operator
void *function, // pointer to the unary function
GrB_Type ztype, // type of output z
GrB_Type xtype // type of input x
) ;
\end{verbatim} }\end{mdframed}
\verb'GrB_UnaryOp_new' creates a new unary operator. The new operator is
returned in the \verb'unaryop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new unary operator.
The two types \verb'xtype' and \verb'ztype' are the GraphBLAS types of the
input $x$ and output $z$ of the user-defined function $z=f(x)$. These types
may be built-in types or user-defined types, in any combination. The two types
need not be the same, but they must be previously defined before passing them
to \verb'GrB_UnaryOp_new'.
The \verb'function' argument to \verb'GrB_UnaryOp_new' is a pointer to a
user-defined function with the following signature:
{\footnotesize
\begin{verbatim}
void (*f) (void *z, const void *x) ; \end{verbatim} }
When the function \verb'f' is called, the arguments \verb'z' and \verb'x' are
passed as \verb'(void *)' pointers, but they will be pointers to values of the
correct type, defined by \verb'ztype' and \verb'xtype', respectively, when the
operator was created.
{\bf NOTE:}
The pointers passed to a user-defined operator may not be unique. That is, the
user function may be called with multiple pointers that point to the same
space, such as when \verb'z=f(z,y)' is to be computed by a binary operator, or
\verb'z=f(z)' for a unary operator. Any parameters passed to the user-callable
function may be aliased to each other.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_new:} create a named user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_new_named}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_new // create a new user-defined unary operator
(
GrB_UnaryOp *unaryop, // handle for the new unary operator
GxB_unary_function function, // pointer to the unary function
GrB_Type ztype, // type of output z
GrB_Type xtype, // type of input x
const char *unop_name, // name of the user function
const char *unop_defn // definition of the user function
) ;
\end{verbatim} }\end{mdframed}
Creates a named \verb'GrB_UnaryOp'. Only the first 127 characters of
\verb'unop_name' are used. The \verb'unop_defn' is a string containing the
entire function itself. For example:
{\footnotesize
\begin{verbatim}
void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;
...
GrB_Type Square ;
GxB_UnaryOp_new (&Square, square, GrB_FP64, GrB_FP64, "square",
"void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;") ;
\end{verbatim}}
Currently, only the \verb'unop_name' is used, but future versions will
rely on the \verb'unop_defn' when employing a JIT for better performance.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_wait:} wait for a unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a user-defined unary operator
(
GrB_UnaryOp unaryop, // unary operator to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined unary operator, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the
\verb'unaryop' is valid.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_ztype\_name:} return the name of the type of $z$}
%-------------------------------------------------------------------------------
\label{unaryop_ztype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_ztype_name // return the type_name of z
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_UnaryOp unaryop // unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_UnaryOp_ztype_name' returns the name of the \verb'ztype' of the unary
operator, which is the type of $z$ in the function $z=f(x)$.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_xtype\_name:} return the name of the type of $x$}
%-------------------------------------------------------------------------------
\label{unaryop_xtype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_xtype_name // return the type_name of x
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_UnaryOp unaryop // unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_UnaryOp_xtype_name' returns the name of the \verb'xtype' of the unary
operator, which is the type of $x$ in the function $z=f(x)$.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_free:} free a user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created unary operator
(
GrB_UnaryOp *unaryop // handle of unary operator to free
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_UnaryOp_free' frees a user-defined unary operator.
Either usage:
{\small
\begin{verbatim}
GrB_UnaryOp_free (&unaryop) ;
GrB_free (&unaryop) ; \end{verbatim}}
\noindent
frees the \verb'unaryop' and sets \verb'unaryop' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'unaryop == NULL' on input.
It does nothing at all if passed a built-in unary operator.
\newpage
%===============================================================================
\subsection{GraphBLAS binary operators: {\sf GrB\_BinaryOp}, $z=f(x,y)$} %======
%===============================================================================
\label{binaryop}
A binary operator is a scalar function of the form $z=f(x,y)$. The types of
$z$, $x$, and $y$ need not be the same. The built-in binary operators are
listed in the tables below. The notation $T$ refers to any of the 13
built-in types, but two of those types are SuiteSparse extensions
(\verb'GxB_FC32' and \verb'GxB_FC64'). For those types, the operator name
always starts with \verb'GxB', not \verb'GrB').
The notation $R$ refers to any real type (all but \verb'FC32' and \verb'FC64').
The six \verb'GxB_IS*' comparators and the \verb'GxB_*' logical
operators all return a result one for true and zero for false, in the same
domain $T$ or $R$ as their inputs. These six comparators are useful
as ``multiply'' operators for creating semirings with non-Boolean monoids.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for all 13 types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% numeric TxT->T
\verb'GrB_FIRST_'$T$ & $T \times T \rightarrow T$ & $z = x$ & first argument \\
\verb'GrB_SECOND_'$T$ & $T \times T \rightarrow T$ & $z = y$ & second argument \\
\verb'GxB_ANY_'$T$ & $T \times T \rightarrow T$ & $z = x$ or $y$ & pick $x$ or $y$ arbitrarily \\
\verb'GrB_ONEB_'$T$ & $T \times T \rightarrow T$ & $z = 1$ & one \\
\verb'GxB_PAIR_'$T$ & $T \times T \rightarrow T$ & $z = 1$ & one (historical) \\
\verb'GrB_PLUS_'$T$ & $T \times T \rightarrow T$ & $z = x+y$ & addition \\
\verb'GrB_MINUS_'$T$ & $T \times T \rightarrow T$ & $z = x-y$ & subtraction \\
\verb'GxB_RMINUS_'$T$ & $T \times T \rightarrow T$ & $z = y-x$ & reverse subtraction \\
\verb'GrB_TIMES_'$T$ & $T \times T \rightarrow T$ & $z = xy$ & multiplication \\
\verb'GrB_DIV_'$T$ & $T \times T \rightarrow T$ & $z = x/y$ & division \\
\verb'GxB_RDIV_'$T$ & $T \times T \rightarrow T$ & $z = y/x$ & reverse division \\
\verb'GxB_POW_'$T$ & $T \times T \rightarrow T$ & $z = x^y$ & power \\
\hline
% TxT->T comparators
\verb'GxB_ISEQ_'$T$ & $T \times T \rightarrow T$ & $z = (x == y)$ & equal \\
\verb'GxB_ISNE_'$T$ & $T \times T \rightarrow T$ & $z = (x \ne y)$ & not equal \\
\hline
\end{tabular}
}
\vspace{0.2in}
The \verb'GxB_POW_*' operators for real types do not return a complex result,
and thus $z = f(x,y) = x^y$ is undefined if $x$ is negative and $y$ is not an
integer. To compute a complex result, use \verb'GxB_POW_FC32' or
\verb'GxB_POW_FC64'.
Operators that require the domain to be ordered (\verb'MIN', \verb'MAX',
less-than, greater-than, and so on) are not defined for
complex types. These are listed in the following table:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for all non-complex types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% numeric RxR->R
\verb'GrB_MIN_'$R$ & $R \times R \rightarrow R$ & $z = \min(x,y)$ & minimum \\
\verb'GrB_MAX_'$R$ & $R \times R \rightarrow R$ & $z = \max(x,y)$ & maximum \\
\hline
% RxR->R comparators
\verb'GxB_ISGT_'$R$ & $R \times R \rightarrow R$ & $z = (x > y)$ & greater than \\
\verb'GxB_ISLT_'$R$ & $R \times R \rightarrow R$ & $z = (x < y)$ & less than \\
\verb'GxB_ISGE_'$R$ & $R \times R \rightarrow R$ & $z = (x \ge y)$ & greater than or equal \\
\verb'GxB_ISLE_'$R$ & $R \times R \rightarrow R$ & $z = (x \le y)$ & less than or equal \\
\hline
% RxR->R logical
\verb'GxB_LOR_'$R$ & $R \times R \rightarrow R$ & $z = (x \ne 0) \vee (y \ne 0) $ & logical OR \\
\verb'GxB_LAND_'$R$ & $R \times R \rightarrow R$ & $z = (x \ne 0) \wedge (y \ne 0) $ & logical AND \\
\verb'GxB_LXOR_'$R$ & $R \times R \rightarrow R$ & $z = (x \ne 0) \veebar (y \ne 0) $ & logical XOR \\
\hline
\end{tabular}
}
\vspace{0.2in}
Another set of six kinds of built-in comparators have the form $T
\times T \rightarrow $\verb'bool'. Note that when $T$ is \verb'bool', the six
operators give the same results as the six \verb'GxB_IS*_BOOL' operators in the
table above. These six comparators are useful as ``multiply''
operators for creating semirings with Boolean monoids.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary comparators for all 13 types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% 6 TxT -> bool comparators
\verb'GrB_EQ_'$T$ & $T \times T \rightarrow $\verb'bool' & $z = (x == y)$ & equal \\
\verb'GrB_NE_'$T$ & $T \times T \rightarrow $\verb'bool' & $z = (x \ne y)$ & not equal \\
\hline
\multicolumn{4}{ }{\mbox{ }} \\
\hline
\multicolumn{4}{|c|}{Binary comparators for non-complex types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
\verb'GrB_GT_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x > y)$ & greater than \\
\verb'GrB_LT_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x < y)$ & less than \\
\verb'GrB_GE_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x \ge y)$ & greater than or equal \\
\verb'GrB_LE_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x \le y)$ & less than or equal \\
\hline
\end{tabular}
}
\vspace{0.2in}
GraphBLAS has four built-in binary operators that operate purely in
the Boolean domain. The first three are identical to the \verb'GxB_L*_BOOL'
operators described above, just with a shorter name. The \verb'GrB_LXNOR'
operator is the same as \verb'GrB_EQ_BOOL'.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for the boolean type only} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% 3 bool x bool -> bool
\verb'GrB_LOR' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = x \vee y $ & logical OR \\
\verb'GrB_LAND' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = x \wedge y $ & logical AND \\
\verb'GrB_LXOR' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = x \veebar y $ & logical XOR \\
\verb'GrB_LXNOR' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = \lnot (x \veebar y) $ & logical XNOR \\
\hline
\end{tabular}
}
\vspace{0.2in}
The following operators are defined for real floating-point types only (\verb'GrB_FP32' and \verb'GrB_FP64').
They are identical to the ANSI C11 functions of the same name. The last one in the table constructs
the corresponding complex type.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for the real floating-point types only} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
\verb'GxB_ATAN2_'$F$ & $F \times F \rightarrow F$ & $z = \tan^{-1}(y/x)$ & 4-quadrant arc tangent \\
\verb'GxB_HYPOT_'$F$ & $F \times F \rightarrow F$ & $z = \sqrt{x^2+y^2}$ & hypotenuse \\
\verb'GxB_FMOD_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'fmod' \\
\verb'GxB_REMAINDER_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'remainder' \\
\verb'GxB_LDEXP_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'ldexp' \\
\verb'GxB_COPYSIGN_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'copysign' \\
\hline
\verb'GxB_CMPLX_'$F$ & $F \times F \rightarrow Z$ & $z = x + y \times i$ & complex from real \& imag \\
\hline
\end{tabular}
}
\vspace{0.2in}
Eight bitwise operators are predefined for signed and unsigned integers.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for signed and unsigned integers} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
\verb'GrB_BOR_'$I$ & $I \times I \rightarrow I$ & \verb'z=x|y' & bitwise logical OR \\
\verb'GrB_BAND_'$I$ & $I \times I \rightarrow I$ & \verb'z=x&y' & bitwise logical AND \\
\verb'GrB_BXOR_'$I$ & $I \times I \rightarrow I$ & \verb'z=x^y' & bitwise logical XOR \\
\verb'GrB_BXNOR_'$I$ & $I \times I \rightarrow I$ & \verb'z=~(x^y)' & bitwise logical XNOR \\
\hline
\verb'GxB_BGET_'$I$ & $I \times I \rightarrow I$ & & get bit y of x \\
\verb'GxB_BSET_'$I$ & $I \times I \rightarrow I$ & & set bit y of x \\
\verb'GxB_BCLR_'$I$ & $I \times I \rightarrow I$ & & clear bit y of x \\
\verb'GxB_BSHIFT_'$I$ & $I \times $\verb'int8'$ \rightarrow I$ & & bit shift \\
\hline
\end{tabular}
}
\vspace{0.2in}
There are two sets of built-in comparators in SuiteSparse:Graph\-BLAS,
but they are not redundant. They are identical except for the type (domain) of
their output, $z$. The \verb'GrB_EQ_'$T$ and related operators compare their
inputs of type $T$ and produce a Boolean result of true or false. The
\verb'GxB_ISEQ_'$T$ and related operators compute the same thing and produce a
result with same type $T$ as their input operands, returning one for true or
zero for false. The \verb'IS*' comparators are useful when combining
comparators with other non-Boolean operators. For example, a \verb'PLUS-ISEQ'
semiring counts how many terms are true. With this semiring,
matrix multiplication ${\bf C=AB}$ for two weighted undirected graphs ${\bf A}$
and ${\bf B}$ computes $c_{ij}$ as the number of edges node $i$ and $j$ have in
common that have identical edge weights. Since the output type of the
``multiplier'' operator in a semiring must match the type of its monoid, the
Boolean \verb'EQ' cannot be combined with a non-Boolean \verb'PLUS' monoid to
perform this operation.
Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and XOR
operators. Without the \verb'_'$T$ suffix, the three operators \verb'GrB_LOR',
\verb'GrB_LAND', and \verb'GrB_LXOR' operate purely in the Boolean domain,
where all input and output types are \verb'GrB_BOOL'. The second set
(\verb'GxB_LOR_'$T$ \verb'GxB_LAND_'$T$ and \verb'GxB_LXOR_'$T$) provides
Boolean operators to all 11 real domains, implicitly typecasting their inputs from
type $T$ to Boolean and returning a value of type $T$ that is 1 for true or
zero for false. The set of \verb'GxB_L*_'$T$ operators are useful since they
can be combined with non-Boolean monoids in a semiring.
Floating-point operations follow the IEEE 754 standard. Thus, computing $x/0$
for a floating-point $x$ results in \verb'+Inf' if $x$ is positive, \verb'-Inf'
if $x$ is negative, and \verb'NaN' if $x$ is zero. The application is not
terminated. However, integer division by zero normally terminates an
application. SuiteSparse:GraphBLAS avoids this by adopting the same rules as
MATLAB, which are analogous to how the IEEE standard handles floating-point
division by zero. For integers, when $x$ is positive, $x/0$ is the largest
positive integer, for negative $x$ it is the minimum integer, and 0/0 results
in zero. For example, for an integer $x$ of type \verb'GrB_INT32', 1/0 is
$2^{31}-1$ and (-1)/0 is $-2^{31}$. Refer to Section~\ref{type} for a list of
integer ranges.
Eight positional operators are predefined. They differ when used in a semiring
and when used in \verb'GrB_eWise*' and \verb'GrB_apply'. Positional operators
cannot be used in \verb'GrB_build', nor can they be used as the \verb'accum'
operator for any operation.
The positional binary operators do not depend on the type or numerical value of
their inputs, just their position in a matrix or vector. For a vector, $j$ is
always 0, and $i$ is the index into the vector. There are two types $N$
available: \verb'INT32' and \verb'INT64', which is the type of the output $z$.
User-defined positional operators cannot be defined by \verb'GrB_BinaryOp_new'.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Positional binary operators for any type (including user-defined)} \\
\multicolumn{4}{|c|}{when used as a multiplicative operator in a semiring} \\
\hline
GraphBLAS name & types (domains) & $z=f(a_{ik},b_{kj})$ & description \\
\hline
\verb'GxB_FIRSTI_'$N$ & $ \rightarrow N$ & $z = i$ & row index of $a_{ik}$ (0-based) \\
\verb'GxB_FIRSTI1_'$N$ & $ \rightarrow N$ & $z = i+1$ & row index of $a_{ik}$ (1-based) \\
\verb'GxB_FIRSTJ_'$N$ & $ \rightarrow N$ & $z = k$ & column index of $a_{ik}$ (0-based) \\
\verb'GxB_FIRSTJ1_'$N$ & $ \rightarrow N$ & $z = k+1$ & column index of $a_{ik}$ (1-based) \\
\verb'GxB_SECONDI_'$N$ & $ \rightarrow N$ & $z = k$ & row index of $b_{kj}$ (0-based) \\
\verb'GxB_SECONDI1_'$N$ & $ \rightarrow N$ & $z = k+1$ & row index of $b_{kj}$ (1-based) \\
\verb'GxB_SECONDJ_'$N$ & $ \rightarrow N$ & $z = j$ & column index of $b_{kj}$ (0-based) \\
\verb'GxB_SECONDJ1_'$N$ & $ \rightarrow N$ & $z = j+1$ & column index of $b_{kj}$ (1-based) \\
\hline
\end{tabular}
}
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Positional binary operators for any type (including user-defined)} \\
\multicolumn{4}{|c|}{when used in all other methods} \\
\hline
GraphBLAS name & types (domains) & $z=f(a_{ij},b_{ij})$ & description \\
\hline
\verb'GxB_FIRSTI_'$N$ & $ \rightarrow N$ & $z = i$ & row index of $a_{ij}$ (0-based) \\
\verb'GxB_FIRSTI1_'$N$ & $ \rightarrow N$ & $z = i+1$ & row index of $a_{ij}$ (1-based) \\
\verb'GxB_FIRSTJ_'$N$ & $ \rightarrow N$ & $z = j$ & column index of $a_{ij}$ (0-based) \\
\verb'GxB_FIRSTJ1_'$N$ & $ \rightarrow N$ & $z = j+1$ & column index of $a_{ij}$ (1-based) \\
\verb'GxB_SECONDI_'$N$ & $ \rightarrow N$ & $z = i$ & row index of $b_{ij}$ (0-based) \\
\verb'GxB_SECONDI1_'$N$ & $ \rightarrow N$ & $z = i+1$ & row index of $b_{ij}$ (1-based) \\
\verb'GxB_SECONDJ_'$N$ & $ \rightarrow N$ & $z = j$ & column index of $b_{ij}$ (0-based) \\
\verb'GxB_SECONDJ1_'$N$ & $ \rightarrow N$ & $z = j+1$ & column index of $b_{ij}$ (1-based) \\
\hline
\end{tabular}
}
\vspace{0.2in}
Finally, one special binary operator can only be used as input to
\verb'GrB_Matrix_build' or \verb'GrB_Vector_build': the \verb'GxB_IGNORE_DUP'
operator. If \verb'dup' is \verb'NULL', any duplicates in the \verb'GrB*build'
methods result in an error. If \verb'dup' is the special binary operator
\verb'GxB_IGNORE_DUP', then any duplicates are ignored. If duplicates appear,
the last one in the list of tuples is taken and the prior ones ignored. This
is not an error.
The next sections define the following methods for the \verb'GrB_BinaryOp'
object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_BinaryOp_new' & create a user-defined binary operator & \ref{binaryop_new} \\
\verb'GxB_BinaryOp_new' & create a named user-defined binary operator & \ref{binaryop_new_named} \\
\verb'GrB_BinaryOp_wait' & wait for a user-defined binary operator & \ref{binaryop_wait} \\
\verb'GxB_BinaryOp_ztype_name' & return the type of the output $z$ for $z=f(x,y)$ & \ref{binaryop_ztype_name} \\
\verb'GxB_BinaryOp_xtype_name' & return the type of the input $x$ for $z=f(x,y)$ & \ref{binaryop_xtype_name} \\
\verb'GxB_BinaryOp_ytype_name' & return the type of the input $y$ for $z=f(x,y)$ & \ref{binaryop_ytype_name} \\
\verb'GrB_BinaryOp_free' & free a user-defined binary operator & \ref{binaryop_free} \\
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_new:} create a user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_BinaryOp_new
(
GrB_BinaryOp *binaryop, // handle for the new binary operator
void *function, // pointer to the binary function
GrB_Type ztype, // type of output z
GrB_Type xtype, // type of input x
GrB_Type ytype // type of input y
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_BinaryOp_new' creates a new binary operator. The new operator is
returned in the \verb'binaryop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new binary operator.
The three types \verb'xtype', \verb'ytype', and \verb'ztype' are the GraphBLAS
types of the inputs $x$ and $y$, and output $z$ of the user-defined function
$z=f(x,y)$. These types may be built-in types or user-defined types, in any
combination. The three types need not be the same, but they must be previously
defined before passing them to \verb'GrB_BinaryOp_new'.
The final argument to \verb'GrB_BinaryOp_new' is a pointer to a user-defined
function with the following signature:
{\footnotesize
\begin{verbatim}
void (*f) (void *z, const void *x, const void *y) ; \end{verbatim} }
When the function \verb'f' is called, the arguments \verb'z', \verb'x', and
\verb'y' are passed as \verb'(void *)' pointers, but they will be pointers to
values of the correct type, defined by \verb'ztype', \verb'xtype', and
\verb'ytype', respectively, when the operator was created.
{\bf NOTE:} SuiteSparse:GraphBLAS may call the function with the pointers
\verb'z' and \verb'x' equal to one another, in which case \verb'z=f(z,y)'
should be computed. Future versions may use additional pointer aliasing.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_new:} create a named user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_new_named}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_new
(
GrB_BinaryOp *op, // handle for the new binary operator
GxB_binary_function function, // pointer to the binary function
GrB_Type ztype, // type of output z
GrB_Type xtype, // type of input x
GrB_Type ytype, // type of input y
const char *binop_name, // name of the user function
const char *binop_defn // definition of the user function
) ;
\end{verbatim} }\end{mdframed}
Creates a named \verb'GrB_BinaryOp'. Only the first 127 characters of
\verb'binop_name' are used. The \verb'binop_defn' is a string containing the
entire function itself. For example:
{\footnotesize
\begin{verbatim}
void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; } ;
...
GrB_Type AbsDiff ;
GxB_BinaryOp_new (&AbsDiff, absdiff, GrB_FP64, GrB_FP64, GrB_FP64, "absdiff",
"void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; }") ; \end{verbatim}}
Currently, only the \verb'binop_name' is used, but future versions will
rely on the \verb'binop_defn' when employing a JIT for better performance.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_wait:} wait for a binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a user-defined binary operator
(
GrB_BinaryOp binaryop, // binary operator to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined binary operator, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS currently does nothing for except to ensure that the
\verb'binaryop' is valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_ztype\_name:} return the name of the type of $z$}
%-------------------------------------------------------------------------------
\label{binaryop_ztype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_ztype_name // return the type_name of z
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_BinaryOp binaryop // binary operator to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_BinaryOp_ztype_name'
returns name of the \verb'ztype' of the binary operator, which is the
type of $z$ in the function $z=f(x,y)$.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_xtype\_name:} return the name of the type of $x$}
%-------------------------------------------------------------------------------
\label{binaryop_xtype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_xtype_name // return the type_name of x
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_BinaryOp binaryop // binary operator to query
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_BinaryOp_xtype_name'
returns name of the \verb'xtype' of the binary operator, which is the
type of $x$ in the function $z=f(x,y)$.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_ytype\_name:} return the name of the type of $y$}
%-------------------------------------------------------------------------------
\label{binaryop_ytype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_ytype_name // return the type_name of y
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_BinaryOp binaryop // binary operator to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_BinaryOp_ytype_name'
returns name of the \verb'ytype' of the binary operator, which is the
type of $y$ in the function $z=f(x,y)$.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_free:} free a user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created binary operator
(
GrB_BinaryOp *binaryop // handle of binary operator to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_BinaryOp_free' frees a user-defined binary operator.
Either usage:
{\small
\begin{verbatim}
GrB_BinaryOp_free (&op) ;
GrB_free (&op) ; \end{verbatim}}
\noindent
frees the \verb'op' and sets \verb'op' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'op == NULL' on input.
It does nothing at all if passed a built-in binary operator.
%-------------------------------------------------------------------------------
\subsubsection{{\sf ANY} and {\sf PAIR} ({\sf ONEB}) operators}
%-------------------------------------------------------------------------------
\label{any_pair}
The \verb'GxB_PAIR' operator (also called \verb'GrB_ONEB') is simple to describe:
just $f(x,y)=1$. It is called
the \verb'PAIR' operator since it returns $1$ in a semiring when a pair of
entries $a_{ik}$ and $b_{kj}$ is found in the matrix multiply. This operator
is simple yet very useful. It allows purely structural computations to be
performed on matrices of any type, without having to typecast them to Boolean
with all values being true. Typecasting need not be performed on the inputs to
the \verb'PAIR' operator, and the \verb'PAIR' operator does not need to access
the values of the matrix. This cuts memory accesses, so it is a very fast
operator to use.
The \verb'GxB_PAIR_T' operator is a SuiteSparse:GraphBLAS extension.
It has since been added to the v2.0 C API Specification as \verb'GrB_ONEB_T'.
They are identical, but the latter name should be used for compatibility
with other GraphBLAS libraries.
The \verb'ANY' operator is very unusual, but very powerful. It is the function
$f_{\mbox{any}}(x,y)=x$, or $y$, where GraphBLAS has to freedom to select
either $x$, or $y$, at its own discretion. Do not confuse the \verb'ANY'
operator with the \verb'any' function in MATLAB/Octave, which computes a reduction
using the logical OR operator.
The \verb'ANY' function is associative and commutative, and can thus serve as
an operator for a monoid. The selection of $x$ are $y$ is not randomized.
Instead, SuiteSparse:GraphBLAS uses this freedom to compute as fast a result as
possible. When used as the monoid in a dot product, \[ c_{ij} = \sum_k a_{ik}
b_{kj} \] for example, the computation can terminate as soon as any matching
pair of entries is found. When used in a parallel saxpy-style computation, the
\verb'ANY' operator allows for a relaxed form of synchronization to be used,
resulting in a fast benign race condition.
Because of this benign race condition, the result of the \verb'ANY' monoid can
be non-deterministic, unless it is coupled with the \verb'PAIR' multiplicative
operator. In this case, the \verb'ANY_PAIR' semiring will return a
deterministic result, since $f_{\mbox{any}}(1,1)$ is always 1.
When paired with a different operator, the results are non-deterministic. This
gives a powerful method when computing results for which any value selected by
the \verb'ANY' operator is valid. One such example is the breadth-first-search
tree. Suppose node $j$ is at level $v$, and there are multiple nodes $i$ at
level $v-1$ for which the edge $(i,j)$ exists in the graph. Any of these nodes
$i$ can serve as a valid parent in the BFS tree. Using the \verb'ANY'
operator, GraphBLAS can quickly compute a valid BFS tree; if it used again on
the same inputs, it might return a different, yet still valid, BFS tree, due to
the non-deterministic nature of intra-thread synchronization.
\newpage
%===============================================================================
\subsection{GraphBLAS IndexUnaryOp operators: {\sf GrB\_IndexUnaryOp}} %========
%===============================================================================
\label{idxunop}
An index-unary operator is a scalar function of the form
$z=f(a_{ij},i,j,y)$ that is applied to the entries $a_{ij}$ of an
$m$-by-$n$ matrix. It can be used in \verb'GrB_apply' (Section~\ref{apply}) or
in \verb'GrB_select' (Section~\ref{select}) to select entries from a matrix or
vector.
The signature of the index-unary function \verb'f' is as follows:
{\footnotesize
\begin{verbatim}
void f
(
void *z, // output value z, of type ztype
const void *x, // input value x of type xtype; value of v(i) or A(i,j)
GrB_Index i, // row index of A(i,j)
GrB_Index j, // column index of A(i,j), or zero for v(i)
const void *y // input scalar y
) ; \end{verbatim}}
The following built-in operators are available. Operators that do not depend
on the value of \verb'A(i,j)' can be used on any matrix or vector, including
those of user-defined type. In the table, \verb'y' is a
scalar whose type matches the suffix of the operator. The \verb'VALUEEQ' and
\verb'VALUENE' operators are defined for any built-in type. The other
\verb'VALUE' operators are defined only for real (not complex) built-in types.
Any index computations are done in \verb'int64_t' arithmetic; the result is
typecasted to \verb'int32_t' for the \verb'*INDEX_INT32' operators.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS name & MATLAB/Octave & description \\
& analog & \\
\hline
\verb'GrB_ROWINDEX_INT32' & \verb'z=i+y' & row index of \verb'A(i,j)', as int32 \\
\verb'GrB_ROWINDEX_INT64' & \verb'z=i+y' & row index of \verb'A(i,j)', as int64 \\
\verb'GrB_COLINDEX_INT32' & \verb'z=j+y' & column index of \verb'A(i,j)', as int32 \\
\verb'GrB_COLINDEX_INT64' & \verb'z=j+y' & column index of \verb'A(i,j)', as int64 \\
\verb'GrB_DIAGINDEX_INT32' & \verb'z=j-(i+y)' & column diagonal index of \verb'A(i,j)', as int32 \\
\verb'GrB_DIAGINDEX_INT64' & \verb'z=j-(i+y)' & column diagonal index of \verb'A(i,j)', as int64 \\
\hline
\verb'GrB_TRIL' & \verb'z=(j<=(i+y))' & true for entries on or below the \verb'y'th diagonal \\
\verb'GrB_TRIU' & \verb'z=(j>=(i+y))' & true for entries on or above the \verb'y'th diagonal \\
\verb'GrB_DIAG' & \verb'z=(j==(i+y))' & true for entries on the \verb'y'th diagonal \\
\verb'GrB_OFFDIAG' & \verb'z=(j!=(i+y))' & true for entries not on the \verb'y'th diagonal \\
\verb'GrB_COLLE' & \verb'z=(j<=y)' & true for entries in columns 0 to \verb'y' \\
\verb'GrB_COLGT' & \verb'z=(j>y)' & true for entries in columns \verb'y+1' and above \\
\verb'GrB_ROWLE' & \verb'z=(i<=y)' & true for entries in rows 0 to \verb'y' \\
\verb'GrB_ROWGT' & \verb'z=(i>y)' & true for entries in rows \verb'y+1' and above \\
\hline
\verb'GrB_VALUENE_T' & \verb'z=(aij!=y)' & true if \verb'A(i,j)' is not equal to \verb'y'\\
\verb'GrB_VALUEEQ_T' & \verb'z=(aij==y)' & true if \verb'A(i,j)' is equal to \verb'y'\\
\verb'GrB_VALUEGT_T' & \verb'z=(aij>y)' & true if \verb'A(i,j)' is greater than \verb'y' \\
\verb'GrB_VALUEGE_T' & \verb'z=(aij>=y)' & true if \verb'A(i,j)' is greater than or equal to \verb'y' \\
\verb'GrB_VALUELT_T' & \verb'z=(aij<y)' & true if \verb'A(i,j)' is less than \verb'y' \\
\verb'GrB_VALUELE_T' & \verb'z=(aij<=y)' & true if \verb'A(i,j)' is less than or equal to \verb'y' \\
%
\hline
\end{tabular}
}
\vspace{0.2in}
The following methods operate on the \verb'GrB_IndexUnaryOp' object:
\vspace{0.1in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_IndexUnaryOp_new' & create a user-defined index-unary operator & \ref{idxunop_new} \\
\verb'GxB_IndexUnaryOp_new' & create a named user-defined index-unary operator & \ref{idxunop_new_named} \\
\verb'GrB_IndexUnaryOp_wait' & wait for a user-defined index-unary operator & \ref{idxunop_wait} \\
\verb'GrB_IndexUnaryOp_ztype_name' & return the type of the output $z$ & \ref{idxunop_ztype_name} \\
\verb'GrB_IndexUnaryOp_xtype_name' & return the type of the input $x$ & \ref{idxunop_xtype_name} \\
\verb'GrB_IndexUnaryOp_ytype_name' & return the type of the scalar $y$ & \ref{idxunop_ytype_name} \\
\verb'GrB_IndexUnaryOp_free' & free a user-defined index-unary operator & \ref{idxunop_free} \\
\hline
\end{tabular}
}
\vspace{0.1in}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_IndexUnaryOp\_new:} create a user-defined index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_IndexUnaryOp_new // create a new user-defined IndexUnary op
(
GrB_IndexUnaryOp *op, // handle for the new IndexUnary operator
void *function, // pointer to IndexUnary function
GrB_Type ztype, // type of output z
GrB_Type xtype, // type of input x (the A(i,j) entry)
GrB_Type ytype // type of scalar input y
) ;
\end{verbatim} }\end{mdframed}
\verb'GrB_IndexUnaryOp_new' creates a new index-unary operator. The new operator is
returned in the \verb'op' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new index-unary operator.
The \verb'function' argument to \verb'GrB_IndexUnaryOp_new' is a pointer to a
user-defined function whose signature is given at the beginning of
Section~\ref{idxunop}. Given the properties of an entry $a_{ij}$ in a
matrix, the \verb'function' should return \verb'z' as \verb'true' if the entry
should be kept in the output of \verb'GrB_select', or \verb'false' if it should
not appear in the output. If the return value is not \verb'GrB_BOOL',
it is typecasted to \verb'GrB_BOOL' by \verb'GrB_select'.
The type \verb'xtype' is the GraphBLAS type of the input $x$ of the
user-defined function $z=f(x,i,j,y)$, which is used for the
entry \verb'A(i,j)' of a matrix or \verb'v(i)' of a vector. The type may be
built-in or user-defined.
The type \verb'ytype' is the GraphBLAS type of the scalar input $y$ of the
user-defined function $z=f(x,i,j,y)$. The type may be built-in
or user-defined.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_new:} create a named user-defined index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_new_named}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_new // create a named user-created IndexUnaryOp
(
GrB_IndexUnaryOp *op, // handle for the new IndexUnary operator
GxB_index_unary_function function, // pointer to index_unary function
GrB_Type ztype, // type of output z
GrB_Type xtype, // type of input x
GrB_Type ytype, // type of scalar input y
const char *idxop_name, // name of the user function
const char *idxop_defn // definition of the user function
) ;
\end{verbatim} }\end{mdframed}
Creates a named \verb'GrB_IndexUnaryOp'. Only the first 127 characters of
\verb'idxop_name' are used. The \verb'ixdop_defn' is a string containing the
entire function itself. Currently, only the \verb'idxop_name' is used, but
future versions will rely on the \verb'idxop_defn' when employing a JIT for
better performance.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_IndexUnaryOp\_wait:} wait for an index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a user-defined binary operator
(
GrB_IndexUnaryOp op, // index-unary operator to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined select operator, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the
\verb'op' is valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_ztype\_name:} return the name of the type of $z$}
%-------------------------------------------------------------------------------
\label{idxunop_ztype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_ztype_name // return the type_name of x
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_IndexUnaryOp op // index-unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_IndexUnaryOp_ztype_name' returns the \verb'ztype' of the index-unary
operator, which is the type of $z$ in the function $z=f(x,i,j,y)$.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_xtype\_name:} return the name of the type of $x$}
%-------------------------------------------------------------------------------
\label{idxunop_xtype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_xtype_name // return the type_name of x
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_IndexUnaryOp op // index-unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_IndexUnaryOp_xtype_name' returns the \verb'xtype' of the index-unary
operator, which is the type of $x$ in the function $z=f(x,i,j,y)$.
This input is used for the entry \verb'A(i,j)' of a matrix or \verb'v(i)' of a
vector.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_ytype\_name:} return the name of the type of scalar $y$}
%-------------------------------------------------------------------------------
\label{idxunop_ytype_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_ytype_name // return the type_name of the scalar y
(
char *type_name, // user array of size GxB_MAX_NAME_LEN
const GrB_IndexUnaryOp op // index-unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_IndexUnaryOp_ytype_name' returns the \verb'ytype' of the index-unary
operator, which is the type of the scalar y in the function $z=f(x,i,j,y)$.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_IndexUnaryOp\_free:} free a user-defined index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created index-unary operator
(
GrB_IndexUnaryOp *op // handle of IndexUnary to free
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_IndexUnaryOp_free' frees a user-defined index-unary operator. Either usage:
{\small
\begin{verbatim}
GrB_IndexUnaryOp_free (&op) ;
GrB_free (&op) ; \end{verbatim}}
\noindent
frees the \verb'op' and sets \verb'op' to \verb'NULL'. It safely
does nothing if passed a \verb'NULL' handle, or if \verb'op == NULL' on
input. It does nothing at all if passed a built-in index-unary operator.
\newpage
%===============================================================================
\subsection{GraphBLAS monoids: {\sf GrB\_Monoid}} %=============================
%===============================================================================
\label{monoid}
A {\em monoid} is defined on a single domain (that is, a single type), $T$. It
consists of an associative binary operator $z=f(x,y)$ whose three operands $x$,
$y$, and $z$ are all in this same domain $T$ (that is $T \times T \rightarrow
T$). The operator must also have an identity element, or ``zero'' in this
domain, such that $f(x,0)=f(0,x)=x$. Recall that an associative operator
$f(x,y)$ is one for which the condition $f(a, f(b,c)) = f(f (a,b),c)$ always
holds. That is, operator can be applied in any order and the results remain
the same. If used in a semiring, the operator must also be commutative.
The 77 predefined monoids are listed in the table below, which
includes nearly all monoids that can be constructed from built-in binary
operators. A few additional monoids can be defined with \verb'GrB_Monoid_new'
using built-in operators, such as bitwise monoids for signed integers.
Recall that $T$ denotes any built-in type (including boolean, integer, floating
point real, and complex), $R$ denotes any non-complex type (including bool),
$I$ denotes any integer type, and $Z$ denotes any complex type. Let $S$ denote
the 10 non-boolean real types. Let $U$ denote all unsigned integer types.
The table lists the GraphBLAS monoid, its type, expression, identity
value, and {\em terminal} value (if any). For these built-in monoids, the
terminal values are the {\em annihilators} of the function, which is the value
$z$ so that $z=f(z,y)$ regardless of the value of $y$. For example
$\min(-\infty,y) = -\infty$ for any $y$. For integer domains, $+\infty$ and
$-\infty$ are the largest and smallest integer in their range. With unsigned
integers, the smallest value is zero, and thus \verb'GrB_MIN_MONOID_UINT8' has an
identity of 255 and a terminal value of 0.
When computing with a monoid, the computation can terminate early if the
terminal value arises. No further work is needed since the result will not
change. This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator. See Section~\ref{monoid_terminal_new} for an example.
The \verb'GxB_ANY_*' monoid can terminate as soon as it finds any value at all.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lllll}
\hline
GraphBLAS & types (domains) & expression & identity & terminal \\
operator & & $z=f(x,y)$ & & \\
\hline
% numeric SxS -> S
\verb'GrB_PLUS_MONOID_'$S$ & $S \times S \rightarrow S$ & $z = x+y$ & 0 & none \\
\verb'GrB_TIMES_MONOID_'$S$ & $S \times S \rightarrow S$ & $z = xy$ & 1 & 0 or none (see note) \\
\verb'GrB_MIN_MONOID_'$S$ & $S \times S \rightarrow S$ & $z = \min(x,y)$ & $+\infty$ & $-\infty$ \\
\verb'GrB_MAX_MONOID_'$S$ & $S \times S \rightarrow S$ & $z = \max(x,y)$ & $-\infty$ & $+\infty$ \\
\hline
% complex ZxZ -> Z
\verb'GxB_PLUS_'$Z$\verb'_MONOID' & $Z \times Z \rightarrow Z$ & $z = x+y$ & 0 & none \\
\verb'GxB_TIMES_'$Z$\verb'_MONOID' & $Z \times Z \rightarrow Z$ & $z = xy$ & 1 & none \\
\hline
% any TxT -> T
\verb'GxB_ANY_'$T$\verb'_MONOID' & $T \times T \rightarrow T$ & $z = x$ or $y$ & any & any \\
\hline
% bool x bool -> bool
\verb'GrB_LOR_MONOID' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \vee y $ & false & true \\
\verb'GrB_LAND_MONOID' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \wedge y $ & true & false \\
\verb'GrB_LXOR_MONOID' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \veebar y $ & false & none \\
\verb'GrB_LXNOR_MONOID' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z =(x == y)$ & true & none \\
\hline
% bitwise: UxU -> U
\verb'GxB_BOR_'$U$\verb'_MONOID' & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x|y' & all bits zero & all bits one \\
\verb'GxB_BAND_'$U$\verb'_MONOID' & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x&y' & all bits one & all bits zero \\
\verb'GxB_BXOR_'$U$\verb'_MONOID' & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x^y' & all bits zero & none \\
\verb'GxB_BXNOR_'$U$\verb'_MONOID' & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=~(x^y)' & all bits one & none \\
\hline
\end{tabular}
}
\vspace{0.2in}
% 40: (min,max,+,*) x (int8,16,32,64, uint8,16,32,64, fp32, fp64)
The C API Specification includes 44 predefined monoids, with the naming
convention \verb'GrB_op_MONOID_type'. Forty monoids are available for the four
operators \verb'MIN', \verb'MAX', \verb'PLUS', and \verb'TIMES', each with the
10 non-boolean real types. Four boolean monoids are predefined:
\verb'GrB_LOR_MONOID_BOOL', \verb'GrB_LAND_MONOID_BOOL',
\verb'GrB_LXOR_MONOID_BOOL', and \verb'GrB_LXNOR_MONOID_BOOL'.
% 13 ANY
% 4 complex (PLUS, TIMES)
% 16 bitwise
% 33 total
These all appear in SuiteSparse:GraphBLAS, which adds 33 additional predefined
\verb'GxB*' monoids, with the naming convention \verb'GxB_op_type_MONOID'. The
\verb'ANY' operator can be used for all 13 types (including complex). The
\verb'PLUS' and \verb'TIMES' operators are provided for both complex types, for
4 additional complex monoids. Sixteen monoids are predefined for four bitwise
operators (\verb'BOR', \verb'BAND', \verb'BXOR', and \verb'BNXOR'), each with
four unsigned integer types (\verb'UINT8', \verb'UINT16', \verb'UINT32', and
\verb'UINT64').
{\bf NOTE:}
The \verb'GrB_TIMES_FP*' operators do not have a terminal value of zero, since
they comply with the IEEE 754 standard, and \verb'0*NaN' is not zero, but
\verb'NaN'. Technically, their terminal value is \verb'NaN', but this value is
rare in practice and thus the terminal condition is not worth checking.
The next sections define the following methods for the \verb'GrB_Monoid'
object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Monoid_new' & create a user-defined monoid & \ref{monoid_new} \\
\verb'GrB_Monoid_wait' & wait for a user-defined monoid & \ref{monoid_wait} \\
\verb'GxB_Monoid_terminal_new' & create a monoid that has a terminal value & \ref{monoid_terminal_new} \\
\verb'GxB_Monoid_operator' & return the monoid operator & \ref{monoid_operator} \\
\verb'GxB_Monoid_identity' & return the monoid identity value & \ref{monoid_identity} \\
\verb'GxB_Monoid_terminal' & return the monoid terminal value (if any) & \ref{monoid_terminal} \\
\verb'GrB_Monoid_free' & free a monoid & \ref{monoid_free} \\
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_new:} create a monoid}
%-------------------------------------------------------------------------------
\label{monoid_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Monoid_new // create a monoid
(
GrB_Monoid *monoid, // handle of monoid to create
GrB_BinaryOp op, // binary operator of the monoid
<type> identity // identity value of the monoid
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Monoid_new' creates a monoid. The operator, \verb'op', must be an
associative binary operator, either built-in or user-defined.
In the definition above, \verb'<type>' is a place-holder for the specific type
of the monoid. For built-in types, it is the C type corresponding to the
built-in type (see Section~\ref{type}), such as \verb'bool', \verb'int32_t',
\verb'float', or \verb'double'. In this case, \verb'identity' is a
scalar value of the particular type, not a pointer. For
user-defined types, \verb'<type>' is \verb'void *', and thus \verb'identity' is
a not a scalar itself but a \verb'void *' pointer to a memory location
containing the identity value of the user-defined operator, \verb'op'.
If \verb'op' is a built-in operator with a known identity value, then the
\verb'identity' parameter is ignored, and its known identity value is used
instead.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_wait:} wait for a monoid}
%-------------------------------------------------------------------------------
\label{monoid_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a user-defined monoid
(
GrB_Monoid monoid, // monoid to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined monoid, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the \verb'monoid' is valid.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal\_new:} create a monoid with terminal}
%-------------------------------------------------------------------------------
\label{monoid_terminal_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal_new // create a monoid that has a terminal value
(
GrB_Monoid *monoid, // handle of monoid to create
GrB_BinaryOp op, // binary operator of the monoid
<type> identity, // identity value of the monoid
<type> terminal // terminal value of the monoid
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_terminal_new' is identical to \verb'GrB_Monoid_new', except
that it allows for the specification of a {\em terminal value}. The
\verb'<type>' of the terminal value is the same as the \verb'identity'
parameter; see Section~\ref{monoid_new} for details.
The terminal value of a monoid is the value $z$ for which $z=f(z,y)$ for any
$y$, where $z=f(x,y)$ is the binary operator of the monoid. This is also
called the {\em annihilator}, but the term {\em terminal value} is used here.
This is because all annihilators are terminal values, but a terminal value need
not be an annihilator, as described in the \verb'MIN' example below.
If the terminal value is encountered during computation, the rest of the
computations can be skipped. This can greatly improve the performance of
\verb'GrB_reduce', and matrix multiply in specific cases (when a dot product
method is used). For example, using \verb'GrB_reduce' to compute the sum of
all entries in a \verb'GrB_FP32' matrix with $e$ entries takes $O(e)$ time,
since a monoid based on \verb'GrB_PLUS_FP32' has no terminal value. By
contrast, a reduction using \verb'GrB_LOR' on a \verb'GrB_BOOL' matrix can take
as little as $O(1)$ time, if a \verb'true' value is found in the matrix very
early.
Monoids based on the built-in \verb'GrB_MIN_*' and \verb'GrB_MAX_*' operators
(for any type), the boolean \verb'GrB_LOR', and the boolean \verb'GrB_LAND'
operators all have terminal values. For example, the identity value of
\verb'GrB_LOR' is \verb'false', and its terminal value is \verb'true'. When
computing a reduction of a set of boolean values to a single value, once a
\verb'true' is seen, the computation can exit early since the result is now
known.
If \verb'op' is a built-in operator with known identity and terminal values,
then the \verb'identity' and \verb'terminal' parameters are ignored, and its
known identity and terminal values are used instead.
There may be cases in which the user application needs to use a non-standard
terminal value for a built-in operator. For example, suppose the matrix has
type \verb'GrB_FP32', but all values in the matrix are known to be
non-negative. The annihilator value of \verb'MIN' is \verb'-INFINITY', but
this will never be seen. However, the computation could terminate when
finding the value zero. This is an example of using a terminal value that is
not actually an annihilator, but it functions like one since the monoid will
operate strictly on non-negative values.
In this case, a monoid created with \verb'GrB_MIN_FP32' will not terminate
early, because the identity and terminal inputs are ignored when using
\verb'GrB_Monoid_new' with a built-in operator as its input.
To create a monoid that can terminate early, create a user-defined operator
that computes the same thing as \verb'GrB_MIN_FP32', and then create a monoid
based on this user-defined operator with a terminal value of zero and an
identity of \verb'+INFINITY'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_operator:} return the monoid operator}
%-------------------------------------------------------------------------------
\label{monoid_operator}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_operator // return the monoid operator
(
GrB_BinaryOp *op, // returns the binary op of the monoid
GrB_Monoid monoid // monoid to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_operator' returns the binary operator of the monoid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_identity:} return the monoid identity}
%-------------------------------------------------------------------------------
\label{monoid_identity}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_identity // return the monoid identity
(
void *identity, // returns the identity of the monoid
GrB_Monoid monoid // monoid to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_identity' returns the identity value of the monoid. The
\verb'void *' pointer, \verb'identity', must be non-\verb'NULL' and must point
to a memory space of size at least equal to the size of the type of the
\verb'monoid'. The type size can be obtained via \verb'GxB_Monoid_operator' to
return the monoid additive operator, then \verb'GxB_BinaryOp_ztype' to obtain
the \verb'ztype', followed by \verb'GxB_Type_size' to get its size.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal:} return the monoid terminal value}
%-------------------------------------------------------------------------------
\label{monoid_terminal}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal // return the monoid terminal
(
bool *has_terminal, // true if the monoid has a terminal value
void *terminal, // returns the terminal of the monoid
GrB_Monoid monoid // monoid to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_terminal' returns the terminal value of the monoid (if any).
The \verb'void *' pointer, \verb'terminal', must be non-\verb'NULL' and must
point to a memory space of size at least equal to the size of the type of the
\verb'monoid'. The type size can be obtained via \verb'GxB_Monoid_operator' to
return the monoid additive operator, then \verb'GxB_BinaryOp_ztype' to obtain
the \verb'ztype', followed by \verb'GxB_Type_size' to get its size.
If the monoid has a terminal value, then \verb'has_terminal' is \verb'true',
and its value is returned in the \verb'terminal' parameter. If it has no
terminal value, then \verb'has_terminal' is \verb'false', and the
\verb'terminal' parameter is not modified.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_free:} free a monoid}
%-------------------------------------------------------------------------------
\label{monoid_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created monoid
(
GrB_Monoid *monoid // handle of monoid to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Monoid_frees' frees a monoid. Either usage:
{\small
\begin{verbatim}
GrB_Monoid_free (&monoid) ;
GrB_free (&monoid) ; \end{verbatim}}
\noindent
frees the \verb'monoid' and sets \verb'monoid' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'monoid == NULL' on input.
It does nothing at all if passed a built-in monoid.
\newpage
%===============================================================================
\subsection{GraphBLAS semirings: {\sf GrB\_Semiring}} %=========================
%===============================================================================
\label{semiring}
A {\em semiring} defines all the operators required to define the
multiplication of two sparse matrices in GraphBLAS, ${\bf C=AB}$. The ``add''
operator is a commutative and associative monoid, and the binary ``multiply''
operator defines a function $z=fmult(x,y)$ where the type of $z$ matches the
exactly with the monoid type. SuiteSparse:GraphBLAS includes 1,473 predefined
built-in semirings. The next sections define the following methods for the
\verb'GrB_Semiring' object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Semiring_new' & create a user-defined semiring & \ref{semiring_new} \\
\verb'GrB_Semiring_wait' & wait for a user-defined semiring & \ref{semiring_wait} \\
\verb'GxB_Semiring_add' & return the additive monoid of a semiring & \ref{semiring_add} \\
\verb'GxB_Semiring_multiply' & return the binary operator of a semiring & \ref{semiring_multiply} \\
\verb'GrB_Semiring_free' & free a semiring & \ref{semiring_free} \\
\hline
\end{tabular}
}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_new:} create a semiring}
%-------------------------------------------------------------------------------
\label{semiring_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Semiring_new // create a semiring
(
GrB_Semiring *semiring, // handle of semiring to create
GrB_Monoid add, // add monoid of the semiring
GrB_BinaryOp multiply // multiply operator of the semiring
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Semiring_new' creates a new semiring, with \verb'add' being the
additive monoid and \verb'multiply' being the binary ``multiply'' operator. In
addition to the standard error cases, the function returns
\verb'GrB_DOMAIN_MISMATCH' if the output (\verb'ztype') domain of
\verb'multiply' does not match the domain of the \verb'add' monoid.
The v2.0 C API Specification for GraphBLAS includes 124 predefined semirings,
with names of the form \verb'GrB_add_mult_SEMIRING_type', where \verb'add' is
the operator of the additive monoid, \verb'mult' is the multiply operator, and
\verb'type' is the type of the input $x$ to the multiply operator, $f(x,y)$.
The name of the domain for the additive monoid does not appear in the name,
since it always matches the type of the output of the \verb'mult' operator.
Twelve kinds of \verb'GrB*' semirings are available for all 10 real, non-boolean types:
\verb'PLUS_TIMES', \verb'PLUS_MIN',
\verb'MIN_PLUS', \verb'MIN_TIMES', \verb'MIN_FIRST', \verb'MIN_SECOND', \verb'MIN_MAX',
\verb'MAX_PLUS', \verb'MAX_TIMES', \verb'MAX_FIRST', \verb'MAX_SECOND', and \verb'MAX_MIN'.
Four semirings are for boolean types only:
\verb'LOR_LAND', \verb'LAND_LOR', \verb'LXOR_LAND', and \verb'LXNOR_LOR'.
SuiteSparse:GraphBLAS pre-defines 1,553 semirings from built-in types and
operators, listed below. The naming convention is \verb'GxB_add_mult_type'.
The 124 \verb'GrB*' semirings are a subset of the list below, included with two
names: \verb'GrB*' and \verb'GxB*'. If the \verb'GrB*' name is provided, its
use is preferred, for portability to other GraphBLAS implementations.
\vspace{-0.05in}
\begin{itemize}
\item 1000 semirings with a multiplier $T \times T \rightarrow T$ where $T$ is
any of the 10 non-Boolean, real types, from the complete cross product of:
\vspace{-0.05in}
\begin{itemize}
\item 5 monoids (\verb'MIN', \verb'MAX', \verb'PLUS', \verb'TIMES', \verb'ANY')
\item 20 multiply operators
(\verb'FIRST', \verb'SECOND', \verb'PAIR' (same as \verb'ONEB'),
\verb'MIN', \verb'MAX',
\verb'PLUS', \verb'MINUS', \verb'RMINUS', \verb'TIMES', \verb'DIV', \verb'RDIV',
\verb'ISEQ', \verb'ISNE', \verb'ISGT',
\verb'ISLT', \verb'ISGE', \verb'ISLE',
\verb'LOR', \verb'LAND', \verb'LXOR').
\item 10 non-Boolean types, $T$
\end{itemize}
\item 300 semirings with a comparator $T \times T \rightarrow$
\verb'bool', where $T$ is non-Boolean and real, from the complete cross product of:
\vspace{-0.05in}
\begin{itemize}
\item 5 Boolean monoids
(\verb'LAND', \verb'LOR', \verb'LXOR', \verb'EQ', \verb'ANY')
\item 6 multiply operators
(\verb'EQ', \verb'NE', \verb'GT', \verb'LT', \verb'GE', \verb'LE')
\item 10 non-Boolean types, $T$
\end{itemize}
\item 55 semirings with purely Boolean types, \verb'bool' $\times$ \verb'bool'
$\rightarrow$ \verb'bool', from the complete cross product of:
\vspace{-0.05in}
\begin{itemize}
\item 5 Boolean monoids
(\verb'LAND', \verb'LOR', \verb'LXOR', \verb'EQ', \verb'ANY')
\item 11 multiply operators
(\verb'FIRST', \verb'SECOND', \verb'PAIR' (same as \verb'ONEB'),
\verb'LOR', \verb'LAND', \verb'LXOR',
\verb'EQ', \verb'GT', \verb'LT', \verb'GE', \verb'LE')
\end{itemize}
\item 54 complex semirings, $Z \times Z \rightarrow Z$ where $Z$ is
\verb'GxB_FC32' (single precision complex) or
\verb'GxB_FC64' (double precision complex):
\vspace{-0.05in}
\begin{itemize}
\item 3 complex monoids (\verb'PLUS', \verb'TIMES', \verb'ANY')
\item 9 complex multiply operators
(\verb'FIRST', \verb'SECOND', \verb'PAIR' (same as \verb'ONEB'),
\verb'PLUS', \verb'MINUS',
\verb'TIMES', \verb'DIV', \verb'RDIV', \verb'RMINUS')
\item 2 complex types, $Z$
\end{itemize}
\item 64 bitwise semirings, $U \times U \rightarrow U$ where $U$ is
an unsigned integer.
\vspace{-0.05in}
\begin{itemize}
\item 4 bitwise monoids (\verb'BOR', \verb'BAND', \verb'BXOR', \verb'BXNOR')
\item 4 bitwise multiply operators (the same list)
\item 4 unsigned integer types
\end{itemize}
\item 80 positional semirings, $X \times X \rightarrow N$ where $N$ is
\verb'INT32' or \verb'INT64':
\vspace{-0.05in}
\begin{itemize}
\item 5 monoids (\verb'MIN', \verb'MAX', \verb'PLUS', \verb'TIMES', \verb'ANY')
\item 8 positional operators
(\verb'FIRSTI', \verb'FIRSTI1', \verb'FIRSTJ', \verb'FIRSTJ1',
\verb'SECONDI', \verb'SECONDI1', \verb'SECONDJ', \verb'SECONDJ1')
\item 2 integer types (\verb'INT32', \verb'INT64')
\end{itemize}
\end{itemize}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_wait:} wait for a semiring}
%-------------------------------------------------------------------------------
\label{semiring_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a user-defined semiring
(
GrB_Semiring semiring, // semiring to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined semiring, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the
\verb'semiring' is valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Semiring\_add:} return the additive monoid of a semiring}
%-------------------------------------------------------------------------------
\label{semiring_add}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_add // return the add monoid of a semiring
(
GrB_Monoid *add, // returns add monoid of the semiring
GrB_Semiring semiring // semiring to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Semiring_add' returns the additive monoid of a semiring.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Semiring\_multiply:} return multiply operator of a semiring}
%-------------------------------------------------------------------------------
\label{semiring_multiply}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_multiply // return multiply operator of a semiring
(
GrB_BinaryOp *multiply, // returns multiply operator of the semiring
GrB_Semiring semiring // semiring to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Semiring_multiply' returns the binary multiplicative operator of a
semiring.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_free:} free a semiring}
%-------------------------------------------------------------------------------
\label{semiring_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created semiring
(
GrB_Semiring *semiring // handle of semiring to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Semiring_free' frees a semiring. Either usage:
{\small
\begin{verbatim}
GrB_Semiring_free (&semiring) ;
GrB_free (&semiring) ; \end{verbatim}}
\noindent
frees the \verb'semiring' and sets \verb'semiring' to \verb'NULL'. It safely
does nothing if passed a \verb'NULL' handle, or if \verb'semiring == NULL' on
input. It does nothing at all if passed a built-in semiring.
\newpage
%===============================================================================
\subsection{GraphBLAS scalars: {\sf GrB\_Scalar}} %=============================
%===============================================================================
\label{scalar}
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS scalar, \verb'GrB_Scalar':
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Scalar_new' & create a scalar & \ref{scalar_new} \\
\verb'GrB_Scalar_wait' & wait for a scalar & \ref{scalar_wait} \\
\verb'GrB_Scalar_dup' & copy a scalar & \ref{scalar_dup} \\
\verb'GrB_Scalar_clear' & clear a scalar of its entry & \ref{scalar_clear} \\
\verb'GrB_Scalar_nvals' & return number of entries in a scalar & \ref{scalar_nvals} \\
\verb'GxB_Scalar_type_name' & return name of the type of a scalar & \ref{scalar_type_name} \\
\verb'GrB_Scalar_setElement' & set the single entry of a scalar & \ref{scalar_setElement} \\
\verb'GrB_Scalar_extractElement' & get the single entry from a scalar & \ref{scalar_extractElement} \\
\verb'GxB_Scalar_memoryUsage' & memory used by a scalar & \ref{scalar_memusage} \\
\verb'GrB_Scalar_free' & free a scalar & \ref{scalar_free} \\
\hline
\end{tabular}
}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_new:} create a scalar}
%-------------------------------------------------------------------------------
\label{scalar_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_new // create a new GrB_Scalar with no entry
(
GrB_Scalar *s, // handle of GrB_Scalar to create
GrB_Type type // type of GrB_Scalar to create
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Scalar_new' creates a new scalar with no
entry in it, of the given type. This is analogous to MATLAB/Octave statement
\verb's = sparse(0)', except that GraphBLAS can create scalars any
type. The pattern of the new scalar is empty.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_wait:} wait for a scalar}
%-------------------------------------------------------------------------------
\label{scalar_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a scalar
(
GrB_Scalar s, // scalar to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GrB_Scalar' may be delayed.
In this case, the scalar is not yet safe to use by multiple independent user
threads. A user application may force completion of a scalar \verb's' via
\verb'GrB_Scalar_wait(&s)' (in v5.2.0), or
\verb'GrB_Scalar_wait(s,mode)' (in v6.0.0).
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and different user threads may
simultaneously call GraphBLAS operations that use the scalar \verb's' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_dup:} copy a scalar}
%-------------------------------------------------------------------------------
\label{scalar_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_dup // make an exact copy of a GrB_Scalar
(
GrB_Scalar *s, // handle of output GrB_Scalar to create
const GrB_Scalar t // input GrB_Scalar to copy
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Scalar_dup' makes a deep copy of a scalar.
In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GrB_Scalar t, s ;
GrB_Scalar_new (&t, GrB_FP64) ;
s = t ; // s is a shallow copy of t \end{verbatim}}
Then \verb's' and \verb't' can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different scalars are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GrB_Scalar t, s ;
GrB_Scalar_new (&t, GrB_FP64) ;
GrB_Scalar_dup (&s, t) ; // like s = t, but making a deep copy \end{verbatim}}
Then \verb's' and \verb't' are two different scalars that currently have
the same value, but they do not depend on each other. Modifying one has no
effect on the other.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_clear:} clear a scalar of its entry}
%-------------------------------------------------------------------------------
\label{scalar_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_clear // clear a GrB_Scalar of its entry
( // type remains unchanged.
GrB_Scalar s // GrB_Scalar to clear
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Scalar_clear' clears the entry from a scalar. The pattern of
\verb's' is empty, just as if it were created fresh with \verb'GrB_Scalar_new'.
Analogous with \verb's = sparse (0)' in MATLAB/Octave. The type of \verb's' does not
change. Any pending updates to the scalar are discarded.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_nvals:} return the number of entries in a scalar}
%-------------------------------------------------------------------------------
\label{scalar_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_nvals // get the number of entries in a GrB_Scalar
(
GrB_Index *nvals, // GrB_Scalar has nvals entries (0 or 1)
const GrB_Scalar s // GrB_Scalar to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Scalar_nvals' returns the number of entries in a scalar, which
is either 0 or 1. Roughly analogous to \verb'nvals = nnz(s)' in MATLAB/Octave,
except that the implicit value in GraphBLAS need not be zero and \verb'nnz'
(short for ``number of nonzeros'') in MATLAB is better described as ``number of
entries'' in GraphBLAS.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_type\_name:} return name of the type of a scalar}
%-------------------------------------------------------------------------------
\label{scalar_type_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_type_name // return the name of the type of a scalar
(
char *type_name, // name of the type (char array of size at least
// GxB_MAX_NAME_LEN, owned by the user application).
const GrB_Scalar s // GrB_Scalar to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_type_name' returns the name of the type of a scalar.
Analogous to \verb'type = class (s)' in MATLAB.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_setElement:} set the single entry of a scalar}
%-------------------------------------------------------------------------------
\label{scalar_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_setElement // s = x
(
GrB_Scalar s, // GrB_Scalar to modify
<type> x // user scalar to assign to s
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Scalar_setElement' sets the single entry in a scalar, like
\verb's = sparse(x)' in MATLAB notation. For further details of this function,
see \verb'GrB_Matrix_setElement' in Section~\ref{matrix_setElement}.
If an error occurs, \verb'GrB_error(&err,s)' returns details about the error.
The scalar \verb'x' can be any non-opaque C scalar corresponding to
a built-in type, or \verb'void *' for a user-defined type. It cannot be
a \verb'GrB_Scalar'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_extractElement:} get the single entry from a scalar}
%-------------------------------------------------------------------------------
\label{scalar_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_extractElement // x = s
(
<type> *x, // user scalar extracted
const GrB_Scalar s // GrB_Sclar to extract an entry from
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Scalar_extractElement' extracts the single entry from a sparse
scalar, like \verb'x = full(s)' in MATLAB. Further details of this method are
discussed in Section~\ref{matrix_extractElement}, which discusses
\verb'GrB_Matrix_extractElement'. {\bf NOTE: } if no entry is present in the
scalar \verb's', then \verb'x' is not modified, and the return value of
\verb'GrB_Scalar_extractElement' is \verb'GrB_NO_VALUE'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_memoryUsage:} memory used by a scalar}
%-------------------------------------------------------------------------------
\label{scalar_memusage}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_memoryUsage // return # of bytes used for a scalar
(
size_t *size, // # of bytes used by the scalar s
const GrB_Scalar s // GrB_Scalar to query
) ;
\end{verbatim} } \end{mdframed}
Returns the memory space required for a scalar, in bytes.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_free:} free a scalar}
%-------------------------------------------------------------------------------
\label{scalar_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a GrB_Scalar
(
GrB_Scalar *s // handle of GrB_Scalar to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Scalar_free' frees a scalar. Either usage:
{\small
\begin{verbatim}
GrB_Scalar_free (&s) ;
GrB_free (&s) ; \end{verbatim}}
\noindent
frees the scalar \verb's' and sets \verb's' to \verb'NULL'. It safely
does nothing if passed a \verb'NULL' handle, or if \verb's == NULL' on input.
Any pending updates to the scalar are abandoned.
\newpage
%===============================================================================
\subsection{GraphBLAS vectors: {\sf GrB\_Vector}} %=============================
%===============================================================================
\label{vector}
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse vector, \verb'GrB_Vector':
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Vector_new' & create a vector & \ref{vector_new} \\
\verb'GrB_Vector_wait' & wait for a vector & \ref{vector_wait} \\
\verb'GrB_Vector_dup' & copy a vector & \ref{vector_dup} \\
\verb'GrB_Vector_clear' & clear a vector of all entries & \ref{vector_clear} \\
\verb'GrB_Vector_size' & size of a vector & \ref{vector_size} \\
\verb'GrB_Vector_nvals' & number of entries in a vector & \ref{vector_nvals} \\
\verb'GxB_Vector_type_name' & name of the type of a vector & \ref{vector_type_name} \\
\verb'GrB_Vector_build' & build a vector from tuples & \ref{vector_build} \\
\verb'GxB_Vector_build_Scalar' & build a vector from tuples & \ref{vector_build_Scalar} \\
\verb'GrB_Vector_setElement' & add an entry to a vector & \ref{vector_setElement} \\
\verb'GrB_Vector_extractElement' & get an entry from a vector & \ref{vector_extractElement} \\
\verb'GxB_Vector_isStoredElement'& check if entry present in vector & \ref{vector_isStoredElement} \\
\verb'GrB_Vector_removeElement' & remove an entry from a vector & \ref{vector_removeElement} \\
\verb'GrB_Vector_extractTuples' & get all entries from a vector & \ref{vector_extractTuples} \\
\verb'GrB_Vector_resize' & resize a vector & \ref{vector_resize} \\
\verb'GxB_Vector_diag' & extract a diagonal from a matrix & \ref{vector_diag} \\
\verb'GxB_Vector_iso' & query iso status & \ref{vector_iso} \\
\verb'GxB_Vector_memoryUsage' & memory used by a vector & \ref{vector_memusage} \\
\verb'GrB_Vector_free' & free a vector & \ref{vector_free} \\
\hline
\hline
% NOTE: GrB_Vector_serialize / deserialize does not appear in the 2.0 C API.
% \verb'GrB_Vector_serializeSize' & return size of serialized vector & \ref{vector_serialize_size} \\
% \verb'GrB_Vector_serialize' & serialize a vector & \ref{vector_serialize} \\
\verb'GxB_Vector_serialize' & serialize a vector & \ref{vector_serialize_GxB} \\
% \verb'GrB_Vector_deserialize' & deserialize a vector & \ref{vector_deserialize} \\
\verb'GxB_Vector_deserialize' & deserialize a vector & \ref{vector_deserialize_GxB} \\
\hline
\hline
\verb'GxB_Vector_pack_CSC' & pack in CSC format & \ref{vector_pack_csc} \\
\verb'GxB_Vector_unpack_CSC' & unpack in CSC format & \ref{vector_unpack_csc} \\
\hline
\verb'GxB_Vector_pack_Bitmap' & pack in bitmap format & \ref{vector_pack_bitmap} \\
\verb'GxB_Vector_unpack_Bitmap' & unpack in bitmap format & \ref{vector_unpack_bitmap} \\
\hline
\verb'GxB_Vector_pack_Full' & pack in full format & \ref{vector_pack_full} \\
\verb'GxB_Vector_unpack_Full' & unpack in full format & \ref{vector_unpack_full} \\
\hline
\hline
\verb'GxB_Vector_sort' & sort a vector & \ref{vector_sort} \\
\end{tabular}
}
\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods,
Section~\ref{pack_unpack} for pack/unpack methods,
and to
Section~\ref{sorting_methods} for sorting methods.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_new:} create a vector}
%-------------------------------------------------------------------------------
\label{vector_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_new // create a new vector with no entries
(
GrB_Vector *v, // handle of vector to create
GrB_Type type, // type of vector to create
GrB_Index n // vector dimension is n-by-1
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_new' creates a new \verb'n'-by-\verb'1' sparse vector with no
entries in it, of the given type. This is analogous to MATLAB/Octave statement
\verb'v = sparse (n,1)', except that GraphBLAS can create sparse vectors any
type. The pattern of the new vector is empty.
\begin{alert}
{\bf SPEC:} \verb'n' may be zero, as an extension to the specification.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_wait:} wait for a vector}
%-------------------------------------------------------------------------------
\label{vector_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a vector
(
GrB_Vector w, // vector to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GrB_Vector' may be delayed.
In this case, the vector is not yet safe to use by multiple independent user
threads. A user application may force completion of a vector \verb'w' via
\verb'GrB_Vector_wait(&w)' (in v5.2.0), or
\verb'GrB_Vector_wait(w,mode)' (in v6.0.0).
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and different user threads may
simultaneously call GraphBLAS operations that use the vector \verb'w' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_dup:} copy a vector}
%-------------------------------------------------------------------------------
\label{vector_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_dup // make an exact copy of a vector
(
GrB_Vector *w, // handle of output vector to create
const GrB_Vector u // input vector to copy
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_dup' makes a deep copy of a sparse vector.
In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GrB_Vector u, w ;
GrB_Vector_new (&u, GrB_FP64, n) ;
w = u ; // w is a shallow copy of u \end{verbatim}}
Then \verb'w' and \verb'u' can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different vectors are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GrB_Vector u, w ;
GrB_Vector_new (&u, GrB_FP64, n) ;
GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy \end{verbatim}}
Then \verb'w' and \verb'u' are two different vectors that currently have the
same set of values, but they do not depend on each other. Modifying one has
no effect on the other.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_clear:} clear a vector of all entries}
%-------------------------------------------------------------------------------
\label{vector_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_clear // clear a vector of all entries;
( // type and dimension remain unchanged.
GrB_Vector v // vector to clear
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_clear' clears all entries from a vector. All values
\verb'v(i)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the vector. The pattern of \verb'v' is
empty, just as if it were created fresh with \verb'GrB_Vector_new'. Analogous
with \verb'v (:) = sparse(0)' in MATLAB. The type and dimension of \verb'v' do
not change. Any pending updates to the vector are discarded.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_size:} return the size of a vector}
%-------------------------------------------------------------------------------
\label{vector_size}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_size // get the dimension of a vector
(
GrB_Index *n, // vector dimension is n-by-1
const GrB_Vector v // vector to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_size' returns the size of a vector (the number of rows).
Analogous to \verb'n = length(v)' or \verb'n = size(v,1)' in MATLAB.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_nvals:} return the number of entries in a vector}
%-------------------------------------------------------------------------------
\label{vector_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_nvals // get the number of entries in a vector
(
GrB_Index *nvals, // vector has nvals entries
const GrB_Vector v // vector to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_nvals' returns the number of entries in a vector. Roughly
analogous to \verb'nvals = nnz(v)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_type\_name:} return name of the type of a vector}
%-------------------------------------------------------------------------------
\label{vector_type_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_type_name // return the name of the type of a vector
(
char *type_name, // name of the type (char array of size at least
// GxB_MAX_NAME_LEN, owned by the user application).
const GrB_Vector v // vector to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_type_name' returns the name of the type of a vector.
Analogous to \verb'type = class (v)' in MATLAB.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_build:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build // build a vector from (I,X) tuples
(
GrB_Vector w, // vector to build
const GrB_Index *I, // array of row indices of tuples
const <type> *X, // array of values of tuples
GrB_Index nvals, // number of tuples
const GrB_BinaryOp dup // binary function to assemble duplicates
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_build' constructs a sparse vector \verb'w' from a set of
tuples, \verb'I' and \verb'X', each of length \verb'nvals'. The vector
\verb'w' must have already been initialized with \verb'GrB_Vector_new', and it
must have no entries in it before calling \verb'GrB_Vector_build'.
This function is just like \verb'GrB_Matrix_build' (see
Section~\ref{matrix_build}), except that it builds a sparse vector instead of a
sparse matrix. For a description of what \verb'GrB_Vector_build' does, refer
to \verb'GrB_Matrix_build'. For a vector, the list of column indices \verb'J'
in \verb'GrB_Matrix_build' is implicitly a vector of length \verb'nvals' all
equal to zero. Otherwise the methods are identical.
If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored. If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored. This is not an error.
\begin{alert}
{\bf SPEC:} Results are defined even if \verb'dup' is non-associative.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_build\_Scalar:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build_Scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_build_Scalar // build a vector from (i,scalar) tuples
(
GrB_Vector w, // vector to build
const GrB_Index *I, // array of row indices of tuples
GrB_Scalar scalar, // value for all tuples
GrB_Index nvals // number of tuples
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_build_Scalar' constructs a sparse vector \verb'w' from a set
of tuples defined by the index array \verb'I' of length \verb'nvals', and a
scalar. The scalar is the value of all of the tuples. Unlike
\verb'GrB_Vector_build', there is no \verb'dup' operator to handle duplicate
entries. Instead, any duplicates are silently ignored (if the number of
duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the vector is constructed). All
entries in the sparsity pattern of \verb'w' are identical, and equal to the
input scalar value.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_setElement:} add an entry to a vector}
%-------------------------------------------------------------------------------
\label{vector_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_setElement // w(i) = x
(
GrB_Vector w, // vector to modify
<type> x, // scalar to assign to w(i)
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_setElement' sets a single entry in a vector, \verb'w(i) = x'.
The operation is exactly like setting a single entry in an \verb'n'-by-1
matrix, \verb'A(i,0) = x', where the column index for a vector is implicitly
\verb'j=0'. For further details of this function, see
\verb'GrB_Matrix_setElement' in Section~\ref{matrix_setElement}.
If an error occurs, \verb'GrB_error(&err,w)' returns details about the error.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractElement:} get an entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractElement // x = v(i)
(
<type> *x, // scalar extracted (non-opaque, C scalar)
const GrB_Vector v, // vector to extract an entry from
GrB_Index i // index
) ;
GrB_Info GrB_Vector_extractElement // x = v(i)
(
GrB_Scalar x, // GrB_Scalar extracted
const GrB_Vector v, // vector to extract an entry from
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_extractElement' extracts a single entry from a vector,
\verb'x = v(i)'. The method is identical to extracting a single entry
\verb'x = A(i,0)' from an \verb'n'-by-1 matrix; see
Section~\ref{matrix_extractElement}.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_isStoredElement:} check if entry present in vector}
%-------------------------------------------------------------------------------
\label{vector_isStoredElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_isStoredElement
(
const GrB_Vector v, // check presence of entry v(i)
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_isStoredElement' checks if a single entry \verb'v(i)'
is present, returning \verb'GrB_SUCCESS' if the entry is present or
\verb'GrB_NO_VALUE' otherwise. The value of \verb'v(i)' is not returned.
See also Section~\ref{matrix_isStoredElement}.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_removeElement:} remove an entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_removeElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_removeElement
(
GrB_Vector w, // vector to remove an entry from
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_removeElement' removes a single entry \verb'w(i)' from a vector.
If no entry is present at \verb'w(i)', then the vector is not modified.
If an error occurs, \verb'GrB_error(&err,w)' returns details about the error.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractTuples:} get all entries from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractTuples}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)
(
GrB_Index *I, // array for returning row indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I, X size on input; # tuples on output
const GrB_Vector v // vector to extract tuples from
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_extractTuples' extracts all tuples from a sparse vector,
analogous to \verb'[I,~,X] = find(v)' in MATLAB/Octave. This function is
identical to its \verb'GrB_Matrix_extractTuples' counterpart, except that the
array of column indices \verb'J' does not appear in this function. Refer to
Section~\ref{matrix_extractTuples} where further details of this function are
described.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_resize:} resize a vector}
%-------------------------------------------------------------------------------
\label{vector_resize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_resize // change the size of a vector
(
GrB_Vector u, // vector to modify
GrB_Index nrows_new // new number of rows in vector
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_resize' changes the size of a vector. If the dimension
decreases, entries that fall outside the resized vector are deleted.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_diag:} extract a diagonal from a matrix}
%-------------------------------------------------------------------------------
\label{vector_diag}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_diag // extract a diagonal from a matrix
(
GrB_Vector v, // output vector
const GrB_Matrix A, // input matrix
int64_t k,
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_diag' extracts a vector \verb'v' from an input matrix
\verb'A', which may be rectangular. If \verb'k' = 0, the main diagonal of
\verb'A' is extracted; \verb'k' $> 0$ denotes diagonals above the main diagonal
of \verb'A', and \verb'k' $< 0$ denotes diagonals below the main diagonal of
\verb'A'. Let \verb'A' have dimension $m$-by-$n$. If \verb'k' is in the range
0 to $n-1$, then \verb'v' has length $\min(m,n-k)$. If \verb'k' is negative
and in the range -1 to $-m+1$, then \verb'v' has length $\min(m+k,n)$. If
\verb'k' is outside these ranges, \verb'v' has length 0 (this is not an error).
This function computes the same thing as the MATLAB/Octave statement
\verb'v=diag(A,k)' when \verb'A' is a matrix, except that
\verb'GxB_Vector_diag' can also do typecasting.
The vector \verb'v' must already exist on input, and
\verb'GrB_Vector_size (&len,v)' must return \verb'len' = 0 if \verb'k' $\ge n$
or \verb'k' $\le -m$, \verb'len' $=\min(m,n-k)$ if \verb'k' is in the range 0
to $n-1$, and \verb'len' $=\min(m+k,n)$ if \verb'k' is in the range -1 to
$-m+1$. Any existing entries in \verb'v' are discarded. The type of \verb'v'
is preserved, so that if the type of \verb'A' and \verb'v' differ, the entries
are typecasted into the type of \verb'v'. Any settings made to \verb'v' by
\verb'GxB_Vector_Option_set' (bitmap switch and sparsity control) are
unchanged.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_iso:} query iso status of a vector}
%-------------------------------------------------------------------------------
\label{vector_iso}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_iso // return iso status of a vector
(
bool *iso, // true if the vector is iso-valued
const GrB_Vector v // vector to query
) ;
\end{verbatim} } \end{mdframed}
Returns the true if the vector is iso-valued, false otherwise.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_memoryUsage:} memory used by a vector}
%-------------------------------------------------------------------------------
\label{vector_memusage}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_memoryUsage // return # of bytes used for a vector
(
size_t *size, // # of bytes used by the vector v
const GrB_Vector v // vector to query
) ;
\end{verbatim} } \end{mdframed}
Returns the memory space required for a vector, in bytes.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_free:} free a vector}
%-------------------------------------------------------------------------------
\label{vector_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a vector
(
GrB_Vector *v // handle of vector to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_free' frees a vector. Either usage:
{\small
\begin{verbatim}
GrB_Vector_free (&v) ;
GrB_free (&v) ; \end{verbatim}}
\noindent
frees the vector \verb'v' and sets \verb'v' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'v == NULL' on input. Any
pending updates to the vector are abandoned.
\newpage
%===============================================================================
\subsection{GraphBLAS matrices: {\sf GrB\_Matrix}} %============================
%===============================================================================
\label{matrix}
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse matrix, \verb'GrB_Matrix':
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Matrix_new' & create a matrix & \ref{matrix_new} \\
\verb'GrB_Matrix_wait' & wait for a matrix & \ref{matrix_wait} \\
\verb'GrB_Matrix_dup' & copy a matrix & \ref{matrix_dup} \\
\verb'GrB_Matrix_clear' & clear a matrix of all entries & \ref{matrix_clear} \\
\verb'GrB_Matrix_nrows' & number of rows of a matrix & \ref{matrix_nrows} \\
\verb'GrB_Matrix_ncols' & number of columns of a matrix & \ref{matrix_ncols} \\
\verb'GrB_Matrix_nvals' & number of entries in a matrix & \ref{matrix_nvals} \\
\verb'GxB_Matrix_type_name' & type of a matrix & \ref{matrix_type_name} \\
\verb'GrB_Matrix_build' & build a matrix from tuples & \ref{matrix_build} \\
\verb'GxB_Matrix_build_Scalar' & build a matrix from tuples & \ref{matrix_build_Scalar} \\
\verb'GrB_Matrix_setElement' & add an entry to a matrix & \ref{matrix_setElement} \\
\verb'GrB_Matrix_extractElement'& get an entry from a matrix & \ref{matrix_extractElement} \\
\verb'GxB_Matrix_isStoredElement'& check if entry present in matrix & \ref{matrix_isStoredElement} \\
\verb'GrB_Matrix_removeElement' & remove an entry from a matrix & \ref{matrix_removeElement} \\
\verb'GrB_Matrix_extractTuples' & get all entries from a matrix & \ref{matrix_extractTuples} \\
\verb'GrB_Matrix_resize' & resize a matrix & \ref{matrix_resize} \\
\verb'GxB_Matrix_concat' & concatenate matrices & \ref{matrix_concat} \\
\verb'GxB_Matrix_split' & split a matrix into matrices & \ref{matrix_split} \\
\verb'GrB_Matrix_diag' & diagonal matrix from vector & \ref{matrix_diag} \\
\verb'GxB_Matrix_diag' & diagonal matrix from vector & \ref{matrix_diag_GxB} \\
\verb'GxB_Matrix_iso' & query iso status & \ref{matrix_iso} \\
\verb'GxB_Matrix_memoryUsage' & memory used by a matrix & \ref{matrix_memusage} \\
\verb'GrB_Matrix_free' & free a matrix & \ref{matrix_free} \\
\hline
\hline
\verb'GrB_Matrix_serializeSize' & return size of serialized matrix & \ref{matrix_serialize_size} \\
\verb'GrB_Matrix_serialize' & serialize a matrix & \ref{matrix_serialize} \\
\verb'GxB_Matrix_serialize' & serialize a matrix & \ref{matrix_serialize_GxB} \\
\verb'GrB_Matrix_deserialize' & deserialize a matrix & \ref{matrix_deserialize} \\
\verb'GxB_Matrix_deserialize' & deserialize a matrix & \ref{matrix_deserialize_GxB} \\
\hline
\end{tabular}
}
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GxB_Matrix_pack_CSR' & pack CSR & \ref{matrix_pack_csr} \\
\verb'GxB_Matrix_unpack_CSR' & unpack CSR & \ref{matrix_unpack_csr} \\
\hline
\verb'GxB_Matrix_pack_CSC' & pack CSC & \ref{matrix_pack_csc} \\
\verb'GxB_Matrix_unpack_CSC' & unpack CSC & \ref{matrix_unpack_csc} \\
\hline
\verb'GxB_Matrix_pack_HyperCSR' & pack HyperCSR & \ref{matrix_pack_hypercsr} \\
\verb'GxB_Matrix_unpack_HyperCSR' & unpack HyperCSR & \ref{matrix_unpack_hypercsr} \\
\hline
\verb'GxB_Matrix_pack_HyperCSC' & pack HyperCSC & \ref{matrix_pack_hypercsc} \\
\verb'GxB_Matrix_unpack_HyperCSC' & unpack HyperCSC & \ref{matrix_unpack_hypercsc} \\
\hline
\verb'GxB_Matrix_pack_BitmapR' & pack BitmapR & \ref{matrix_pack_bitmapr} \\
\verb'GxB_Matrix_unpack_BitmapR' & unpack BitmapR & \ref{matrix_unpack_bitmapr} \\
\hline
\verb'GxB_Matrix_pack_BitmapC' & pack BitmapC & \ref{matrix_pack_bitmapc} \\
\verb'GxB_Matrix_unpack_BitmapC' & unpack BitmapC & \ref{matrix_unpack_bitmapc} \\
\hline
\verb'GxB_Matrix_pack_FullR' & pack FullR & \ref{matrix_pack_fullr} \\
\verb'GxB_Matrix_unpack_FullR' & unpack FullR & \ref{matrix_unpack_fullr} \\
\hline
\verb'GxB_Matrix_pack_FullC' & pack FullC & \ref{matrix_pack_fullc} \\
\verb'GxB_Matrix_unpack_FullC' & unpack FullC & \ref{matrix_unpack_fullc} \\
\hline
\hline
\verb'GrB_Matrix_import' & import in various formats & \ref{GrB_matrix_import} \\
\verb'GrB_Matrix_export' & export in various formats & \ref{GrB_matrix_export} \\
\verb'GrB_Matrix_exportSize' & array sizes for export & \ref{export_size} \\
\verb'GrB_Matrix_exportHint' & hint best export format & \ref{export_hint} \\
\hline
\hline
\verb'GxB_Matrix_sort' & sort a matrix & \ref{matrix_sort} \\
\hline
\end{tabular}
}
\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods,
Section~\ref{pack_unpack} for \verb'GxB'pack/unpack methods,
Section~\ref{GrB_import_export} for \verb'GrB' import/export methods,
and
Section~\ref{sorting_methods} for sorting methods.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_new:} create a matrix}
%-------------------------------------------------------------------------------
\label{matrix_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_new // create a new matrix with no entries
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_new' creates a new \verb'nrows'-by-\verb'ncols' sparse matrix
with no entries in it, of the given type. This is analogous to the MATLAB
statement \verb'A = sparse (nrows, ncols)', except that GraphBLAS can create
sparse matrices of any type.
By default, matrices of size \verb'nrows-by-1' are held by column, regardless
of the global setting controlled by \verb'GxB_set (GxB_FORMAT, ...)', for any
value of \verb'nrows'. Matrices of size \verb'1-by-ncols' with \verb'ncols'
not equal to 1 are held by row, regardless of this global setting. The global
setting only affects matrices with both \verb'm > 1' and \verb'n > 1'. Empty
matrices (\verb'0-by-0') are also controlled by the global setting.
Once a matrix is created, its format (by-row or by-column) can be arbitrarily
changed with \verb'GxB_set (A, GxB_FORMAT, fmt)' with \verb'fmt' equal to
\verb'GxB_BY_COL' or \verb'GxB_BY_ROW'.
\begin{alert}
{\bf SPEC:} \verb'nrows' and/or \verb'ncols' may be zero,
as an extension to the specification.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_wait:} wait for a matrix}
%-------------------------------------------------------------------------------
\label{matrix_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a matrix
(
GrB_Matrix C, // matrix to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GrB_Matrix' may be delayed.
In this case, the matrix is not yet safe to use by multiple independent user
threads. A user application may force completion of a matrix \verb'C' via
\verb'GrB_Matrix_wait(&C)' (in v5.2.0), or
\verb'GrB_Matrix_wait(C,mode)' (in v6.0.0).
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and different user threads may
simultaneously call GraphBLAS operations that use the matrix \verb'C' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.
%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GrB\_Matrix\_dup:} copy a matrix}
%-------------------------------------------------------------------------------
\label{matrix_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_dup // make an exact copy of a matrix
(
GrB_Matrix *C, // handle of output matrix to create
const GrB_Matrix A // input matrix to copy
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_dup' makes a deep copy of a sparse matrix.
In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
C = A ; // C is a shallow copy of A \end{verbatim}}
Then \verb'C' and \verb'A' can be used interchangeably. However, only a
pointer reference is made, and modifying one of them modifies both, and freeing
one of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy \end{verbatim}}
Then \verb'C' and \verb'A' are two different matrices that currently have the
same set of values, but they do not depend on each other. Modifying one has
no effect on the other.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_clear:} clear a matrix of all entries}
%-------------------------------------------------------------------------------
\label{matrix_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_clear // clear a matrix of all entries;
( // type and dimensions remain unchanged
GrB_Matrix A // matrix to clear
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_clear' clears all entries from a matrix. All values
\verb'A(i,j)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the matrix. The pattern of \verb'A' is
empty, just as if it were created fresh with \verb'GrB_Matrix_new'. Analogous
with \verb'A (:,:) = 0' in MATLAB. The type and dimensions of \verb'A' do not
change. Any pending updates to the matrix are discarded.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nrows:} return the number of rows of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nrows}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix
(
GrB_Index *nrows, // matrix has nrows rows
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_nrows' returns the number of rows of a matrix
(\verb'nrows=size(A,1)' in MATLAB).
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_ncols:} return the number of columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_ncols}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix
(
GrB_Index *ncols, // matrix has ncols columns
const GrB_Matrix A // matrix to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_ncols' returns the number of columns of a matrix
(\verb'ncols=size(A,2)' in MATLAB).
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nvals:} return the number of entries in a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix
(
GrB_Index *nvals, // matrix has nvals entries
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_nvals' returns the number of entries in a matrix. Roughly
analogous to \verb'nvals = nnz(A)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_type\_name:} return name of the type of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_type_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_type_name // return the name of the type of a matrix
(
char *type_name, // name of the type (char array of size at least
// GxB_MAX_NAME_LEN, owned by the user application).
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_type_name' returns the name of the type of a matrix, like
\verb'type=class(A)' in MATLAB.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_build:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Index *I, // array of row indices of tuples
const GrB_Index *J, // array of column indices of tuples
const <type> *X, // array of values of tuples
GrB_Index nvals, // number of tuples
const GrB_BinaryOp dup // binary function to assemble duplicates
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_build' constructs a sparse matrix \verb'C' from a set of
tuples, \verb'I', \verb'J', and \verb'X', each of length \verb'nvals'. The
matrix \verb'C' must have already been initialized with \verb'GrB_Matrix_new',
and it must have no entries in it before calling \verb'GrB_Matrix_build'. Thus
the dimensions and type of \verb'C' are not changed by this function, but are
inherited from the prior call to \verb'GrB_Matrix_new' or
\verb'GrB_matrix_dup'.
An error is returned (\verb'GrB_INDEX_OUT_OF_BOUNDS') if any row index in
\verb'I' is greater than or equal to the number of rows of \verb'C', or if any
column index in \verb'J' is greater than or equal to the number of columns of
\verb'C'
Any duplicate entries with identical indices are assembled using the binary
\verb'dup' operator provided on input. All three types (\verb'x', \verb'y',
\verb'z' for \verb'z=dup(x,y)') must be identical. The types of \verb'dup',
\verb'C' and \verb'X' must all be compatible. See Section~\ref{typecasting}
regarding typecasting and compatibility. The values in \verb'X' are
typecasted, if needed, into the type of \verb'dup'. Duplicates are then
assembled into a matrix \verb'T' of the same type as \verb'dup', using
\verb'T(i,j) = dup (T (i,j), X (k))'. After \verb'T' is constructed, it is
typecasted into the result \verb'C'. That is, typecasting does not occur at
the same time as the assembly of duplicates.
If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored. If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored. This is not an error.
\begin{alert}
{\bf SPEC:} As an extension to the specification, results are defined even if \verb'dup'
is non-associative.
\end{alert}
The GraphBLAS API requires \verb'dup' to be associative so
that entries can be assembled in any order, and states that the result is
undefined if \verb'dup' is not associative. However, SuiteSparse:GraphBLAS
guarantees a well-defined order of assembly. Entries in the tuples
\verb'[I,J,X]' are first sorted in increasing order of row and column index,
with ties broken by the position of the tuple in the \verb'[I,J,X]' list. If
duplicates appear, they are assembled in the order they appear in the
\verb'[I,J,X]' input. That is, if the same indices \verb'i' and \verb'j'
appear in positions \verb'k1', \verb'k2', \verb'k3', and \verb'k4' in
\verb'[I,J,X]', where \verb'k1 < k2 < k3 < k4', then the following operations
will occur in order:
{\footnotesize
\begin{verbatim}
T (i,j) = X (k1) ;
T (i,j) = dup (T (i,j), X (k2)) ;
T (i,j) = dup (T (i,j), X (k3)) ;
T (i,j) = dup (T (i,j), X (k4)) ; \end{verbatim}}
This is a well-defined order but the user should not depend upon it when using
other GraphBLAS implementations since the GraphBLAS API does not
require this ordering.
However, SuiteSparse:GraphBLAS guarantees this ordering, even when it compute
the result in parallel. With this well-defined order, several operators become
very useful. In particular, the \verb'SECOND' operator results in the last
tuple overwriting the earlier ones. The \verb'FIRST' operator means the value
of the first tuple is used and the others are discarded.
The acronym \verb'dup' is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the \verb'_dup'
suffix in the name of the function \verb'GrB_Matrix_dup'. The latter function
does not apply any operator at all, nor any typecasting, but simply makes a
pure deep copy of a matrix.
The parameter \verb'X' is a pointer to any C equivalent built-in type, or a
\verb'void *' pointer. The \verb'GrB_Matrix_build' function uses the
\verb'_Generic' feature of ANSI C11 to detect the type of pointer passed as the
parameter \verb'X'. If \verb'X' is a pointer to a built-in type, then the
function can do the right typecasting. If \verb'X' is a \verb'void *' pointer,
then it can only assume \verb'X' to be a pointer to a user-defined type that is
the same user-defined type of \verb'C' and \verb'dup'. This function has no
way of checking this condition that the \verb'void * X' pointer points to an
array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.
The \verb'GrB_Matrix_build' method is analogous to \verb'C = sparse (I,J,X)' in
MATLAB, with several important extensions that go beyond that which MATLAB can
do. In particular, the MATLAB \verb'sparse' function only provides one option
for assembling duplicates (summation), and it can only build double, double
complex, and logical sparse matrices.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Scalar:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_build_Scalar // build a matrix from (I,J,scalar) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Index *I, // array of row indices of tuples
const GrB_Index *J, // array of column indices of tuples
GrB_Scalar scalar, // value for all tuples
GrB_Index nvals // number of tuples
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_build_Scalar' constructs a sparse matrix \verb'C' from a set
of tuples defined the index arrays \verb'I' and \verb'J' of length
\verb'nvals', and a scalar. The scalar is the value of all of the tuples.
Unlike \verb'GrB_Matrix_build', there is no \verb'dup' operator to handle
duplicate entries. Instead, any duplicates are silently ignored (if the number
of duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the matrix is constructed). All
entries in the sparsity pattern of \verb'C' are identical, and equal to the
input scalar value.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_setElement:} add an entry to a matrix}
%-------------------------------------------------------------------------------
\label{matrix_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_setElement // C (i,j) = x
(
GrB_Matrix C, // matrix to modify
<type> x, // scalar to assign to C(i,j)
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_setElement' sets a single entry in a matrix, \verb'C(i,j)=x'.
If the entry is already present in the pattern of \verb'C', it is overwritten
with the new value. If the entry is not present, it is added to \verb'C'. In
either case, no entry is ever deleted by this function. Passing in a value of
\verb'x=0' simply creates an explicit entry at position \verb'(i,j)' whose
value is zero, even if the implicit value is assumed to be zero.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if the column index
\verb'j' is greater than or equal to the number of columns of \verb'C'. Note
that this error code differs from the same kind of condition in
\verb'GrB_Matrix_build', which returns \verb'GrB_INDEX_OUT_OF_BOUNDS'. This is
because \verb'GrB_INVALID_INDEX' is an API error, and is caught immediately
even in non-blocking mode, whereas \verb'GrB_INDEX_OUT_OF_BOUNDS' is an
execution error whose detection may wait until the computation completes
sometime later.
The scalar \verb'x' is typecasted into the type of \verb'C'. Any value can be
passed to this function and its type will be detected, via the \verb'_Generic'
feature of ANSI C11. For a user-defined type, \verb'x' is a \verb'void *'
pointer that points to a memory space holding a single entry of this
user-defined type. This user-defined type must exactly match the user-defined
type of \verb'C' since no typecasting is done between user-defined types.
%
If \verb'x' is a \verb'GrB_Scalar' and contains no entry, then the
entry \verb'C(i,j)' is removed (if it exists). The action taken is
identical to \verb'GrB_Matrix_removeElement(C,i,j)' in this case.
{\bf Performance considerations:} % BLOCKING: setElement, *assign
SuiteSparse:GraphBLAS exploits the non-blocking mode to greatly improve the
performance of this method. Refer to the example shown in
Section~\ref{overview}. If the entry exists in the pattern already, it is
updated right away and the work is not left pending. Otherwise, it is placed
in a list of pending updates, and the later on the updates are done all at
once, using the same algorithm used for \verb'GrB_Matrix_build'. In other
words, \verb'setElement' in SuiteSparse:GraphBLAS builds its own internal list
of tuples \verb'[I,J,X]', and then calls \verb'GrB_Matrix_build' whenever the
matrix is needed in another computation, or whenever \verb'GrB_Matrix_wait' is
called.
As a result, if calls to \verb'setElement' are mixed with calls to most other
methods and operations (even \verb'extractElement') then the pending updates
are assembled right away, which will be slow. Performance will be good if many
\verb'setElement' updates are left pending, and performance will be poor if the
updates are assembled frequently.
A few methods and operations can be intermixed with \verb'setElement', in
particular, some forms of the \verb'GrB_assign' and \verb'GxB_subassign'
operations are compatible with the pending updates from \verb'setElement'.
Section~\ref{compare_assign} gives more details on which \verb'GxB_subassign'
and \verb'GrB_assign' operations can be interleaved with calls to
\verb'setElement' without forcing updates to be assembled. Other methods that
do not access the existing entries may also be done without forcing the updates
to be assembled, namely \verb'GrB_Matrix_clear' (which erases all pending
updates), \verb'GrB_Matrix_free', \verb'GrB_Matrix_ncols',
\verb'GrB_Matrix_nrows', \verb'GxB_Matrix_type', and of course
\verb'GrB_Matrix_setElement' itself. All other methods and operations cause
the updates to be assembled. Future versions of SuiteSparse:GraphBLAS may
extend this list.
See Section~\ref{random} for an example of how to use
\verb'GrB_Matrix_setElement'.
If an error occurs, \verb'GrB_error(&err,C)' returns details about the error.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractElement:} get an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractElement // x = A(i,j)
(
<type> *x, // extracted scalar (non-opaque C scalar)
const GrB_Matrix A, // matrix to extract a scalar from
GrB_Index i, // row index
GrB_Index j // column index
) ;
GrB_Info GrB_Matrix_extractElement // x = A(i,j)
(
GrB_Scalar x, // extracted GrB_Scalar
const GrB_Matrix A, // matrix to extract a scalar from
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extractElement' extracts a single entry from a matrix
\verb'x=A(i,j)'.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.
If the entry is present, \verb'x=A(i,j)' is performed and the scalar \verb'x'
is returned with this value. The method returns \verb'GrB_SUCCESS'.
If no entry is present at \verb'A(i,j)', and \verb'x' is a non-opaque C scalar,
then \verb'x' is not modified, and the return value of
\verb'GrB_Matrix_extractElement' is \verb'GrB_NO_VALUE'. If \verb'x' is a
\verb'GrB_Scalar', then \verb'x' is returned as an empty scalar with no entry,
and \verb'GrB_SUCCESS' is returned.
The function knows the type of the pointer \verb'x', so it can do typecasting
as needed, from the type of \verb'A' into the type of \verb'x'. User-defined
types cannot be typecasted, so if \verb'A' has a user-defined type then
\verb'x' must be a \verb'void *' pointer that points to a memory space the same
size as a single scalar of the type of \verb'A'.
Currently, this method causes all pending updates from
\verb'GrB_setElement', \verb'GrB_assign', or \verb'GxB_subassign' to be
assembled, so its use can have performance implications. Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions. Everything will work correctly and results will be predictable, it
will just be slow.
%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GxB\_Matrix\_isStoredElement:} check if entry present in matrix}
%-------------------------------------------------------------------------------
\label{matrix_isStoredElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_isStoredElement
(
const GrB_Matrix A, // check for A(i,j)
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_isStoredElement' check if the single entry \verb'A(i,j)' is
present in the matrix \verb'A'. It returns \verb'GrB_SUCCESS' if the entry is
present, or \verb'GrB_NO_VALUE' otherwise. The value of \verb'A(i,j)' is not
returned. It is otherwise identical to \verb'GrB_Matrix_extractElement'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_removeElement:} remove an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_removeElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_removeElement
(
GrB_Matrix C, // matrix to remove an entry from
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_removeElement' removes a single entry \verb'A(i,j)' from a
matrix. If no entry is present at \verb'A(i,j)', then the matrix is not
modified. If an error occurs, \verb'GrB_error(&err,A)' returns details about
the error.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractTuples:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)
(
GrB_Index *I, // array for returning row indices of tuples
GrB_Index *J, // array for returning col indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I,J,X size on input; # tuples on output
const GrB_Matrix A // matrix to extract tuples from
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extractTuples' extracts all the entries from the matrix
\verb'A', returning them as a list of tuples, analogous to
\verb'[I,J,X]=find(A)' in MATLAB. Entries in the tuples \verb'[I,J,X]' are
unique. No pair of row and column indices \verb'(i,j)' appears more than once.
The GraphBLAS API states the tuples can be returned in any order. If
\verb'GrB_wait' is called first, then SuiteSparse:GraphBLAS chooses to
always return them in sorted order, depending on whether the matrix is stored
by row or by column. Otherwise, the indices can be returned in any order.
The number of tuples in the matrix \verb'A' is given by
\verb'GrB_Matrix_nvals(&anvals,A)'. If \verb'anvals' is larger than the size
of the arrays (\verb'nvals' in the parameter list), an error
\verb'GrB_INSUFFICIENT_SIZE' is returned, and no tuples are extracted. If
\verb'nvals' is larger than \verb'anvals', then only the first \verb'anvals'
entries in the arrays \verb'I' \verb'J', and \verb'X' are modified, containing
all the tuples of \verb'A', and the rest of \verb'I' \verb'J', and \verb'X' are
left unchanged. On output, \verb'nvals' contains the number of tuples
extracted.
\begin{alert}
{\bf SPEC:} As an extension to the specification, the arrays \verb'I', \verb'J', and/or
\verb'X' may be passed in as \verb'NULL' pointers.
\verb'GrB_Matrix_extractTuples' does not return a component specified as
\verb'NULL'. This is not an error condition.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_resize:} resize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_resize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_resize // change the size of a matrix
(
GrB_Matrix A, // matrix to modify
const GrB_Index nrows_new, // new number of rows in matrix
const GrB_Index ncols_new // new number of columns in matrix
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_resize' changes the size of a matrix. If the dimensions
decrease, entries that fall outside the resized matrix are deleted. Unlike
\verb'GxB_Matrix_reshape*' (see Sections \ref{matrix_reshape} and
\ref{matrix_reshapedup}), entries remain in their same position after resizing
the matrix.
%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GxB\_Matrix\_reshape:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshape}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshape // reshape a GrB_Matrix in place
(
// input/output:
GrB_Matrix C, // input/output matrix, reshaped in place
// input:
bool by_col, // true if reshape by column, false if by row
GrB_Index nrows_new, // new number of rows of C
GrB_Index ncols_new, // new number of columns of C
const GrB_Descriptor desc // to control # of threads used
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_reshape' changes the size of a matrix \verb'C', taking entries
from the input matrix either column-wise or row-wise. If matrix \verb'C' on
input is \verb'nrows'-by-\verb'ncols', and the requested dimensions of
\verb'C' on output are \verb'nrows_new'-by-\verb'nrows_cols', then
the condition \verb'nrows*ncols == nrows_new*nrows_cols' must hold.
The matrix \verb'C' is modified in-place, as both an input and output for
this method. To create a new matrix, use \verb'GxB_Matrix_reshapeDup'
instead (Section \ref{matrix_reshapedup}).
For example, if \verb'C' is 3-by-4 on input, and is reshaped column-wise to
have dimensions 2-by-6:
\begin{verbatim}
C on input C on output (by_col true)
00 01 02 03 00 20 11 02 22 13
10 11 12 13 10 01 21 12 03 23
20 21 22 23
\end{verbatim}
If the same \verb'C' on input is reshaped row-wise to dimensions 2-by-6:
\begin{verbatim}
C on input C on output (by_col false)
00 01 02 03 00 01 02 03 10 11
10 11 12 13 12 13 20 21 22 23
20 21 22 23
\end{verbatim}
NOTE: because an intermediate linear index must be computed for each entry,
\verb'GxB_Matrix_reshape' cannot be used on matrices for which
\verb'nrows*ncols' exceeds $2^{60}$.
%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GxB\_Matrix\_reshapeDup:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshapedup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix
(
// output:
GrB_Matrix *C, // newly created output matrix, not in place
// input:
GrB_Matrix A, // input matrix, not modified
bool by_col, // true if reshape by column, false if by row
GrB_Index nrows_new, // number of rows of C
GrB_Index ncols_new, // number of columns of C
const GrB_Descriptor desc // to control # of threads used
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_reshapeDup' is identical to \verb'GxB_Matrix_reshape' (see
Section \ref{matrix_reshape}), except that creates a new output matrix
\verb'C' that is reshaped from the input matrix \verb'A'.
%-------------------------------------------------------------------------------
% \newpage
\subsubsection{{\sf GxB\_Matrix\_concat:} concatenate matrices }
%-------------------------------------------------------------------------------
\label{matrix_concat}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_concat // concatenate a 2D array of matrices
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix *Tiles, // 2D row-major array of size m-by-n
const GrB_Index m,
const GrB_Index n,
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_concat' concatenates an array of matrices (\verb'Tiles') into
a single \verb'GrB_Matrix' \verb'C'.
\verb'Tiles' is an \verb'm'-by-\verb'n' dense array of matrices held in
row-major format, where \verb'Tiles [i*n+j]' is the $(i,j)$th tile, and where
\verb'm' $> 0$ and \verb'n' $> 0$ must hold. Let $A_{i,j}$ denote the
$(i,j)$th tile. The matrix \verb'C' is constructed by concatenating these
tiles together, as:
\[
C =
\left[
\begin{array}{ccccc}
A_{0,0} & A_{0,1} & A_{0,2} & \cdots & A_{0,n-1} \\
A_{1,0} & A_{1,1} & A_{1,2} & \cdots & A_{1,n-1} \\
\cdots & \\
A_{m-1,0} & A_{m-1,1} & A_{m-1,2} & \cdots & A_{m-1,n-1}
\end{array}
\right]
\]
On input, the matrix \verb'C' must already exist. Any existing entries in
\verb'C' are discarded. \verb'C' must have dimensions \verb'nrows' by
\verb'ncols' where \verb'nrows' is the sum of the number of rows in the
matrices $A_{i,0}$ for all $i$, and \verb'ncols' is the sum of the number of
columns in the matrices $A_{0,j}$ for all $j$. All matrices in any given tile
row $i$ must have the same number of rows (that is, and all matrices in any
given tile column $j$ must have the same number of columns).
The type of \verb'C' is unchanged, and all matrices $A_{i,j}$ are typecasted
into the type of \verb'C'. Any settings made to \verb'C' by
\verb'GxB_Matrix_Option_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.
%-------------------------------------------------------------------------------
% \newpage
\subsubsection{{\sf GxB\_Matrix\_split:} split a matrix }
%-------------------------------------------------------------------------------
\label{matrix_split}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_split // split a matrix into 2D array of matrices
(
GrB_Matrix *Tiles, // 2D row-major array of size m-by-n
const GrB_Index m,
const GrB_Index n,
const GrB_Index *Tile_nrows, // array of size m
const GrB_Index *Tile_ncols, // array of size n
const GrB_Matrix A, // input matrix to split
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_split' does the opposite of \verb'GxB_Matrix_concat'. It
splits a single input matrix \verb'A' into a 2D array of tiles. On input, the
\verb'Tiles' array must be a non-\verb'NULL' pointer to a previously allocated
array of size at least \verb'm*n' where both \verb'm' and \verb'n' must be
greater than zero. The \verb'Tiles_nrows' array has size \verb'm', and
\verb'Tiles_ncols' has size \verb'n'. The $(i,j)$th tile has dimension
\verb'Tiles_nrows[i]'-by-\verb'Tiles_ncols[j]'. The sum of
\verb'Tiles_nrows [0:m-1]' must equal the number of rows of \verb'A', and the
sum of \verb'Tiles_ncols [0:n-1]' must equal the number of columns of \verb'A'.
The type of each tile is the same as the type of \verb'A'; no typecasting is
done.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_diag:} construct a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_diag // construct a diagonal matrix from a vector
(
GrB_Matrix *C, // output matrix
const GrB_Vector v, // input vector
int64_t k
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_diag' constructs a matrix from a vector. Let $n$ be the
length of the \verb'v' vector, from \verb'GrB_Vector_size (&n, v)'. If
\verb'k' = 0, then \verb'C' is an $n$-by-$n$ diagonal matrix with the entries
from \verb'v' along the main diagonal of \verb'C', with \verb'C(i,i)=v(i)'. If
\verb'k' is nonzero, \verb'C' is square with dimension $n+|k|$. If \verb'k' is
positive, it denotes diagonals above the main diagonal, with
\verb'C(i,i+k)=v(i)'.
If \verb'k' is negative, it denotes diagonals below the main diagonal of
\verb'C', with \verb'C(i-k,i)=v(i)'. This behavior is identical to the MATLAB
statement \verb'C=diag(v,k)', where \verb'v' is a vector.
The output matrix \verb'C' is a newly-constructed square matrix with the
same type as the input vector \verb'v'. No typecasting is performed.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_diag:} build a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag_GxB}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_diag // build a diagonal matrix from a vector
(
GrB_Matrix C, // output matrix
const GrB_Vector v, // input vector
int64_t k,
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
Identical to \verb'GrB_Matrix_diag', except for the extra parameter
(a \verb'descriptor' to provide control over the number of threads used),
and this method is not a constructor.
The matrix \verb'C' must already exist on input, of the correct size. It must
be square of dimension $n+|k|$ where the vector \verb'v' has length $n$. Any
existing entries in \verb'C' are discarded. The type of \verb'C' is preserved,
so that if the type of \verb'C' and \verb'v' differ, the entries are typecasted
into the type of \verb'C'. Any settings made to \verb'C' by
\verb'GxB_Matrix_Option_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_iso:} query iso status of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_iso}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_iso // return iso status of a matrix
(
bool *iso, // true if the matrix is iso-valued
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
Returns the true if the matrix is iso-valued, false otherwise.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_memoryUsage:} memory used by a matrix}
%-------------------------------------------------------------------------------
\label{matrix_memusage}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_memoryUsage // return # of bytes used for a matrix
(
size_t *size, // # of bytes used by the matrix A
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
Returns the memory space required for a matrix, in bytes.
%-------------------------------------------------------------------------------
% \newpage
\subsubsection{{\sf GrB\_Matrix\_free:} free a matrix}
%-------------------------------------------------------------------------------
\label{matrix_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a matrix
(
GrB_Matrix *A // handle of matrix to free
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_free' frees a matrix. Either usage:
{\small
\begin{verbatim}
GrB_Matrix_free (&A) ;
GrB_free (&A) ; \end{verbatim}}
\noindent
frees the matrix \verb'A' and sets \verb'A' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'A == NULL' on input. Any
pending updates to the matrix are abandoned.
\newpage
%===============================================================================
\subsection{Serialize/deserialize methods}
%===============================================================================
\label{serialize_deserialize}
{\em Serialization} takes an opaque GraphBLAS object (a vector or matrix) and
encodes it in a single non-opaque array of bytes, the {\em blob}. The blob can
only be deserialized by the same library that created it (SuiteSparse:GraphBLAS
in this case). The array of bytes can be written to a file, sent to another
process over an MPI channel, or operated on in any other way that moves the
bytes around. The contents of the array cannot be interpreted except by
deserialization back into a vector or matrix, by the same library (and
sometimes the same version) that created the blob. Currently, all versions of
SuiteSparse:GraphBLAS that implement serialization/deserialization use the same
format for the blob, so the library versions are compatible with each other.
There are two forms of serialization: \verb'GrB*serialize' and
\verb'GxB*serialize'. For the \verb'GrB' form, the blob must first be
allocated by the user application, and it must be large enough to hold the
matrix or vector.
By default, ZSTD (level 1) compression is used for serialization, but other
options can be selected via the descriptor:
\verb'GxB_set (desc, GxB_COMPRESSION, method)', where \verb'method' is an
integer selected from the following options:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
method & description \\
\hline
\verb'GxB_COMPRESSION_NONE' & no compression \\
\verb'GxB_COMPRESSION_DEFAULT' & ZSTD, with default level 1 \\
\verb'GxB_COMPRESSION_LZ4' & LZ4 \\
\verb'GxB_COMPRESSION_LZ4HC' & LZ4HC, with default level 9 \\
\verb'GxB_COMPRESSION_ZSTD' & ZSTD, with default level 1 \\
\hline
\end{tabular} }
\vspace{0.2in}
The LZ4HC method can be modified by adding a level of zero to 9, with 9 being
the default. Higher levels lead to a more compact blob, at the cost of extra
computational time. This level is simply added to the method, so to compress a
vector with LZ4HC with level 6, use:
{\footnotesize
\begin{verbatim}
GxB_set (desc, GxB_COMPRESSION, GxB_COMPRESSION_LZ4HC + 6) ; \end{verbatim}}
The ZSTD method can be specified as level 1 to 19, with 1 being the default.
To compress with ZSTD at level 6, use:
{\footnotesize
\begin{verbatim}
GxB_set (desc, GxB_COMPRESSION, GxB_COMPRESSION_ZSTD + 6) ; \end{verbatim}}
Deserialization of untrusted data is a common security problem; see
\url{https://cwe.mitre.org/data/definitions/502.html}. The deserialization
methods do a few basic checks so that no out-of-bounds access occurs during
deserialization, but the output matrix or vector itself may still be corrupted.
If the data is untrusted, use \verb'GxB_*_fprint' to
check the matrix or vector after deserializing it:
{\footnotesize
\begin{verbatim}
info = GxB_Vector_fprint (w, "w deserialized", GrB_SILENT, NULL) ;
if (info != GrB_SUCCESS) GrB_free (&w) ;
info = GxB_Matrix_fprint (A, "A deserialized", GrB_SILENT, NULL) ;
if (info != GrB_SUCCESS) GrB_free (&A) ; \end{verbatim}}
The following methods are described in this Section:
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
% \verb'GrB_Vector_serializeSize' & return size of serialized vector & \ref{vector_serialize_size} \\
% \verb'GrB_Vector_serialize' & serialize a vector & \ref{vector_serialize} \\
\verb'GxB_Vector_serialize' & serialize a vector & \ref{vector_serialize_GxB} \\
% \verb'GrB_Vector_deserialize' & deserialize a vector & \ref{vector_deserialize} \\
\verb'GxB_Vector_deserialize' & deserialize a vector & \ref{vector_deserialize_GxB} \\
\hline
\verb'GrB_Matrix_serializeSize' & return size of serialized matrix & \ref{matrix_serialize_size} \\
\verb'GrB_Matrix_serialize' & serialize a matrix & \ref{matrix_serialize} \\
\verb'GxB_Matrix_serialize' & serialize a matrix & \ref{matrix_serialize_GxB} \\
\verb'GrB_Matrix_deserialize' & deserialize a matrix & \ref{matrix_deserialize} \\
\verb'GxB_Matrix_deserialize' & deserialize a matrix & \ref{matrix_deserialize_GxB} \\
\hline
\verb'GrB_deserialize_type_name' & return the name of type of the blob & \ref{deserialize_type_name} \\
\hline
\end{tabular}
}
%-------------------------------------------------------------------------------
% \subsubsection{{\sf GrB\_Vector\_serializeSize:} return size of serialized vector}
%-------------------------------------------------------------------------------
% \label{vector_serialize_size}
% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Vector_serializeSize // estimate the size of a blob
% (
% // output:
% GrB_Index *blob_size_handle, // upper bound on the required size of the
% // blob on output.
% // input:
% GrB_Vector u // vector to serialize
%) ;
%\end{verbatim}
%} \end{mdframed}
%
% \verb'GrB_Vector_serializeSize' returns an upper bound on the size of the blob
% needed to serialize a \verb'GrB_Vector' using \verb'GrB_Vector_serialize'.
% After the vector is serialized, the actual size used is returned, and the blob
% may be \verb'realloc''d to that size if desired.
% This method is not required for \verb'GxB_Vector_serialize'.
% \newpage
%-------------------------------------------------------------------------------
% \subsubsection{{\sf GrB\_Vector\_serialize:} serialize a vector}
%-------------------------------------------------------------------------------
% \label{vector_serialize}
% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Vector_serialize // serialize a GrB_Vector to a blob
% (
% // output:
% void *blob, // the blob, already allocated in input
% // input/output:
% GrB_Index *blob_size_handle, // size of the blob on input. On output,
% // the # of bytes used in the blob.
% // input:
% GrB_Vector u // vector to serialize
% ) ;
% \end{verbatim}
% } \end{mdframed}
%
% \verb'GrB_Vector_serialize' serializes a vector into a single array of bytes
% (the blob), which must be already allocated by the user application.
% On input, \verb'&blob_size' is the size of the allocated blob in bytes.
% On output, it is reduced to the numbed of bytes actually used to serialize
% the vector. After calling \verb'GrB_Vector_serialize', the blob may be
% \verb'realloc''d to this revised size if desired (this is optional).
% ZSTD (level 1) compression is used to construct a compact blob.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_serialize:} serialize a vector}
%-------------------------------------------------------------------------------
\label{vector_serialize_GxB}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_serialize // serialize a GrB_Vector to a blob
(
// output:
void **blob_handle, // the blob, allocated on output
GrB_Index *blob_size_handle, // size of the blob on output
// input:
GrB_Vector u, // vector to serialize
const GrB_Descriptor desc // descriptor to select compression method
// and to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_serialize' serializes a vector into a single array of bytes
(the blob), which is \verb'malloc''ed and filled with the serialized vector.
By default, ZSTD (level 1) compression is used, but other options can be
selected via the descriptor. Serializing a vector is identical to serializing
a matrix; see Section \ref{matrix_serialize_GxB} for more information.
\newpage
%-------------------------------------------------------------------------------
% \subsubsection{{\sf GrB\_Vector\_deserialize:} deserialize a vector}
%-------------------------------------------------------------------------------
% \label{vector_deserialize}
% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Vector_deserialize // deserialize blob into a GrB_Vector
% (
% // output:
% GrB_Vector *w, // output vector created from the blob
% // input:
% GrB_Type type, // type of the vector w. Required if the blob holds a
% // vector of user-defined type. May be NULL if blob
% // holds a built-in type; otherwise must match the
% // type of w.
% const void *blob, // the blob
% GrB_Index blob_size // size of the blob
% ) ;
% \end{verbatim}
% } \end{mdframed}
%
% This method creates a vector \verb'w' by deserializing the contents of the
% blob, constructed by either \verb'GrB_Vector_serialize' or
% \verb'GxB_Vector_serialize'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_deserialize:} deserialize a vector}
%-------------------------------------------------------------------------------
\label{vector_deserialize_GxB}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_deserialize // deserialize blob into a GrB_Vector
(
// output:
GrB_Vector *w, // output vector created from the blob
// input:
GrB_Type type, // type of the vector w. See GxB_Matrix_deserialize.
const void *blob, // the blob
GrB_Index blob_size, // size of the blob
const GrB_Descriptor desc // to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}
This method creates a vector \verb'w' by deserializing the contents of the
blob, constructed by
% either \verb'GrB_Vector_serialize' or
\verb'GxB_Vector_serialize'.
Deserializing a vector is identical to deserializing a matrix;
see Section \ref{matrix_deserialize_GxB} for more information.
The blob is allocated with the \verb'malloc' function passed to
\verb'GxB_init', or the ANSI C11 \verb'malloc' if \verb'GrB_init' was used
to initialize GraphBLAS. The blob must be freed by the matching \verb'free'
method, either the \verb'free' function passed to \verb'GxB_init' or
the ANSI C11 \verb'free' if \verb'GrB_init' was used.
% Identical to \verb'GrB_Vector_deserialize', except that the descriptor
% appears as the last parameter to control the number of threads used.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_serializeSize:} return size of serialized matrix}
%-------------------------------------------------------------------------------
\label{matrix_serialize_size}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_serializeSize // estimate the size of a blob
(
// output:
GrB_Index *blob_size_handle, // upper bound on the required size of the
// blob on output.
// input:
GrB_Matrix A // matrix to serialize
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_serializeSize' returns an upper bound on the size of the blob
needed to serialize a \verb'GrB_Matrix' with \verb'GrB_Matrix_serialize'.
After the matrix is serialized, the actual size used is returned, and the blob
may be \verb'realloc''d to that size if desired.
This method is not required for \verb'GxB_Matrix_serialize'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_serialize:} serialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_serialize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_serialize // serialize a GrB_Matrix to a blob
(
// output:
void *blob, // the blob, already allocated in input
// input/output:
GrB_Index *blob_size_handle, // size of the blob on input. On output,
// the # of bytes used in the blob.
// input:
GrB_Matrix A // matrix to serialize
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_serialize' serializes a matrix into a single array of bytes
(the blob), which must be already allocated by the user application.
On input, \verb'&blob_size' is the size of the allocated blob in bytes.
On output, it is reduced to the numbed of bytes actually used to serialize
the matrix. After calling \verb'GrB_Matrix_serialize', the blob may be
\verb'realloc''d to this revised size if desired (this is optional).
ZSTD (level 1) compression is used to construct a compact blob.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_serialize:} serialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_serialize_GxB}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_serialize // serialize a GrB_Matrix to a blob
(
// output:
void **blob_handle, // the blob, allocated on output
GrB_Index *blob_size_handle, // size of the blob on output
// input:
GrB_Matrix A, // matrix to serialize
const GrB_Descriptor desc // descriptor to select compression method
// and to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_serialize' is identical to \verb'GrB_Matrix_serialize', except
that it does not require a pre-allocated blob. Instead, it allocates the blob
internally, and fills it with the serialized matrix. By default, ZSTD (level 1)
compression is used, but other options can be selected via the descriptor.
The blob is allocated with the \verb'malloc' function passed to
\verb'GxB_init', or the ANSI C11 \verb'malloc' if \verb'GrB_init' was used
to initialize GraphBLAS. The blob must be freed by the matching \verb'free'
method, either the \verb'free' function passed to \verb'GxB_init' or
the ANSI C11 \verb'free' if \verb'GrB_init' was used.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_deserialize:} deserialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_deserialize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_deserialize // deserialize blob into a GrB_Matrix
(
// output:
GrB_Matrix *C, // output matrix created from the blob
// input:
GrB_Type type, // type of the matrix C. Required if the blob holds a
// matrix of user-defined type. May be NULL if blob
// holds a built-in type; otherwise must match the
// type of C.
const void *blob, // the blob
GrB_Index blob_size // size of the blob
) ;
\end{verbatim}
} \end{mdframed}
This method creates a matrix \verb'A' by deserializing the contents of the
blob, constructed by either \verb'GrB_Matrix_serialize' or
\verb'GxB_Matrix_serialize'.
\begin{alert}
{\bf SPEC:} The specification requires the \verb'type' to always be non-NULL.
As an extension, SuiteSparse:GraphBLAS allows \verb'type' to be NULL if
the blob contains a serialized matrix with a built-in type.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_deserialize:} deserialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_deserialize_GxB}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_deserialize // deserialize blob into a GrB_Matrix
(
// output:
GrB_Matrix *C, // output matrix created from the blob
// input:
GrB_Type type, // type of the matrix C. Required if the blob holds a
// matrix of user-defined type. May be NULL if blob
// holds a built-in type; otherwise must match the
// type of C.
const void *blob, // the blob
GrB_Index blob_size, // size of the blob
const GrB_Descriptor desc // to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}
Identical to \verb'GrB_Matrix_deserialize', except that the descriptor
appears as the last parameter to control the number of threads used.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_deserialize\_type\_name:} name of the type of a blob}
%-------------------------------------------------------------------------------
\label{deserialize_type_name}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_deserialize_type_name // return the type name of a blob
(
// output:
char *type_name, // name of the type (char array of size at least
// GxB_MAX_NAME_LEN, owned by the user application).
// input, not modified:
const void *blob, // the blob
GrB_Index blob_size // size of the blob
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_deserialize_type_name' returns the name of type of the matrix or
vector serialized into the blob. This method works for any blob, from
% \verb'GrB_Vector_serialize',
\verb'GxB_Vector_serialize',
\verb'GrB_Matrix_serialize', or \verb'GxB_Matrix_serialize'.
\newpage
%===============================================================================
\subsection{GraphBLAS pack/unpack: using move semantics} %========
%===============================================================================
\label{pack_unpack}
The pack/unpack functions allow the user application to create a
\verb'GrB_Matrix' or \verb'GrB_Vector' object, and to extract its contents,
faster and with less memory overhead than the \verb'GrB_*_build' and
\verb'GrB_*_extractTuples' functions.
The \verb'GrB_Matrix_import' and \verb'GrB_Matrix_export' are not
described in this section. Refer to Section~\ref{GrB_import_export} instead.
The semantics of the \verb'GxB' pack/unpack are the same as the
{\em move constructor} in C++. For \verb'GxB*pack*', the user provides a set of
arrays that have been previously allocated via the ANSI C \verb'malloc',
\verb'calloc', or \verb'realloc' functions (by default), or by the
corresponding functions passed to \verb'GxB_init'. The arrays define the
content of the matrix or vector. Unlike \verb'GrB_*_build', the GraphBLAS
library then takes ownership of the user's input arrays and may either:
\begin{enumerate}
\item incorporate them
into its internal data structure for the new \verb'GrB_Matrix' or
\verb'GrB_Vector', potentially creating the \verb'GrB_Matrix' or
\verb'GrB_Vector' in constant time with no memory copying performed, or
\item if
the library does not support the format directly, then it may convert
the input to its internal format, and then free the user's input arrays.
\item A
GraphBLAS implementation may also choose to use a mix of the two strategies.
\end{enumerate}
SuiteSparse:GraphBLAS takes the first approach, and so the pack
functions always take $O(1)$ time, and require $O(1)$ memory space to be
allocated.
Regardless of the method chosen, as listed above, the input arrays are no
longer owned by the user application. If \verb'A' is a \verb'GrB_Matrix'
created by a pack method, the user input arrays are freed no later than
\verb'GrB_free(&A)', and may be freed earlier, at the discretion of the
GraphBLAS library. The data structure of the \verb'GrB_Matrix' and
\verb'GrB_Vector' remain opaque.
The \verb'GxB*unpack*' of a \verb'GrB_Matrix' or \verb'GrB_Vector' is symmetric with the
pack operation. The unpack changes the ownership of the arrays, which are
returned to the user and which contain the
matrix or vector in the requested format. Ownership of these arrays is given
to the user application, which is then responsible for freeing them via the
ANSI C \verb'free' function (by default), or by the \verb'free_function' that
was passed in to \verb'GxB_init'. Alternatively, these arrays can be
re-packed into a \verb'GrB_Matrix' or \verb'GrB_Vector', at which point they
again become the responsibility of GraphBLAS.
For an unpack method, if the output format matches the current internal format of the
matrix or vector then these arrays are returned to the user application in
$O(1)$ time and with no memory copying performed. Otherwise, the
\verb'GrB_Matrix' or \verb'GrB_Vector' is first converted into the requested
format, and then unpacked.
For the pack methods, the \verb'A' matrix/vector must already exist on input, and its contents are
populated with the new content, just like \verb'GrB_Matrix_build'.
For the unpack
methods, \verb'A' is passed in, and the matrix/vector still exists on return,
just with no entries. Its type and dimensions are preserved.
Unpacking a matrix or vector forces completion of any pending
operations on the matrix, with one exception. SuiteSparse:GraphBLAS supports
three kinds of pending operations: {\em zombies} (pending deletions), {\em
pending tuples} (pending insertions), and a {\em lazy sort}. Zombies and
pending tuples are never unpacked, but the {\em jumbled} state may be
optionally unpacked. In the latter, if the matrix or vector is unpacked in a
{\em jumbled} state, indices in any row or column may appear out of order. If
unpacked as {\em unjumbled}, the indices always appear in ascending order.
The vector pack/unpack methods use three formats for a
\verb'GrB_Vector'. Eight different formats are provided for the
pack/unpack of a \verb'GrB_Matrix'. For each format, the
numerical value array (\verb'Ax' or \verb'vx') has a C type corresponding to
one of the 13 built-in types in GraphBLAS (\verb'bool', \verb'int*_t',
\verb'uint*_t', \verb'float', \verb'double' \verb'float complex', \verb'double complex'),
or that corresponds with the user-defined type. No typecasting is
done.
If \verb'iso' is true, then all entries present in the matrix or vector
have the same value, and the \verb'Ax' array (for matrices) or \verb'vx' array
(for vectors) only need to be large enough to hold a single value.
The unpack of a \verb'GrB_Vector' in \verb'CSC' format may return the
indices in a jumbled state, in any order.
For a \verb'GrB_Matrix' in \verb'CSR' or \verb'HyperCSR' format, if the matrix
is returned as jumbled, the column indices in any given row may appear out of
order. For \verb'CSC' or \verb'HyperCSC' formats, if the matrix is returned as
jumbled, the row indices in any given column may appear out of order.
On pack, if the user-provided arrays contain jumbled row or column vectors,
then the input flag \verb'jumbled' must be passed in as \verb'true'. On
unpack, if \verb'*jumbled' is \verb'NULL', this indicates to the unpack method
that the user expects the unpacked matrix or vector to be returned in an
ordered, unjumbled state. If \verb'*jumbled' is provided as non-\verb'NULL',
then it is returned as \verb'true' if the indices may appear out of order, or
\verb'false' if they are known to be in ascending order.
Matrices and vectors in bitmap or full format are never jumbled.
If data is packed using
\verb'GxB*_pack_*', the default is to trust the input data so that the
pack can be done in $O(1)$ time. However, if the data comes from an
untrusted source, additional checks should be made during the pack. This is
indicated with a descriptor setting, and then passing the descriptor
to the \verb'GxB' pack methods:
{\footnotesize
\begin{verbatim}
GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ; \end{verbatim}}
The table below lists the methods presented in this section.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
method & purpose & Section \\
\hline
\verb'GxB_Vector_pack_CSC' & pack a vector in CSC format & \ref{vector_pack_csc} \\
\verb'GxB_Vector_unpack_CSC' & unpack a vector in CSC format & \ref{vector_unpack_csc} \\
\hline
\verb'GxB_Vector_pack_Bitmap' & pack a vector in bitmap format & \ref{vector_pack_bitmap} \\
\verb'GxB_Vector_unpack_Bitmap' & unpack a vector in bitmap format & \ref{vector_unpack_bitmap} \\
\hline
\verb'GxB_Vector_pack_Full' & pack a vector in full format & \ref{vector_pack_full} \\
\verb'GxB_Vector_unpack_Full' & unpack a vector in full format & \ref{vector_unpack_full} \\
\hline
\hline
\verb'GxB_Matrix_pack_CSR' & pack a matrix in CSR form & \ref{matrix_pack_csr} \\
\verb'GxB_Matrix_unpack_CSR' & unpack a matrix in CSR form & \ref{matrix_unpack_csr} \\
\hline
\verb'GxB_Matrix_pack_CSC' & pack a matrix in CSC form & \ref{matrix_pack_csc} \\
\verb'GxB_Matrix_unpack_CSC' & unpack a matrix in CSC form & \ref{matrix_unpack_csc} \\
\hline
\verb'GxB_Matrix_pack_HyperCSR' & pack a matrix in HyperCSR form & \ref{matrix_pack_hypercsr} \\
\verb'GxB_Matrix_unpack_HyperCSR' & unpack a matrix in HyperCSR form & \ref{matrix_unpack_hypercsr} \\
\hline
\verb'GxB_Matrix_pack_HyperCSC' & pack a matrix in HyperCSC form & \ref{matrix_pack_hypercsc} \\
\verb'GxB_Matrix_unpack_HyperCSC' & unpack a matrix in HyperCSC form & \ref{matrix_unpack_hypercsc} \\
\hline
\verb'GxB_unpack_HyperHash' & unpack a hyper-hash & \ref{unpack_hyperhash} \\
\verb'GxB_pack_HyperHash' & pack a hyper-hash & \ref{pack_hyperhash} \\
\hline
\verb'GxB_Matrix_pack_BitmapR' & pack a matrix in BitmapR form & \ref{matrix_pack_bitmapr} \\
\verb'GxB_Matrix_unpack_BitmapR' & unpack a matrix in BitmapR form & \ref{matrix_unpack_bitmapr} \\
\hline
\verb'GxB_Matrix_pack_BitmapC' & pack a matrix in BitmapC form & \ref{matrix_pack_bitmapc} \\
\verb'GxB_Matrix_unpack_BitmapC' & unpack a matrix in BitmapC form & \ref{matrix_unpack_bitmapc} \\
\hline
\verb'GxB_Matrix_pack_FullR' & pack a matrix in FullR form & \ref{matrix_pack_fullr} \\
\verb'GxB_Matrix_unpack_FullR' & unpack a matrix in FullR form & \ref{matrix_unpack_fullr} \\
\hline
\verb'GxB_Matrix_pack_FullC' & pack a matrix in FullC form & \ref{matrix_pack_fullc} \\
\verb'GxB_Matrix_unpack_FullC' & unpack a matrix in FullC form & \ref{matrix_unpack_fullc} \\
\hline
\end{tabular}
}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_pack\_CSC} pack a vector in CSC form}
%-------------------------------------------------------------------------------
\label{vector_pack_csc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_pack_CSC // pack a vector in CSC format
(
GrB_Vector v, // vector to create (type and length unchanged)
GrB_Index **vi, // indices, vi_size >= nvals(v) * sizeof(int64_t)
void **vx, // values, vx_size >= nvals(v) * (type size)
// or vx_size >= (type size), if iso is true
GrB_Index vi_size, // size of vi in bytes
GrB_Index vx_size, // size of vx in bytes
bool iso, // if true, v is iso
GrB_Index nvals, // # of entries in vector
bool jumbled, // if true, indices may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\noindent
\verb'GxB_Vector_pack_CSC' is analogous to \verb'GxB_Matrix_pack_CSC'.
Refer to the description of \verb'GxB_Matrix_pack_CSC' for details
(Section~\ref{matrix_pack_csc}).
The vector \verb'v' must
exist on input with the right type and length. No typecasting is done.
Its entries are
the row indices given by \verb'vi', with the corresponding values in \verb'vx'.
The two pointers \verb'vi' and \verb'vx' are returned as \verb'NULL', which
denotes that they are no longer owned by the user application. They have
instead been moved into \verb'v'. If \verb'jumbled'
is true, the row indices in \verb'vi' must appear in sorted order. No
duplicates can appear. These conditions are not checked, so results are
undefined if they are not met exactly. The user application can check the
resulting vector \verb'v' with \verb'GxB_print', if desired, which will
determine if these conditions hold.
If not successful, \verb'v', \verb'vi' and
\verb'vx' are not modified.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_unpack\_CSC:} unpack a vector in CSC form}
%-------------------------------------------------------------------------------
\label{vector_unpack_csc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_unpack_CSC // unpack a CSC vector
(
GrB_Vector v, // vector to unpack (type and length unchanged)
GrB_Index **vi, // indices
void **vx, // values
GrB_Index *vi_size, // size of vi in bytes
GrB_Index *vx_size, // size of vx in bytes
bool *iso, // if true, v is iso
GrB_Index *nvals, // # of entries in vector
bool *jumbled, // if true, indices may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_unpack_CSC' is analogous to \verb'GxB_Matrix_unpack_CSC'.
Refer to the description of \verb'GxB_Matrix_unpack_CSC' for details
(Section~\ref{matrix_unpack_csc}).
Exporting a vector forces completion of any pending operations on the vector,
except that indices may be unpacked out of order (\verb'jumbled' is \verb'true'
if they may be out of order, \verb'false' if sorted in ascending order). If
\verb'jumbled' is \verb'NULL' on input, then the indices are always returned in
sorted order.
If successful, \verb'v' is returned with no entries, and its contents are
returned to the user.
A list of row indices of entries that were in
\verb'v' is returned in \verb'vi', and the corresponding numerical values are
returned in \verb'vx'. If \verb'nvals' is zero, the \verb'vi' and \verb'vx'
arrays are returned as \verb'NULL'; this is not an error condition.
If not successful, \verb'v' is unmodified and \verb'vi' and \verb'vx' are
not modified.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_pack\_Bitmap} pack a vector in bitmap form}
%-------------------------------------------------------------------------------
\label{vector_pack_bitmap}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_pack_Bitmap // pack a bitmap vector
(
GrB_Vector v, // vector to create (type and length unchanged)
int8_t **vb, // bitmap, vb_size >= n
void **vx, // values, vx_size >= n * (type size)
// or vx_size >= (type size), if iso is true
GrB_Index vb_size, // size of vb in bytes
GrB_Index vx_size, // size of vx in bytes
bool iso, // if true, v is iso
GrB_Index nvals, // # of entries in bitmap
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\noindent
\verb'GxB_Vector_pack_Bitmap' is analogous to
\verb'GxB_Matrix_pack_BitmapC'. Refer to the description of
\verb'GxB_Matrix_pack_BitmapC' for details
(Section~\ref{matrix_pack_bitmapc}).
The vector \verb'v' must
exist on input with the right type and length. No typecasting is done.
Its entries are determined by \verb'vb', where \verb'vb[i]=1' denotes that
the entry $v(i)$ is present with value given by \verb'vx[i]', and
\verb'vb[i]=0' denotes that the entry $v(i)$ is not present (\verb'vx[i]' is
ignored in this case).
The two pointers \verb'vb' and \verb'vx' are returned as \verb'NULL', which
denotes that they are no longer owned by the user application. They have
instead been moved into the new \verb'GrB_Vector' \verb'v'.
The \verb'vb' array must not hold any values other than 0 and 1. The value
\verb'nvals' must exactly match the number of 1s in the \verb'vb' array. These
conditions are not checked, so results are undefined if they are not met
exactly. The user application can check the resulting vector \verb'v' with
\verb'GxB_print', if desired, which will determine if these conditions hold.
If not successful, \verb'v', \verb'vb' and
\verb'vx' are not modified.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_unpack\_Bitmap:} unpack a vector in bitmap form}
%-------------------------------------------------------------------------------
\label{vector_unpack_bitmap}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_unpack_Bitmap // unpack a bitmap vector
(
GrB_Vector v, // vector to unpack (type and length unchanged)
int8_t **vb, // bitmap
void **vx, // values
GrB_Index *vb_size, // size of vb in bytes
GrB_Index *vx_size, // size of vx in bytes
bool *iso, // if true, v is iso
GrB_Index *nvals, // # of entries in bitmap
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_unpack_Bitmap' is analogous to
\verb'GxB_Matrix_unpack_BitmapC'; see
Section~\ref{matrix_unpack_bitmapc}.
Exporting a vector forces completion of any pending operations on the vector.
If successful, \verb'v' is returned with no entries, and its contents are
returned to the user.
The entries that were in \verb'v' are returned in
\verb'vb', where \verb'vb[i]=1' means $v(i)$ is present with value
\verb'vx[i]', and \verb'vb[i]=0' means $v(i)$ is not present (\verb'vx[i]' is
undefined in this case). The corresponding numerical values are returned in
\verb'vx'.
If not successful, \verb'v' is unmodified and \verb'vb' and \verb'vx' are not
modified.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_pack\_Full} pack a vector in full form}
%-------------------------------------------------------------------------------
\label{vector_pack_full}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_pack_Full // pack a full vector
(
GrB_Vector v, // vector to create (type and length unchanged)
void **vx, // values, vx_size >= nvals(v) * (type size)
// or vx_size >= (type size), if iso is true
GrB_Index vx_size, // size of vx in bytes
bool iso, // if true, v is iso
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\noindent
\verb'GxB_Vector_pack_Full' is analogous to \verb'GxB_Matrix_pack_FullC'.
Refer to the description of \verb'GxB_Matrix_pack_BitmapC' for details
(Section~\ref{matrix_pack_fullc}).
The vector \verb'v' must exist on input with the right type and length.
No typecasting is done.
If successful, \verb'v' has
all entries are present, and the value of $v(i)$ is given by \verb'vx[i]'.
The pointer \verb'vx' is returned as \verb'NULL', which denotes that it is no
longer owned by the user application. It has instead been moved into the new
\verb'GrB_Vector' \verb'v'.
If not successful, \verb'v' and
\verb'vx' are not modified.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_unpack\_Full:} unpack a vector in full form}
%-------------------------------------------------------------------------------
\label{vector_unpack_full}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_unpack_Full // unpack a full vector
(
GrB_Vector v, // vector to unpack (type and length unchanged)
void **vx, // values
GrB_Index *vx_size, // size of vx in bytes
bool *iso, // if true, v is iso
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_unpack_Full' is analogous to \verb'GxB_Matrix_unpack_FullC'.
Refer to the description of \verb'GxB_Matrix_unpack_FullC' for details
(Section~\ref{matrix_unpack_fullc}).
Exporting a vector forces completion of any pending operations on the vector.
All entries in \verb'v' must be present. In other words, prior to the unpack,
\verb'GrB_Vector_nvals' for a vector of length \verb'n' must report that the
vector contains \verb'n' entries; \verb'GrB_INVALID_VALUE' is returned if this
condition does not hold.
If successful, \verb'v' is returned with no entries, and its contents are
returned to the user. The entries
that were in \verb'v' are returned in the array \verb'vx', \verb'vb', where
\verb'vb[i]=1' means $v(i)$ is present with value where the value of $v(i)$ is
\verb'vx[i]'.
If not successful, \verb'v' and \verb'vx' are not modified.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_CSR:} pack a CSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_csr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_CSR // pack a CSR matrix
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
GrB_Index **Ap, // row "pointers", Ap_size >= (nrows+1)* sizeof(int64_t)
GrB_Index **Aj, // column indices, Aj_size >= nvals(A) * sizeof(int64_t)
void **Ax, // values, Ax_size >= nvals(A) * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ap_size, // size of Ap in bytes
GrB_Index Aj_size, // size of Aj in bytes
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
bool jumbled, // if true, indices in each row may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_CSR' packs a matrix from 3 user arrays in CSR format.
In the resulting \verb'GrB_Matrix A', the \verb'CSR' format is a sparse matrix
with a format (\verb'GxB_FORMAT') of \verb'GxB_BY_ROW'.
The \verb'GrB_Matrix A' must exist on input with the right type and
dimensions. No typecasting is done.
This function populates the matrix
\verb'A' with the three arrays \verb'Ap', \verb'Aj' and \verb'Ax', provided by
the user, all of which must have been created with the ANSI C \verb'malloc',
\verb'calloc', or \verb'realloc' functions (by default), or by the
corresponding \verb'malloc_function', \verb'calloc_function', or
\verb'realloc_function' provided to \verb'GxB_init'. These arrays define the
pattern and values of the new matrix \verb'A':
\begin{itemize}
\item \verb'GrB_Index Ap [nrows+1] ;' The \verb'Ap' array is the row
``pointer'' array. It does not actual contain pointers. More precisely, it is
an integer array that defines where the column indices and values appear in
\verb'Aj' and \verb'Ax', for each row. The number of entries in row \verb'i'
is given by the expression \verb'Ap [i+1] - Ap [i]'.
\item \verb'GrB_Index Aj [nvals] ;' The \verb'Aj' array defines the
column indices of entries in each row.
\item \verb'ctype Ax [nvals] ;' The \verb'Ax' array defines the values of
entries in each row. It is passed in as a \verb'(void *)' pointer, but it must
point to an array of size \verb'nvals' values, each of size
\verb'sizeof(ctype)', where \verb'ctype' is the exact type in C that corresponds
to the \verb'GrB_Type type' parameter. That is, if \verb'type' is
\verb'GrB_INT32', then \verb'ctype' is \verb'int32_t'. User types
may be used, just the same as built-in types.
\end{itemize}
The content of the three arrays \verb'Ap' \verb'Aj', and \verb'Ax' is very
specific. This content is not checked, since this function takes only
$O(1)$ time. Results are undefined if the following specification is not
followed exactly.
The column indices of entries in the ith row of the matrix are held in
\verb'Aj [Ap [i] ... Ap[i+1]]', and the corresponding values are held in the
same positions in \verb'Ax'. Column indices must be in the range 0 to
\verb'ncols'-1. If \verb'jumbled' is \verb'false', column indices must appear
in ascending order within each row. If \verb'jumbled' is \verb'true', column
indices may appear in any order within each row. No duplicate column indices
may appear in any row. \verb'Ap [0]' must equal zero, and \verb'Ap [nrows]'
must equal nvals. The \verb'Ap' array must be of size \verb'nrows'+1 (or
larger), and the \verb'Aj' and \verb'Ax' arrays must have size at least
\verb'nvals'.
If \verb'nvals' is zero, then the content of the \verb'Aj' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).
An example of the CSR format is shown below. Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.
\begin{equation}
\label{eqn:Aexample}
A = \left[
\begin{array}{cccc}
4.5 & 0 & 3.2 & 0 \\
3.1 & 2.9 & 0 & 0.9 \\
0 & 1.7 & 3.0 & 0 \\
3.5 & 0.4 & 0 & 1.0 \\
\end{array}
\right]
\end{equation}
The \verb'Ap' array has length 5, since the matrix is 4-by-4. The first entry
must always zero, and \verb'Ap [5] = 10' is the number of entries.
The content of the arrays is shown below:
{\footnotesize
\begin{verbatim}
int64_t Ap [ ] = { 0, 2, 5, 7, 10 } ;
int64_t Aj [ ] = { 0, 2, 0, 1, 3, 1, 2, 0, 1, 3 } ;
double Ax [ ] = { 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ; \end{verbatim} }
Spaces have been added to the \verb'Ap' array, just for illustration. Row zero
is in \verb'Aj [0..1]' (column indices) and \verb'Ax [0..1]' (values), starting
at \verb'Ap [0] = 0' and ending at \verb'Ap [0+1]-1 = 1'. The list of column
indices of row one is at \verb'Aj [2..4]' and row two is in \verb'Aj [5..6]'.
The last row (three) appears \verb'Aj [7..9]', because \verb'Ap [3] = 7' and
\verb'Ap [4]-1 = 10-1 = 9'. The corresponding numerical values appear in the
same positions in \verb'Ax'.
To iterate over the rows and entries of this matrix, the following code can be
used
(assuming it has type \verb'GrB_FP64'):
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [nrows] ;
for (int64_t i = 0 ; i < nrows ; i++)
{
// get A(i,:)
for (int64_t p = Ap [i] ; p < Ap [i+1] ; p++)
{
// get A(i,j)
int64_t j = Aj [p] ; // column index
double aij = Ax [iso ? 0 : p] ; // numerical value
}
} \end{verbatim}}
If successful, the three pointers \verb'Ap', \verb'Aj',
and \verb'Ax' are set to \verb'NULL' on output. This denotes to the user
application that it is no longer responsible for freeing these arrays.
Internally, GraphBLAS has moved these arrays into its internal data structure.
They will eventually be freed no later than when the user does
\verb'GrB_free(&A)', but they may be freed or resized later, if the matrix
changes. If an unpack is performed, the freeing of these three arrays again
becomes the responsibility of the user application.
The \verb'GxB_Matrix_pack_CSR' function will rarely fail, since it allocates
just $O(1)$ space. If it does fail, it returns \verb'GrB_OUT_OF_MEMORY',
and it leaves the three user arrays unmodified. They are still owned by
the user application, which is eventually responsible for freeing them with
\verb'free(Ap)', etc.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_CSR:} unpack a CSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_csr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_CSR // unpack a CSR matrix
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
GrB_Index **Ap, // row "pointers"
GrB_Index **Aj, // column indices
void **Ax, // values
GrB_Index *Ap_size, // size of Ap in bytes
GrB_Index *Aj_size, // size of Aj in bytes
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
bool *jumbled, // if true, indices in each row may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_CSR' unpacks a matrix in CSR form.
If successful, the \verb'GrB_Matrix A' is returned with no entries.
The CSR format is in the three arrays
\verb'Ap', \verb'Aj', and \verb'Ax'. If the matrix has no entries, the
\verb'Aj' and \verb'Ax' arrays may be returned as \verb'NULL'; this is not an
error, and \verb'GxB_Matrix_pack_CSR' also allows these two arrays to be
\verb'NULL' on input when the matrix has no entries. After a successful
unpack, the user application is responsible for freeing these three arrays via
\verb'free' (or the \verb'free' function passed to \verb'GxB_init'). The CSR
format is described in Section~\ref{matrix_unpack_csr}.
If \verb'jumbled' is returned as \verb'false', column indices will appear in
ascending order within each row. If \verb'jumbled' is returned as \verb'true',
column indices may appear in any order within each row. If \verb'jumbled' is
passed in as \verb'NULL', then column indices will be returned in ascending
order in each row. No duplicate column indices will appear in any row.
\verb'Ap [0]' is zero, and \verb'Ap [nrows]' is equal to the number of entries
in the matrix (\verb'nvals'). The \verb'Ap' array will be of size
\verb'nrows'+1 (or larger), and the \verb'Aj' and \verb'Ax' arrays will have
size at least \verb'nvals'.
This method takes $O(1)$ time if the matrix is already in CSR format
internally. Otherwise, the matrix is converted to CSR format and then
unpacked.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_CSC:} pack a CSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_csc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_CSC // pack a CSC matrix
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
GrB_Index **Ap, // col "pointers", Ap_size >= (ncols+1)*sizeof(int64_t)
GrB_Index **Ai, // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
void **Ax, // values, Ax_size >= nvals(A) * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ap_size, // size of Ap in bytes
GrB_Index Ai_size, // size of Ai in bytes
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
bool jumbled, // if true, indices in each column may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_CSC' packs a matrix from 3 user arrays in CSC format.
The \verb'GrB_Matrix A' must exist on input with the right type and dimensions.
No typecasting is done.
The arguments are identical to
\verb'GxB_Matrix_pack_CSR', except for how the 3 user arrays are
interpreted. The column ``pointer'' array has size \verb'ncols+1'. The row
indices of the columns are in \verb'Ai', and if \verb'jumbled' is false,
they must appear in ascending order in
each column. The corresponding numerical values are held in \verb'Ax'. The
row indices of column \verb'j' are held in \verb'Ai [Ap [j]...Ap [j+1]-1]',
and the corresponding numerical values are in the same locations in \verb'Ax'.
The same matrix from Equation~\ref{eqn:Aexample}in
the last section (repeated here):
\begin{equation}
A = \left[
\begin{array}{cccc}
4.5 & 0 & 3.2 & 0 \\
3.1 & 2.9 & 0 & 0.9 \\
0 & 1.7 & 3.0 & 0 \\
3.5 & 0.4 & 0 & 1.0 \\
\end{array}
\right]
\end{equation}
is held in CSC form as follows:
{\footnotesize
\begin{verbatim}
int64_t Ap [ ] = { 0, 3, 6, 8, 10 } ;
int64_t Ai [ ] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;
double Ax [ ] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ; \end{verbatim} }
That is, the row indices of column 1 (the second column) are in
\verb'Ai [3..5]', and the values in the same place in \verb'Ax',
since \verb'Ap [1] = 3' and \verb'Ap [2]-1 = 5'.
To iterate over the columns and entries of this matrix, the following code can
be used
(assuming it has type \verb'GrB_FP64'):
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [ncols] ;
for (int64_t j = 0 ; j < ncols ; j++)
{
// get A(:,j)
for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)
{
// get A(i,j)
int64_t i = Ai [p] ; // row index
double aij = Ax [iso ? 0 : p] ; // numerical value
}
} \end{verbatim}}
The method is identical to \verb'GxB_Matrix_pack_CSR'; just the format is
transposed.
If \verb'Ap [ncols]' is zero, then the content of the \verb'Ai' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_CSC:} unpack a CSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_csc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_CSC // unpack a CSC matrix
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
GrB_Index **Ap, // column "pointers"
GrB_Index **Ai, // row indices
void **Ax, // values
GrB_Index *Ap_size, // size of Ap in bytes
GrB_Index *Ai_size, // size of Ai in bytes
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
bool *jumbled, // if true, indices in each column may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_CSC' unpacks a matrix in CSC form.
If successful, the \verb'GrB_Matrix A' is returned with no entries.
The CSC format is in the three arrays
\verb'Ap', \verb'Ai', and \verb'Ax'. If the matrix has no entries, \verb'Ai'
and \verb'Ax' arrays are returned as \verb'NULL'; this is not an error, and
\verb'GxB_Matrix_pack_CSC' also allows these two arrays to be \verb'NULL' on
input when the matrix has no entries. After a successful unpack, the user
application is responsible for freeing these three arrays via \verb'free' (or
the \verb'free' function passed to \verb'GxB_init'). The CSC format is
described in Section~\ref{matrix_unpack_csc}.
This method takes $O(1)$ time if the matrix is already in CSC format
internally. Otherwise, the matrix is converted to CSC format and then
unpacked.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_HyperCSR:} pack a HyperCSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_hypercsr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_HyperCSR // pack a hypersparse CSR matrix
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
GrB_Index **Ap, // row "pointers", Ap_size >= (plen+1)*sizeof(int64_t)
GrB_Index **Ah, // row indices, Ah_size >= plen*sizeof(int64_t)
// where plen = 1 if nrows = 1, or nvec otherwise.
GrB_Index **Aj, // column indices, Aj_size >= nvals(A)*sizeof(int64_t)
void **Ax, // values, Ax_size >= nvals(A) * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ap_size, // size of Ap in bytes
GrB_Index Ah_size, // size of Ah in bytes
GrB_Index Aj_size, // size of Aj in bytes
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
GrB_Index nvec, // number of rows that appear in Ah
bool jumbled, // if true, indices in each row may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_HyperCSR' packs a matrix in hypersparse CSR format.
The hypersparse HyperCSR format is identical to the CSR format, except that the
\verb'Ap' array itself becomes sparse, if the matrix has rows that are
completely empty. An array \verb'Ah' of size \verb'nvec' provides a list of
rows that appear in the data structure. For example, consider
Equation~\ref{eqn:Ahyper}, which is a sparser version of the matrix in
Equation~\ref{eqn:Aexample}. Row 2 and column 1 of this matrix are all zero.
\begin{equation}
\label{eqn:Ahyper}
A = \left[
\begin{array}{cccc}
4.5 & 0 & 3.2 & 0 \\
3.1 & 0 & 0 & 0.9 \\
0 & 0 & 0 & 0 \\
3.5 & 0 & 0 & 1.0 \\
\end{array}
\right]
\end{equation}
The conventional CSR format would appear as follows. Since the third row (row
2) is all zero, accessing \verb'Ai [Ap [2] ... Ap [3]-1]' gives an empty set
(\verb'[2..1]'), and the number of entries in this row is
\verb'Ap [i+1] - Ap [i]' \verb'= Ap [3] - Ap [2] = 0'.
{\footnotesize
\begin{verbatim}
int64_t Ap [ ] = { 0, 2,2, 4, 5 } ;
int64_t Aj [ ] = { 0, 2, 0, 3, 0 3 }
double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ; \end{verbatim} }
A hypersparse CSR format for this same matrix would discard
these duplicate integers in \verb'Ap'. Doing so requires
another array, \verb'Ah', that keeps track of the rows that appear
in the data structure.
{\footnotesize
\begin{verbatim}
int64_t nvec = 3 ;
int64_t Ah [ ] = { 0, 1, 3 } ;
int64_t Ap [ ] = { 0, 2, 4, 5 } ;
int64_t Aj [ ] = { 0, 2, 0, 3, 0 3 }
double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ; \end{verbatim} }
Note that the \verb'Aj' and \verb'Ax' arrays are the same in the CSR and
HyperCSR formats. If \verb'jumbled' is false, the row indices in \verb'Ah'
must appear in ascending order, and no duplicates can appear. To iterate over
this data structure (assuming it has type \verb'GrB_FP64'):
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [nvec] ;
for (int64_t k = 0 ; k < nvec ; k++)
{
int64_t i = Ah [k] ; // row index
// get A(i,:)
for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
{
// get A(i,j)
int64_t j = Aj [p] ; // column index
double aij = Ax [iso ? 0 : p] ; // numerical value
}
} \end{verbatim}}
\vspace{-0.05in}
This is more complex than the CSR format, but it requires at most
$O(e)$ space, where $A$ is $m$-by-$n$ with $e$ = \verb'nvals' entries. The
CSR format requires $O(m+e)$ space. If $e << m$, then the size $m+1$
of \verb'Ap' can dominate the memory required. In the hypersparse form,
\verb'Ap' takes on size \verb'nvec+1', and \verb'Ah' has size \verb'nvec',
where \verb'nvec' is the number of rows that appear in the data structure.
The CSR format can be viewed as a dense array (of size \verb'nrows')
of sparse row vectors. By contrast, the hypersparse CSR format is a sparse
array (of size \verb'nvec') of sparse row vectors.
The pack takes $O(1)$ time. If successful, the four arrays \verb'Ah',
\verb'Ap', \verb'Aj', and \verb'Ax' are returned as \verb'NULL', and the
hypersparse \verb'GrB_Matrix A' is modified to contain the entries
they describe.
If the matrix has no entries, then the content of the \verb'Aj' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_HyperCSR:} unpack a HyperCSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_hypercsr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_HyperCSR // unpack a hypersparse CSR matrix
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
GrB_Index **Ap, // row "pointers"
GrB_Index **Ah, // row indices
GrB_Index **Aj, // column indices
void **Ax, // values
GrB_Index *Ap_size, // size of Ap in bytes
GrB_Index *Ah_size, // size of Ah in bytes
GrB_Index *Aj_size, // size of Aj in bytes
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
GrB_Index *nvec, // number of rows that appear in Ah
bool *jumbled, // if true, indices in each row may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_HyperCSR' unpacks a matrix in HyperCSR format.
If successful, the \verb'GrB_Matrix A' is returned with no entries.
The number of non-empty rows is
\verb'nvec'. The hypersparse CSR format is in the four arrays \verb'Ah',
\verb'Ap', \verb'Aj', and \verb'Ax'. If the matrix has no entries, the
\verb'Aj' and \verb'Ax' arrays are returned as \verb'NULL'; this is not an
error. After a successful unpack, the user application is responsible for
freeing these three arrays via \verb'free' (or the \verb'free' function passed
to \verb'GxB_init'). The hypersparse CSR format is described in
Section~\ref{matrix_pack_hypercsr}.
This method takes $O(1)$ time if the matrix is already in HyperCSR format
internally. Otherwise, the matrix is converted to HyperCSR format and then
unpacked.
In v7.3.0 and later, a hypersparse matrix \verb'A' also may include a hash
table for \verb'Ah', called the {\em hyper-hash}, based on \cite{Green19}. It
allows for fast lookups of entries in \verb'Ah'. The hyper-hash is not
exported by this method. Instead, it is discarded. Use
\verb'GxB_unpack_HyperHash' (Section~\ref{unpack_hyperhash}) to preserve it,
prior to calling this method. If the matrix is re-imported, and the hyper-hash
is not preserved, it is recomputed from \verb'Ah' when needed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_HyperCSC:} pack a HyperCSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_hypercsc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_HyperCSC // pack a hypersparse CSC matrix
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
GrB_Index **Ap, // col "pointers", Ap_size >= (plen+1)*sizeof(int64_t)
GrB_Index **Ah, // column indices, Ah_size >= plen*sizeof(int64_t)
// where plen = 1 if ncols = 1, or nvec otherwise.
GrB_Index **Ai, // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
void **Ax, // values, Ax_size >= nvals(A)*(type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ap_size, // size of Ap in bytes
GrB_Index Ah_size, // size of Ah in bytes
GrB_Index Ai_size, // size of Ai in bytes
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
GrB_Index nvec, // number of columns that appear in Ah
bool jumbled, // if true, indices in each column may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_HyperCSC' packs a matrix in hypersparse CSC format.
It is identical to \verb'GxB_Matrix_pack_HyperCSR', except the data
structure defined by the four arrays \verb'Ah', \verb'Ap', \verb'Ai', and
\verb'Ax' holds the matrix as a sparse array of \verb'nvec' sparse column
vectors. The following code iterates over the matrix,
assuming it has type \verb'GrB_FP64':
\vspace{-0.10in}
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [nvec] ;
for (int64_t k = 0 ; k < nvec ; k++)
{
int64_t j = Ah [k] ; // column index
// get A(:,j)
for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
{
// get A(i,j)
int64_t i = Ai [p] ; // row index
double aij = Ax [iso ? 0 : p] ; // numerical value
}
} \end{verbatim}}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_HyperCSC:} unpack a HyperCSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_hypercsc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_HyperCSC // unpack a hypersparse CSC matrix
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
GrB_Index **Ap, // column "pointers"
GrB_Index **Ah, // column indices
GrB_Index **Ai, // row indices
void **Ax, // values
GrB_Index *Ap_size, // size of Ap in bytes
GrB_Index *Ah_size, // size of Ah in bytes
GrB_Index *Ai_size, // size of Ai in bytes
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
GrB_Index *nvec, // number of columns that appear in Ah
bool *jumbled, // if true, indices in each column may be unsorted
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_HyperCSC' unpacks a matrix in HyperCSC form.
If successful, the \verb'GrB_Matrix A' is
returned with no entries.
The number of non-empty
rows is in \verb'nvec'. The hypersparse CSC format is in the four arrays
\verb'Ah', \verb'Ap', \verb'Ai', and \verb'Ax'. If the matrix has no entries,
the \verb'Ai' and \verb'Ax' arrays are returned as \verb'NULL'; this is not an
error. After a successful unpack, the user application is responsible for
freeing these three arrays via \verb'free' (or the \verb'free' function passed
to \verb'GxB_init'). The hypersparse CSC format is described in
Section~\ref{matrix_pack_hypercsc}.
This method takes $O(1)$ time if the matrix is already in HyperCSC format
internally. Otherwise, the matrix is converted to HyperCSC format and then
unpacked.
In v7.3.0 and later, a hypersparse matrix \verb'A' also may include a hash
table for \verb'Ah', called the {\em hyper-hash}, based on \cite{Green19}. It
allows for fast lookups of entries in \verb'Ah'. The hyper-hash is not
exported by this method. Instead, it is discarded. Use
\verb'GxB_unpack_HyperHash' (Section~\ref{unpack_hyperhash}) to preserve it,
prior to calling this method. If the matrix is re-imported, and the hyper-hash
is not preserved, it is recomputed from \verb'Ah' when needed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_unpack\_HyperHash:} unpack the hypersparse hash}
%-------------------------------------------------------------------------------
\label{unpack_hyperhash}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_unpack_HyperHash // move A->Y into Y
(
GrB_Matrix A, // matrix to modify
GrB_Matrix *Y, // hyper_hash matrix to move from A
const GrB_Descriptor desc // unused
) ;
\end{verbatim}
} \end{mdframed}
SuiteSparse:GraphBLAS v7.3.0 adds a new internal component to the
hypersparse matrix format: the {\em hyper-hash} \verb'GrB_Matrix' \verb'A->Y'.
The matrix provides a fast lookup into the hyperlist \verb'Ah'.
\verb'GxB_unpack_HyperHash' unpacks the hyper-hash from the hypersparse matrix
\verb'A'. Normally, this method is called immediately before calling one of
the two methods \verb'GxB_Matrix_unpack_Hyper(CSR/CSC)'. For example, to
unpack then pack a hypersparse CSC matrix:
{\footnotesize
\begin{verbatim}
GrB_Matrix Y = NULL ;
// to unpack all of A:
GxB_unpack_HyperHash (A, &Y, desc) ; // first unpack A->Y into Y
GxB_Matrix_unpack_HyperCSC (A, // then unpack the rest of A
&Ap, &Ah, &Ai, &Ax, &Ap_size, &Ah_size, &Ai_size, &Ax_size,
&iso, &nvec, &jumbled, descriptor) ;
// use the unpacked contents of A here, but do not change Ah or nvec.
...
// to pack the data back into A:
GxB_Matrix_pack_HyperCSC (A, ...) ; // pack most of A, except A->Y
GxB_pack_HyperHash (A, &Y, desc) ; // then pack A->Y \end{verbatim}}
The same process is used with \verb'GxB_Matrix_unpack_HyperCSR'.
If \verb'A' is not hypersparse on input to \verb'GxB_unpack_HyperHash', or if
\verb'A' is hypersparse but does yet not have a hyper-hash, then \verb'Y' is
returned as \verb'NULL'. This is not an error condition, and
\verb'GrB_SUCCESS' is returned. The hyper-hash of a hypersparse matrix
\verb'A' is a matrix that provides quick access to the inverse of \verb'Ah'.
It is not always needed and may not be present. It is left as pending work to
be computed when needed. To ensure that the hyper-hash is constructed for a
hypersparse matrix \verb'A', use \verb'GrB_Matrix_wait (A, GrB_MATERIALIZE)'
If \verb'Y' is moved from \verb'A' and returned as non-\verb'NULL' to the
caller, then it is the responsibility of the user application to free it, or to
re-pack it back into \verb'A' via \verb'GxB_pack_HyperHash', as shown in the
example above.
If this method is called to remove the hyper-hash \verb'Y' from the hypersparse
matrix \verb'A', and then \verb'GrB_Matrix_wait (A, GrB_MATERIALZE)' is called,
a new hyper-hash matrix is constructed for \verb'A'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_pack\_HyperHash:} pack the hypersparse hash}
%-------------------------------------------------------------------------------
\label{pack_hyperhash}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_pack_HyperHash // move Y into A->Y
(
GrB_Matrix A, // matrix to modify
GrB_Matrix *Y, // hyper_hash matrix to pack into A
const GrB_Descriptor desc // unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_pack_HyperHash' assigns the input \verb'Y' matrix as the \verb'A->Y'
hyper-hash of the hypersparse matrix \verb'A'. Normally, this method is called
immediately after calling one of the two methods
\verb'GxB_Matrix_pack_Hyper(CSR/CSC)'.
If \verb'A' is not hypersparse on input to \verb'GxB_pack_HyperHash', or if
\verb'A' already has a hyper-hash matrix, or if \verb'Y' is \verb'NULL' on
input, then nothing happens and \verb'Y' is unchanged. This is not an error
condition and this method returns \verb'GrB_SUCCESS'. In this case, if
\verb'Y' is non-\verb'NULL' after calling this method, it owned by the user
application and freeing it is the responsibility of the user application.
If \verb'Y' is moved into \verb'A' as its hyper-hash, then the caller's
\verb'Y' is set to \verb'NULL' to indicate that it has been moved into
\verb'A'. It is no longer owned by the caller, but is instead becomes an
opaque component of the \verb'A' matrix. It will be freed by
SuiteSparse:GraphBLAS if \verb'A' is modified or freed.
Results are undefined if the input \verb'Y' was not created by
\verb'GxB_unpack_HyperHash' (see the example in Section \ref{unpack_hyperhash})
or if the \verb'Ah' contents or \verb'nvec' of the matrix \verb'A' are modified
after they were unpacked by \verb'GxB_Matrix_unpack_Hyper(CSR/CSC)'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_BitmapR:} pack a BitmapR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_bitmapr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_BitmapR // pack a bitmap matrix, held by row
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
int8_t **Ab, // bitmap, Ab_size >= nrows*ncols
void **Ax, // values, Ax_size >= nrows*ncols * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ab_size, // size of Ab in bytes
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
GrB_Index nvals, // # of entries in bitmap
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_BitmapR' packs a matrix from 2 user arrays in BitmapR
format.
The matrix must exist on input with the right type and dimensions. No typecasting is done.
The \verb'GrB_Matrix' \verb'A' is populated from the arrays \verb'Ab' and
\verb'Ax', each of which are size \verb'nrows*ncols'. Both arrays must have
been created with the ANSI C \verb'malloc', \verb'calloc', or \verb'realloc'
functions (by default), or by the corresponding \verb'malloc_function',
\verb'calloc_function', or \verb'realloc_function' provided to \verb'GxB_init'.
These arrays define the pattern and values of the new matrix \verb'A':
\begin{itemize}
\item \verb'int8_t Ab [nrows*ncols] ;' The \verb'Ab' array defines which
entries of \verb'A' are present. If \verb'Ab[i*ncols+j]=1', then the entry
$A(i,j)$ is present, with value \verb'Ax[i*ncols+j]'. If
\verb'Ab[i*ncols+j]=0', then the entry $A(i,j)$ is not present. The \verb'Ab'
array must contain only 0s and 1s. The \verb'nvals' input must exactly match
the number of 1s in the \verb'Ab' array.
\item \verb'ctype Ax [nrows*ncols] ;' The \verb'Ax' array defines the values
of entries in the matrix. It is passed in as a \verb'(void *)' pointer, but it
must point to an array of size \verb'nrows*ncols' values, each of size
\verb'sizeof(ctype)', where \verb'ctype' is the exact type in C that
corresponds to the \verb'GrB_Type type' parameter. That is, if \verb'type' is
\verb'GrB_INT32', then \verb'ctype' is \verb'int32_t'. User types may be used,
just the same as built-in types.
If \verb'Ab[p]' is zero, the value of \verb'Ax[p]' is ignored.
\end{itemize}
To iterate over the rows and entries of this matrix, the following code can be
used (assuming it has type \verb'GrB_FP64'):
{\footnotesize
\begin{verbatim}
for (int64_t i = 0 ; i < nrows ; i++)
{
// get A(i,:)
for (int64_t j = 0 ; j < ncols ; j++)
{
// get A(i,j)
int64_t p = i*ncols + j ;
if (Ab [p])
{
double aij = Ax [iso ? 0 : p] ; // numerical value
}
}
} \end{verbatim}}
On successful pack of \verb'A', the two pointers \verb'Ab', \verb'Ax',
are set to \verb'NULL' on output. This denotes to the user
application that it is no longer responsible for freeing these arrays.
Internally, GraphBLAS has moved these arrays into its internal data structure.
They will eventually be freed no later than when the user does
\verb'GrB_free(&A)', but they may be freed or resized later, if the matrix
changes. If an unpack is performed, the freeing of these three arrays again
becomes the responsibility of the user application.
The \verb'GxB_Matrix_pack_BitmapR' function will rarely fail, since it allocates
just $O(1)$ space. If it does fail, it returns \verb'GrB_OUT_OF_MEMORY',
and it leaves the two user arrays unmodified. They are still owned by
the user application, which is eventually responsible for freeing them with
\verb'free(Ab)', etc.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_BitmapR:} unpack a BitmapR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_bitmapr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_BitmapR // unpack a bitmap matrix, by row
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
int8_t **Ab, // bitmap
void **Ax, // values
GrB_Index *Ab_size, // size of Ab in bytes
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
GrB_Index *nvals, // # of entries in bitmap
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_BitmapR' unpacks a matrix in BitmapR form.
If successful, the \verb'GrB_Matrix A' is returned with no entries.
The number of entries is in \verb'nvals'.
The BitmapR format is two arrays \verb'Ab', and \verb'Ax'. After an
unpack, the user application is responsible for freeing these
arrays via \verb'free' (or the \verb'free' function passed to \verb'GxB_init').
The BitmapR format is described in Section~\ref{matrix_pack_bitmapr}.
If \verb'Ab[p]' is zero, the value of \verb'Ax[p]' is undefined.
This method takes $O(1)$ time if the matrix is already in BitmapR format.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_BitmapC:} pack a BitmapC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_bitmapc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_BitmapC // pack a bitmap matrix, held by column
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
int8_t **Ab, // bitmap, Ab_size >= nrows*ncols
void **Ax, // values, Ax_size >= nrows*ncols * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ab_size, // size of Ab in bytes
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
GrB_Index nvals, // # of entries in bitmap
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_BitmapC' packs a matrix from 2 user arrays in BitmapC
format. It is identical to \verb'GxB_Matrix_pack_BitmapR', except that the
entry $A(i,j)$ is held in \verb'Ab[i+j*nrows]' and \verb'Ax[i+j*nrows]',
in column-major format.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_BitmapC:} unpack a BitmapC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_bitmapc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_BitmapC // unpack a bitmap matrix, by col
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
int8_t **Ab, // bitmap
void **Ax, // values
GrB_Index *Ab_size, // size of Ab in bytes
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
GrB_Index *nvals, // # of entries in bitmap
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_BitmapC' unpacks a matrix in BitmapC form.
It is identical to \verb'GxB_Matrix_unpack_BitmapR', except that the
entry $A(i,j)$ is held in \verb'Ab[i+j*nrows]' and \verb'Ax[i+j*nrows]',
in column-major format.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_FullR:} pack a FullR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_fullr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_FullR // pack a full matrix, held by row
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
void **Ax, // values, Ax_size >= nrows*ncols * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_FullR' packs a matrix from a user array in FullR format.
For the \verb'FullR' format, t value of $A(i,j)$ is \verb'Ax[i*ncols+j]'. To
iterate over the rows and entries of this matrix, the following code can be
used (assuming it has type \verb'GrB_FP64'). If \verb'A' is both full and iso,
it takes $O(1)$ memory, regardless of \verb'nrows' and \verb'ncols'.
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
for (int64_t i = 0 ; i < nrows ; i++)
{
for (int64_t j = 0 ; j < ncols ; j++)
{
int64_t p = i*ncols + j ;
double aij = Ax [iso ? 0 : p] ; // numerical value of A(i,j)
}
} \end{verbatim}}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_FullR:} unpack a FullR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_fullr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_FullR // unpack a full matrix, by row
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
void **Ax, // values
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_FullR' unpacks a matrix in FullR form. It is identical
to \verb'GxB_Matrix_unpack_BitmapR', except that all entries must be present.
Prior to unpack, \verb'GrB_Matrix_nvals (&nvals, A)' must return
\verb'nvals' equal to \verb'nrows*ncols'. Otherwise, if the \verb'A' is
unpacked with \newline \verb'GxB_Matrix_unpack_FullR', an error is returned
(\verb'GrB_INVALID_VALUE') and the matrix is not unpacked.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_FullC:} pack a FullC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_fullc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_FullC // pack a full matrix, held by column
(
GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)
void **Ax, // values, Ax_size >= nrows*ncols * (type size)
// or Ax_size >= (type size), if iso is true
GrB_Index Ax_size, // size of Ax in bytes
bool iso, // if true, A is iso
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_pack_FullC' packs a matrix from a user arrays in FullC
format. For the \verb'FullC' format,
the value of $A(i,j)$ is \verb'Ax[i+j*nrows]'.
To iterate over the rows and entries of this matrix, the following code can be
used (assuming it has type \verb'GrB_FP64').
If \verb'A' is both full and iso, it takes $O(1)$ memory,
regardless of \verb'nrows' and \verb'ncols'.
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
for (int64_t i = 0 ; i < nrows ; i++)
{
for (int64_t j = 0 ; j < ncols ; j++)
{
int64_t p = i + j*nrows ;
double aij = Ax [iso ? 0 : p] ; // numerical value of A(i,j)
}
} \end{verbatim}}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_FullC:} unpack a FullC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_fullc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_FullC // unpack a full matrix, by column
(
GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)
void **Ax, // values
GrB_Index *Ax_size, // size of Ax in bytes
bool *iso, // if true, A is iso
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_unpack_FullC' unpacks a matrix in FullC form. It is identical
to \verb'GxB_Matrix_unpack_BitmapC', except that all entries must be present.
That is, prior to unpack, \verb'GrB_Matrix_nvals (&nvals, A)' must return
\verb'nvals' equal to \verb'nrows*ncols'. Otherwise, if the \verb'A' is
unpacked with \newline \verb'GxB_Matrix_unpack_FullC', an error is returned
(\verb'GrB_INVALID_VALUE') and the matrix is not unpacked.
\newpage
%===============================================================================
\subsection{GraphBLAS import/export: using copy semantics} %====================
%===============================================================================
\label{GrB_import_export}
The v2.0 C API includes import/export methods for matrices (not vectors) using
a different strategy as compared to the \verb'GxB*pack/unpack*' methods. The
\verb'GxB' methods are based on {\em move semantics}, in which ownership of
arrays is passed between SuiteSparse:GraphBLAS and the user application. This
allows the \verb'GxB*pack/unpack*' methods to work in $O(1)$ time, and require
no additional memory, but it requires that GraphBLAS and the user application
agree on which memory manager to use. This is done via \verb'GxB_init'. This
allows GraphBLAS to \verb'malloc' an array that can be later \verb'free'd by
the user application, and visa versa.
The \verb'GrB' import/export methods take a different approach. The data
is always copied in and out between the opaque GraphBLAS matrix and the
user arrays. This takes $\Omega(e)$ time, if the matrix has $e$ entries,
and requires more memory. It has the advantage that it does not require
GraphBLAS and the user application to agree on what memory manager to use,
since no ownership of allocated arrays is changed.
The format for \verb'GrB_Matrix_import' and \verb'GrB_Matrix_export' is
controlled by the following enum:
{\footnotesize
\begin{verbatim}
typedef enum
{
GrB_CSR_FORMAT = 0, // CSR format (equiv to GxB_SPARSE with GxB_BY_ROW)
GrB_CSC_FORMAT = 1, // CSC format (equiv to GxB_SPARSE with GxB_BY_COL)
GrB_COO_FORMAT = 2 // triplet format (like input to GrB*build)
}
GrB_Format ; \end{verbatim}}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_import:} import a matrix}
%-------------------------------------------------------------------------------
\label{GrB_matrix_import}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_import // import a matrix
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // number of rows of the matrix
GrB_Index ncols, // number of columns of the matrix
const GrB_Index *Ap, // pointers for CSR, CSC, column indices for COO
const GrB_Index *Ai, // row indices for CSR, CSC
const <type> *Ax, // values
GrB_Index Ap_len, // number of entries in Ap (not # of bytes)
GrB_Index Ai_len, // number of entries in Ai (not # of bytes)
GrB_Index Ax_len, // number of entries in Ax (not # of bytes)
GrB_Format format // import format
) ;
\end{verbatim}
} \end{mdframed}
The \verb'GrB_Matrix_import' method copies from user-provided arrays into an
opaque \verb'GrB_Matrix' and \verb'GrB_Matrix_export' copies data out, from an
opaque \verb'GrB_Matrix' into user-provided arrays.
The suffix \verb'TYPE' in the prototype above is one of \verb'BOOL',
\verb'INT8', \verb'INT16', etc, for built-n types, or \verb'UDT' for
user-defined types. The type of the \verb'Ax' array must match this type. No
typecasting is performed.
Unlike the \verb'GxB'
pack/unpack methods, memory is not handed off between the user application
and GraphBLAS. The three arrays \verb'Ap', \verb'Ai'. and \verb'Ax' are not
modified, and are still owned by the user application when the method finishes.
The matrix can be imported in one of three different formats:
\begin{packed_itemize}
\item \verb'GrB_CSR_FORMAT': % CSR format (equiv to GxB_SPARSE with GxB_BY_ROW)
Compressed-row format. \verb'Ap' is an array of size \verb'nrows+1'.
The arrays \verb'Ai' and \verb'Ax' are of size \verb'nvals = Ap [nrows]',
and \verb'Ap[0]' must be zero.
The column indices of entries in the \verb'i'th row appear in
\verb'Ai[Ap[i]...Ap[i+1]-1]', and the values of those entries appear in
the same locations in \verb'Ax'.
The column indices need not be in any particular order.
\item \verb'GrB_CSC_FORMAT': % CSC format (equiv to GxB_SPARSE with GxB_BY_COL)
Compressed-column format. \verb'Ap' is an array of size \verb'ncols+1'.
The arrays \verb'Ai' and \verb'Ax' are of size \verb'nvals = Ap [ncols]',
and \verb'Ap[0]' must be zero.
The row indices of entries in the \verb'j'th column appear in
\verb'Ai[Ap[j]...Ap[j+1]-1]', and the values of those entries appear in
the same locations in \verb'Ax'.
The row indices need not be in any particular order.
\item \verb'GrB_COO_FORMAT': % triplet format (like input to GrB*build)
Coordinate format. This is the same format as \newline
\verb'GrB_Matrix_build'.
The three arrays \verb'Ap', \verb'Ai', and \verb'Ax' have the same
size. The \verb'k'th tuple has row index \verb'Ai[k]',
column index \verb'Ap[k]', and value \verb'Ax[k]'. The tuples can
appear any order, but no duplicates are permitted.
% \item \verb'GrB_DENSE_ROW_FORMAT': % FullR format (GxB_FULL with GxB_BY_ROW)
% Dense matrix format, held by row. Only the \verb'Ax' array is used, of
% size \verb'nrows*ncols'.
% It holds the matrix in dense format, in row major order.
%
% \item \verb'GrB_DENSE_COL_FORMAT': % FullC format (GxB_FULL with GxB_BY_ROW)
% Dense matrix format, held by column. Only the \verb'Ax' array is used, of
% size \verb'nrows*ncols'.
% It holds the matrix in dense format, in column major order.
\end{packed_itemize}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_export:} export a matrix}
%-------------------------------------------------------------------------------
\label{GrB_matrix_export}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_export // export a matrix
(
GrB_Index *Ap, // pointers for CSR, CSC, column indices for COO
GrB_Index *Ai, // col indices for CSR/COO, row indices for CSC
<type> *Ax, // values (must match the type of A_input)
GrB_Index *Ap_len, // number of entries in Ap (not # of bytes)
GrB_Index *Ai_len, // number of entries in Ai (not # of bytes)
GrB_Index *Ax_len, // number of entries in Ax (not # of bytes)
GrB_Format format, // export format
GrB_Matrix A // matrix to export
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_export' copies the contents of a matrix into three
user-provided arrays, using any one of the three different formats
described in Section~\ref{GrB_matrix_import}. The size of the arrays must be
at least as large as the lengths returned by \verb'GrB_Matrix_exportSize'. The
matrix \verb'A' is not modified.
On input, the size of the three arrays \verb'Ap', \verb'Ai', and \verb'Ax' is
given by \verb'Ap_len', \verb'Ai_len', and \verb'Ax_len', respectively. These
values are in terms of the number of entries in these arrays, not the number of
bytes. On output, these three value are adjusted to report the number of
entries written to the three arrays.
The suffix \verb'TYPE' in the prototype above is one of \verb'BOOL',
\verb'INT8', \verb'INT16', etc, for built-n types, or \verb'UDT' for
user-defined types. The type of the \verb'Ax' array must match this type. No
typecasting is performed.
% The \verb'GrB_DENSE_ROW_FORMAT' and \verb'GrB_DENSE_COL_FORMAT' formats can
% only be used if all entries are present in the matrix. That is,
% \verb'GrB_Matrix_nvals (&nvals,A)' must return \verb'nvals' equal to
% \verb'nrows*ncols'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_exportSize:} determine size of export}
%-------------------------------------------------------------------------------
\label{export_size}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_exportSize // determine sizes of user arrays for export
(
GrB_Index *Ap_len, // # of entries required for Ap (not # of bytes)
GrB_Index *Ai_len, // # of entries required for Ai (not # of bytes)
GrB_Index *Ax_len, // # of entries required for Ax (not # of bytes)
GrB_Format format, // export format
GrB_Matrix A // matrix to export
) ;
\end{verbatim}
} \end{mdframed}
Returns the required sizes of the arrays \verb'Ap', \verb'Ai', and \verb'Ax'
for exporting a matrix using \verb'GrB_Matrix_export', using the same
\verb'format'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_exportHint:} determine best export format}
%-------------------------------------------------------------------------------
\label{export_hint}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_exportHint // suggest the best export format
(
GrB_Format *format, // export format
GrB_Matrix A // matrix to export
) ;
\end{verbatim}
} \end{mdframed}
This method suggests the most efficient format for the export of a given
matrix. For SuiteSparse:GraphBLAS, the hint depends on the current
format of the \verb'GrB_Matrix':
\begin{packed_itemize}
\item \verb'GxB_SPARSE', \verb'GxB_BY_ROW': export as \verb'GrB_CSR_FORMAT'
\item \verb'GxB_SPARSE', \verb'GxB_BY_COL': export as \verb'GrB_CSC_FORMAT'
\item \verb'GxB_HYPERSPARSE': export as \verb'GrB_COO_FORMAT'
\item \verb'GxB_BITMAP', \verb'GxB_BY_ROW': export as \verb'GrB_CSR_FORMAT'
\item \verb'GxB_BITMAP', \verb'GxB_BY_COL': export as \verb'GrB_CSC_FORMAT'
%\item \verb'GxB_FULL', \verb'GxB_BY_ROW': export as \verb'GrB_DENSE_ROW_FORMAT'
%\item \verb'GxB_FULL', \verb'GxB_BY_COL': export as \verb'GrB_DENSE_COL_FORMAT'
\item \verb'GxB_FULL', \verb'GxB_BY_ROW': export as \verb'GrB_CSR_FORMAT'
\item \verb'GxB_FULL', \verb'GxB_BY_COL': export as \verb'GrB_CSC_FORMAT'
\end{packed_itemize}
\newpage
%===============================================================================
\subsection{Sorting methods}
%===============================================================================
\label{sorting_methods}
\verb'GxB_Matrix_sort' provides a mechanism to sort all the rows or
all the columns of a matrix, and \verb'GxB_Vector_sort' sorts all the
entries in a vector.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_sort:} sort a vector}
%-------------------------------------------------------------------------------
\label{vector_sort}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_sort
(
// output:
GrB_Vector w, // vector of sorted values
GrB_Vector p, // vector containing the permutation
// input
GrB_BinaryOp op, // comparator op
GrB_Vector u, // vector to sort
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_sort' is identical to sorting the single column of an
\verb'n'-by-1 matrix. The descriptor is ignored, except to control the number
of threads to use. Refer to Section \ref{matrix_sort} for details.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_sort:} sort the rows/columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_sort}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_sort
(
// output:
GrB_Matrix C, // matrix of sorted values
GrB_Matrix P, // matrix containing the permutations
// input
GrB_BinaryOp op, // comparator op
GrB_Matrix A, // matrix to sort
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_sort' sorts all the rows or all the columns of a matrix.
Each row (or column) is sorted separately. The rows are sorted by default.
To sort the columns, use \verb'GrB_DESC_T0'. A comparator operator is
provided to define the sorting order (ascending or descending).
For example, to sort a \verb'GrB_FP64' matrix in ascending order,
use \verb'GrB_LT_FP64' as the \verb'op', and to sort in descending order,
use \verb'GrB_GT_FP64'.
The \verb'op' must have a return value of \verb'GrB_BOOL', and the types of
its two inputs must be the same. The entries in \verb'A' are typecasted to
the inputs of the \verb'op', if necessary. Matrices with user-defined types
can be sorted with a user-defined comparator operator, whose two input types
must match the type of \verb'A', and whose output is \verb'GrB_BOOL'.
The two matrix outputs are \verb'C' and \verb'P'. Any entries present on input
in \verb'C' or \verb'P' are discarded on output. The type of \verb'C' must
match the type of \verb'A' exactly. The dimensions of \verb'C', \verb'P', and
\verb'A' must also match exactly (even with the \verb'GrB_DESC_T0'
descriptor).
With the default sort (by row), suppose \verb'A(i,:)' contains \verb'k'
entries. In this case, \verb'C(i,0:k-1)' contains the values of those entries
in sorted order, and \verb'P(i,0:k-1)' contains their corresponding column
indices in the matrix \verb'A'. If two values are the same, ties are broken
according column index.
If the matrix is sorted by column, and \verb'A(:,j)' contains \verb'k' entries,
then \verb'C(0:k-1,j)' contains the values of those entries in sorted order,
and \verb'P(0:k-1,j)' contains their corresponding row indices in the matrix
\verb'A'. If two values are the same, ties are broken according row index.
The outputs \verb'C' and \verb'P' are both optional; either one (but not both)
may be \verb'NULL', in which case that particular output matrix is not
computed.
\newpage
%===============================================================================
\subsection{GraphBLAS descriptors: {\sf GrB\_Descriptor}} %=====================
%===============================================================================
\label{descriptor}
A GraphBLAS {\em descriptor} modifies the behavior of a GraphBLAS operation.
If the descriptor is \verb'GrB_NULL', defaults are used.
The access to these parameters and their values is governed
by two \verb'enum' types, \verb'GrB_Desc_Field' and \verb'GrB_Desc_Value':
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
#define GxB_NTHREADS 5 // for both GrB_Desc_field and GxB_Option_field
#define GxB_CHUNK 7
typedef enum
{
GrB_OUTP = 0, // descriptor for output of a method
GrB_MASK = 1, // descriptor for the mask input of a method
GrB_INP0 = 2, // descriptor for the first input of a method
GrB_INP1 = 3, // descriptor for the second input of a method
GxB_DESCRIPTOR_NTHREADS = GxB_NTHREADS, // number of threads to use
GxB_DESCRIPTOR_CHUNK = GxB_CHUNK, // chunk size for small problems
GxB_AxB_METHOD = 1000, // descriptor for selecting C=A*B algorithm
GxB_SORT = 35 // control sort in GrB_mxm
GxB_COMPRESSION = 36, // select compression for serialize
GxB_IMPORT = 37, // secure vs fast pack
}
GrB_Desc_Field ;
typedef enum
{
// for all GrB_Descriptor fields:
GxB_DEFAULT = 0, // default behavior of the method
// for GrB_OUTP only:
GrB_REPLACE = 1, // clear the output before assigning new values to it
// for GrB_MASK only:
GrB_COMP = 2, // use the complement of the mask
GrB_STRUCTURE = 4, // use the structure of the mask
// for GrB_INP0 and GrB_INP1 only:
GrB_TRAN = 3, // use the transpose of the input
// for GxB_AxB_METHOD only:
GxB_AxB_GUSTAVSON = 1001, // gather-scatter saxpy method
GxB_AxB_DOT = 1003, // dot product
GxB_AxB_HASH = 1004, // hash-based saxpy method
GxB_AxB_SAXPY = 1005 // saxpy method (any kind)
// for GxB_IMPORT only:
GxB_SECURE_IMPORT = 502 // GxB*_pack* methods trust their input data
}
GrB_Desc_Value ;
\end{verbatim} } \end{mdframed}
\newpage
\begin{itemize}
\item \verb'GrB_OUTP' is a parameter that modifies the output of a
GraphBLAS operation. In the default case, the output is not cleared, and
${\bf Z = C \odot T}$ then ${\bf C \langle M \rangle = Z}$ are computed
as-is, where ${\bf T}$ is the results of the particular GraphBLAS
operation.
In the non-default case, ${\bf Z = C \odot T}$ is first computed, using the
results of ${\bf T}$ and the accumulator $\odot$. After this is done, if
the \verb'GrB_OUTP' descriptor field is set to \verb'GrB_REPLACE', then the
output is cleared of its entries. Next, the assignment ${\bf C \langle M
\rangle = Z}$ is performed.
\item \verb'GrB_MASK' is a parameter that modifies the \verb'Mask',
even if the mask is not present.
If this parameter is set to its default value, and if the mask is not
present (\verb'Mask==NULL') then implicitly \verb'Mask(i,j)=1' for all
\verb'i' and \verb'j'. If the mask is present then \verb'Mask(i,j)=1'
means that \verb'C(i,j)' is to be modified by the ${\bf C \langle M \rangle
= Z}$ update. Otherwise, if \verb'Mask(i,j)=0', then \verb'C(i,j)' is not
modified, even if \verb'Z(i,j)' is an entry with a different value; that
value is simply discarded.
If the \verb'GrB_MASK' parameter is set to \verb'GrB_COMP', then the
use of the mask is complemented. In this case, if the mask is not present
(\verb'Mask==NULL') then implicitly \verb'Mask(i,j)=0' for all \verb'i' and
\verb'j'. This means that none of ${\bf C}$ is modified and the entire
computation of ${\bf Z}$ might as well have been skipped. That is, a
complemented empty mask means no modifications are made to the output
object at all, except perhaps to clear it in accordance with the
\verb'GrB_OUTP' descriptor. With a complemented mask, if the mask is
present then \verb'Mask(i,j)=0' means that \verb'C(i,j)' is to be modified
by the ${\bf C \langle M \rangle = Z}$ update. Otherwise, if
\verb'Mask(i,j)=1', then \verb'C(i,j)' is not modified, even if
\verb'Z(i,j)' is an entry with a different value; that value is simply
discarded.
If the \verb'GrB_MASK' parameter is set to \verb'GrB_STRUCTURE',
then the values of the mask are ignored, and just the pattern of the
entries is used. Any entry \verb'M(i,j)' in the pattern is treated as if
it were true.
The \verb'GrB_COMP' and \verb'GrB_STRUCTURE' settings can be combined,
either by setting the mask option twice (once with each value), or by
setting the mask option to \verb'GrB_COMP+GrB_STRUCTURE' (the latter is an
extension to the specification).
Using a parameter to complement the \verb'Mask' is very useful because
constructing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in \verb'C'
that should be modified is very small, then use a sparse mask without
complementing it. If the number of places in \verb'C' that should
be protected from modification is very small, then use a sparse mask
to indicate those places, and use a descriptor \verb'GrB_MASK' that
complements the use of the mask.
\item \verb'GrB_INP0' and \verb'GrB_INP1' modify the use of the
first and second input matrices \verb'A' and \verb'B' of the GraphBLAS
operation.
If the \verb'GrB_INP0' is set to \verb'GrB_TRAN', then \verb'A' is
transposed before using it in the operation. Likewise, if
\verb'GrB_INP1' is set to \verb'GrB_TRAN', then the second input,
typically called \verb'B', is transposed.
Vectors and scalars are never transposed via the descriptor. If a method's
first parameter is a matrix and the second a vector or scalar, then
\verb'GrB_INP0' modifies the matrix parameter and
\verb'GrB_INP1' is ignored. If a method's first parameter is a
vector or scalar and the second a matrix, then \verb'GrB_INP1'
modifies the matrix parameter and \verb'GrB_INP0' is ignored.
To clarify this in each function, the inputs are labeled as
\verb'first input:' and \verb'second input:' in the function signatures.
\item \verb'GxB_AxB_METHOD' suggests the method that should be
used to compute \verb'C=A*B'. All the methods compute the same result,
except they may have different floating-point roundoff errors. This
descriptor should be considered as a hint; SuiteSparse:GraphBLAS is
free to ignore it.
\begin{itemize}
\item \verb'GxB_DEFAULT' means that a method is selected automatically.
\item \verb'GxB_AxB_SAXPY': select any saxpy-based method:
\verb'GxB_AxB_GUSTAVSON', and/or
\verb'GxB_AxB_HASH', or any mix of the two,
in contrast to the dot-product method.
\item \verb'GxB_AxB_GUSTAVSON': an extended version of Gustavson's method
\cite{Gustavson78}, which is a very good general-purpose method, but
sometimes the workspace can be too large. Assuming all matrices are stored
by column, it computes \verb'C(:,j)=A*B(:,j)' with a sequence of {\em
saxpy} operations (\verb'C(:,j)+=A(:,k)*B(k:,j)' for each nonzero
\verb'B(k,j)'). In the {\em coarse Gustavson} method, each internal thread
requires workspace of size $m$, to the number of rows of \verb'C', which is
not suitable if the matrices are extremely sparse or if there are many
threads. For the {\em fine Gustavson} method, threads can share workspace
and update it via atomic operations. If all matrices are stored by row,
then it computes \verb'C(i,:)=A(i,:)*B' in a sequence of sparse {\em saxpy}
operations, and using workspace of size $n$ per thread, or group of
threads, corresponding to the number of columns of \verb'C'.
\item \verb'GxB_AxB_HASH': a hash-based method, based on
\cite{10.1145/3229710.3229720}. It is very efficient for hypersparse
matrices, matrix-vector-multiply, and when $|{\bf B}|$ is small.
SuiteSparse:GraphBLAS includes a {\em coarse hash} method, in which
each thread has its own hash workspace, and a {\em fine hash}
method, in which groups of threads share a single hash workspace,
as concurrent data structure, using atomics.
% [2] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Buluc. 2018.
% High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore
% Architectures. In Proc. 47th Intl. Conf. on Parallel Processing (ICPP '18).
% Association for Computing Machinery, New York, NY, USA, Article 34, 1–10.
% DOI:https://doi.org/10.1145/3229710.3229720
\item \verb'GxB_AxB_DOT': computes \verb"C(i,j)=A(i,:)*B(j,:)'", for each
entry \verb'C(i,j)'. If the mask is present and not complemented, only
entries for which \verb'M(i,j)=1' are computed. This is a very specialized
method that works well only if the mask is present, very sparse, and not
complemented, when \verb'C' is small, or when \verb'C' is bitmap or full.
For example, it works very well
when \verb'A' and \verb'B' are tall and thin, and \verb"C<M>=A*B'" or
\verb"C=A*B'" are computed. These expressions assume all matrices are in
CSR format. If in CSC format, then the dot-product method used for
\verb"A'*B". The method is impossibly slow if \verb'C' is large and the
mask is not present, since it takes $\Omega(mn)$ time if \verb'C' is
$m$-by-$n$ in that case. It does not use any workspace at all. Since it
uses no workspace, it can work very well for extremely sparse or
hypersparse matrices, when the mask is present and not complemented.
\end{itemize}
\item \verb'GxB_NTHREADS' controls how many threads a method uses.
By default (if set to zero, or \verb'GxB_DEFAULT'), all available threads
are used. The maximum available threads is controlled by the global
setting, which is \verb'omp_get_max_threads ( )' by default. If set to
some positive integer \verb'nthreads' less than this maximum, at most
\verb'nthreads' threads will be used. See Section~\ref{omp_parallelism}
for details.
\item \verb'GxB_CHUNK' is a \verb'double' value that controls how many threads
a method uses for small problems. See Section~\ref{omp_parallelism} for
details.
\item \verb'GxB_SORT' provides a hint to \verb'GrB_mxm', \verb'GrB_mxv',
\verb'GrB_vxm', and \verb'GrB_reduce' (to vector). These methods can leave
the output matrix or vector in a jumbled state, where the final sort is
left as pending work. This is typically fastest, since some algorithms can
tolerate jumbled matrices on input, and sometimes the sort can be skipped
entirely. However, if the matrix or vector will be immediately exported in
unjumbled form, or provided as input to a method that requires it to not be
jumbled, then sorting it during the matrix multiplication is faster.
By default, these methods leave the result in jumbled form (a {\em lazy
sort}), if \verb'GxB_SORT' is set to zero (\verb'GxB_DEFAULT'). A nonzero
value will inform the matrix multiplication to sort its result, instead.
\item \verb'GxB_COMPRESSION' selects the compression method for serialization.
The default is ZSTD (level 1). See Section~\ref{serialize_deserialize} for
other options.
\item \verb'GxB_IMPORT' informs the \verb'GxB' pack methods
that they can trust their input data, or not. The default is to trust
the input, for faster packing. If the data is being packed from an
untrusted source, then additional checks should be made, and the
following descriptor setting should be used:
{\footnotesize
\begin{verbatim}
GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ; \end{verbatim}}
\end{itemize}
The next sections describe the methods for a \verb'GrB_Descriptor':
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Descriptor_new' & create a descriptor & \ref{descriptor_new} \\
\verb'GrB_Descriptor_wait' & wait for a descriptor & \ref{descriptor_wait} \\
\verb'GrB_Descriptor_set' & set a parameter in a descriptor & \ref{descriptor_set} \\
\verb'GxB_Desc_set' & set a parameter in a descriptor & \ref{desc_set} \\
\verb'GxB_Desc_get' & get a parameter from a descriptor & \ref{desc_get} \\
\verb'GrB_Descriptor_free' & free a descriptor & \ref{descriptor_free} \\
\hline
\end{tabular}
}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_new:} create a new descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_new // create a new descriptor
(
GrB_Descriptor *descriptor // handle of descriptor to create
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Descriptor_new' creates a new descriptor, with all fields set to
their defaults (output is not replaced, the mask is not complemented, the mask
is valued not structural, neither input matrix is transposed, the method
used in \verb'C=A*B' is selected automatically, and \verb'GrB_mxm' leaves
the final sort as pending work).
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_wait:} wait for a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a descriptor
(
GrB_Descriptor descriptor, // descriptor to wait for
GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined descriptor, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS does nothing except to ensure that \verb'd' is valid.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_set:} set a parameter in a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_set}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
GrB_Desc_Field field, // parameter to change
GrB_Desc_Value val // value to change it to
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Descriptor_set' sets a descriptor field (\verb'GrB_OUTP',
\verb'GrB_MASK', \verb'GrB_INP0', \verb'GrB_INP1', or \verb'GxB_AxB_METHOD') to
a particular value. Use \verb'GxB_Dec_set' to set the value of
\verb'GxB_NTHREADS', \verb'GxB_CHUNK', and \verb'GxB_SORT'.
If an error occurs, \verb'GrB_error(&err,desc)' returns details about the error.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{|l|p{2.4in}|p{2.2in}|}
\hline
Descriptor & Default & Non-default \\
field & & \\
\hline
\verb'GrB_OUTP'
& \verb'GxB_DEFAULT':
The output matrix is not cleared. The operation computes
${\bf C \langle M \rangle = C \odot T}$.
& \verb'GrB_REPLACE':
After computing ${\bf Z=C\odot T}$,
the output {\bf C} is cleared of all entries.
Then ${\bf C \langle M \rangle = Z}$ is performed. \\
\hline
\verb'GrB_MASK'
& \verb'GxB_DEFAULT':
The Mask is not complemented. \verb'Mask(i,j)=1' means the value $C_{ij}$
can be modified by the operation, while \verb'Mask(i,j)=0' means the value
$C_{ij}$ shall not be modified by the operation.
& \verb'GrB_COMP':
The Mask is complemented. \verb'Mask(i,j)=0' means the value $C_{ij}$
can be modified by the operation, while \verb'Mask(i,j)=1' means the value
$C_{ij}$ shall not be modified by the operation. \\
&
& \verb'GrB_STRUCTURE':
The values of the Mask are ignored. If \verb'Mask(i,j)' is an entry
in the \verb'Mask' matrix, it is treated as if \verb'Mask(i,j)=1'.
The two options \verb'GrB_COMP' and \verb'GrB_STRUCTURE' can be
combined, with two subsequent calls, or with a single call with the setting
\verb'GrB_COMP+GrB_STRUCTURE'. \\
\hline
\verb'GrB_INP0'
& \verb'GxB_DEFAULT':
The first input is not transposed prior to using it in the operation.
& \verb'GrB_TRAN':
The first input is transposed prior to using it in the operation. Only
matrices are transposed, never vectors. \\
\hline
\verb'GrB_INP1'
& \verb'GxB_DEFAULT':
The second input is not transposed prior to using it in the operation.
& \verb'GrB_TRAN':
The second input is transposed prior to using it in the operation. Only
matrices are transposed, never vectors. \\
\hline
\verb'GrB_AxB_METHOD'
& \verb'GxB_DEFAULT':
The method for \verb'C=A*B' is selected automatically.
& \verb'GxB_AxB_'{\em method}: The selected method is used to compute
\verb'C=A*B'. \\
\hline
\end{tabular}
}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Desc\_set:} set a parameter in a descriptor}
%-------------------------------------------------------------------------------
\label{desc_set}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Desc_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
GrB_Desc_Field field, // parameter to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Desc_set' is like \verb'GrB_Descriptor_set', except that the type of
the third parameter can vary with the field. This function can modify all
descriptor settings, including those that do not have the type
\verb'GrB_Desc_Value'. See also \verb'GxB_set' described in
Section~\ref{options}. If an error occurs, \verb'GrB_error(&err,desc)' returns
details about the error.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Desc\_get:} get a parameter from a descriptor}
%-------------------------------------------------------------------------------
\label{desc_get}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Desc_get // get a parameter from a descriptor
(
GrB_Descriptor desc, // descriptor to query; NULL means defaults
GrB_Desc_Field field, // parameter to query
... // value of the parameter
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Desc_get' returns the value of a single field in a descriptor. The
type of the third parameter is a pointer to a variable type, whose type depends
on the field. See also \verb'GxB_get' described in Section~\ref{options}.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_free:} free a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a descriptor
(
GrB_Descriptor *descriptor // handle of descriptor to free
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Descriptor_free' frees a descriptor.
Either usage:
{\small
\begin{verbatim}
GrB_Descriptor_free (&descriptor) ;
GrB_free (&descriptor) ; \end{verbatim}}
\noindent
frees the \verb'descriptor' and sets \verb'descriptor' to \verb'NULL'. It
safely does nothing if passed a \verb'NULL' handle, or if
\verb'descriptor == NULL' on input.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_DESC\_*:} built-in descriptors}
%-------------------------------------------------------------------------------
\label{descriptor_predefined}
Built-in descriptors are listed in the table below. A dash in the table
indicates the default. These descriptors may not be modified or freed.
Attempts to modify them result in an error (\verb'GrB_INVALID_VALUE'); attempts
to free them are silently ignored.
% \verb'GrB_NULL' is the default descriptor, with all settings at their defaults:
% \verb'OUTP': do not replace the output,
% \verb'MASK': mask is valued and not complemented,
% \verb'INP0': first input not transposed, and
% \verb'INP1': second input not transposed.
% For these pre-defined descriptors, the
% \verb'GxB_NTHREADS',
% \verb'GxB_CHUNK', and
% \verb'GxB_SORT' settings are at their default values.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{|l|lllll|}
\hline
Descriptor & \verb'OUTP' & \verb'MASK' & \verb'MASK' & \verb'INP0' & \verb'INP1' \\
& & structural & complement & & \\
\hline
\verb'GrB_NULL' & - & - & - & - & - \\
\verb'GrB_DESC_T1' & - & - & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_T0' & - & - & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_T0T1' & - & - & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_C' & - & - & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_CT1' & - & - & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_CT0' & - & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_CT0T1' & - & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_S' & - & \verb'GrB_STRUCTURE' & - & - & - \\
\verb'GrB_DESC_ST1' & - & \verb'GrB_STRUCTURE' & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_ST0' & - & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_ST0T1' & - & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_SC' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_SCT1' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_SCT0' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_SCT0T1' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_R' & \verb'GrB_REPLACE' & - & - & - & - \\
\verb'GrB_DESC_RT1' & \verb'GrB_REPLACE' & - & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RT0' & \verb'GrB_REPLACE' & - & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RT0T1' & \verb'GrB_REPLACE' & - & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_RC' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_RCT1' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RCT0' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RCT0T1' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_RS' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & - & - \\
\verb'GrB_DESC_RST1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RST0' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RST0T1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_RSC' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_RSCT1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RSCT0' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RSCT0T1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\end{tabular}}
\newpage
%===============================================================================
\subsection{{\sf GrB\_free:} free any GraphBLAS object} %=======================
%===============================================================================
\label{free}
Each of the ten objects has \verb'GrB_*_new' and \verb'GrB_*_free' methods
that are specific to each object. They can also be accessed by a generic
function, \verb'GrB_free', that works for all ten objects. If \verb'G' is any
of the ten objects, the statement
{\footnotesize
\begin{verbatim}
GrB_free (&G) ; \end{verbatim} }
\noindent
frees the object and sets the variable \verb'G' to \verb'NULL'. It is safe to
pass in a \verb'NULL' handle, or to free an object twice:
{\footnotesize
\begin{verbatim}
GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing
GrB_free (&G) ; // the object G is freed and G set to NULL
GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing \end{verbatim} }
\noindent
However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.
{\footnotesize
\begin{verbatim}
H = G ; // valid; creates a 2nd handle of the same object
GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined
GrB_some_method (H) ; // not valid; H is undefined \end{verbatim}}
Some objects are predefined, such as the built-in types. If a user application
attempts to free a built-in object, SuiteSparse:GraphBLAS will safely do
nothing. The \verb'GrB_free' function in SuiteSparse:GraphBLAS always
returns \verb'GrB_SUCCESS'.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The mask, accumulator, and replace option} %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:maskaccum}
After a GraphBLAS operation computes a result ${\bf T}$, (for example, ${\bf
T=AB}$ for \verb'GrB_mxm'), the results are assigned to an output matrix ${\bf
C}$ via the mask/ accumulator phase, written as ${\bf C \langle M \rangle = C
\odot T}$. This phase is affected by the \verb'GrB_REPLACE' option in the
descriptor, the presence of an optional binary accumulator operator ($\odot$),
the presence of the optional mask matrix ${\bf M}$, and the status of the mask
descriptor. The interplay of these options is summarized in
Table~\ref{tab:maskaccum}.
The mask ${\bf M}$ may be present, or not. It may be structural or valued, and
it may be complemented, or not. These options may be combined, for a total of
8 cases, although the structural/valued option as no effect if ${\bf M}$ is not
present. If ${\bf M}$ is not present and not complemented, then $m_{ij}$ is
implicitly true. If not present yet complemented, then all $m_{ij}$ entries are
implicitly zero; in this case, ${\bf T}$ need not be computed at all. Either
${\bf C}$ is not modified, or all its entries are cleared if the replace option
is enabled. If ${\bf M}$ is present, and the structural option is used, then
$m_{ij}$ is treated as true if it is an entry in the matrix (its value is
ignored). Otherwise, the value of $m_{ij}$ is used. In both cases, entries
not present are implicitly zero. These values are negated if the mask is
complemented. All of these various cases are combined to give a single
effective value of the mask at position ${ij}$.
The combination of all these options are presented in the
Table~\ref{tab:maskaccum}. The first column is the \verb'GrB_REPLACE' option.
The second column lists whether or not the accumulator operator is present.
The third column lists whether or not $c_{ij}$ exists on input to the
mask/accumulator phase (a dash means that it does not exist). The fourth
column lists whether or not the entry $t_{ij}$ is present in the result matrix
${\bf T}$. The mask column is the final effective value of $m_{ij}$, after
accounting for the presence of ${\bf M}$ and the mask options. Finally, the
last column states the result of the mask/accum step; if no action is listed in
this column, then $c_{ij}$ is not modified.
Several important observations can be made from this table. First,
if no mask is present (and the mask-complement descriptor option is not used),
then only the first half of the table is used. In this case, the \verb'GrB_REPLACE'
option has no effect. The entire matrix ${\bf C}$ is modified.
Consider the cases when $c_{ij}$ is present but $t_{ij}$ is not, and there is no
mask or the effective value of the mask is true for this ${ij}$ position. With
no accumulator operator, $c_{ij}$ is deleted. If the accumulator operator is
present and the replace option is not used, $c_{ij}$ remains unchanged.
\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf T}$ & mask & action taken by ${\bf C \langle M \rangle = C \odot T}$ \\
\hline
- &- & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, update \\
- &- & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
- &- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $t_{ij}$ not present \\
- &- & - & - & 1 & \\
- &- & $c_{ij}$ & $t_{ij}$ & 0 & \\
- &- & - & $t_{ij}$ & 0 & \\
- &- & $c_{ij}$ & - & 0 & \\
- &- & - & - & 0 & \\
\hline
yes&- & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, update \\
yes&- & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
yes&- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $t_{ij}$ not present \\
yes&- & - & - & 1 & \\
yes&- & $c_{ij}$ & $t_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & $t_{ij}$ & 0 & \\
yes&- & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & - & 0 & \\
\hline
- &yes & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
- &yes & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
- &yes & $c_{ij}$ & - & 1 & \\
- &yes & - & - & 1 & \\
- &yes & $c_{ij}$ & $t_{ij}$ & 0 & \\
- &yes & - & $t_{ij}$ & 0 & \\
- &yes & $c_{ij}$ & - & 0 & \\
- &yes & - & - & 0 & \\
\hline
yes&yes & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
yes&yes & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
yes&yes & $c_{ij}$ & - & 1 & \\
yes&yes & - & - & 1 & \\
yes&yes & $c_{ij}$ & $t_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & $t_{ij}$ & 0 & \\
yes&yes & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & - & 0 & \\
\hline
\end{tabular}
}
\caption{Results of the mask/accumulator phase. \label{tab:maskaccum}}
\end{table}
When there is no mask and the mask \verb'GrB_COMP' option is not selected, the
table simplifies (Table~\ref{tab:maskaccum_nomask}). The \verb'GrB_REPLACE'
option no longer has any effect. The \verb'GrB_SECOND_T' binary operator when
used as the accumulator unifies the first cases, shown in
Table~\ref{tab:maskaccum_nomask_2nd}. The only difference now is the behavior
when $c_{ij}$ is present but $t_{ij}$ is not. Finally, the effect of
\verb'GrB_FIRST_T' as the accumulator is shown in
Table~\ref{tab:maskaccum_nomask_1st}.
\begin{table}[h]
\begin{center}
{\small
\begin{tabular}{lll|l}
\hline
accum & ${\bf C}$ & ${\bf T}$ & action taken by ${\bf C = C \odot T}$ \\
\hline
- & $c_{ij}$ & $t_{ij}$ & $c_{ij} = t_{ij}$, update \\
- & - & $t_{ij}$ & $c_{ij} = t_{ij}$, insert \\
- & $c_{ij}$ & - & delete $c_{ij}$ because $t_{ij}$ not present \\
- & - & - & \\
\hline
yes & $c_{ij}$ & $t_{ij}$ & $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
yes & - & $t_{ij}$ & $c_{ij} = t_{ij}$, insert \\
yes & $c_{ij}$ & - & \\
yes & - & - & \\
\hline
\end{tabular}
}
\caption{When no mask is present (and not complemented).
\label{tab:maskaccum_nomask}}
\end{center}
\end{table}
\begin{table}[h]
\begin{center}
{\small
\begin{tabular}{lll|l}
\hline
accum & ${\bf C}$ & ${\bf T}$ & action taken by ${\bf C = C \odot T}$ \\
\hline
yes & $c_{ij}$ & $t_{ij}$ & $c_{ij} = t_{ij}$, apply \verb'GrB_SECOND' accumulator \\
yes & - & $t_{ij}$ & $c_{ij} = t_{ij}$, insert \\
yes & $c_{ij}$ & - & \\
yes & - & - & \\
\hline
\end{tabular}
}
\caption{No mask, with the SECOND operator as the accumulator.
\label{tab:maskaccum_nomask_2nd}}
\end{center}
\end{table}
\begin{table}[h]
\begin{center}
{\small
\begin{tabular}{lll|l}
\hline
accum & ${\bf C}$ & ${\bf T}$ & action taken by ${\bf C = C \odot T}$ \\
\hline
yes & $c_{ij}$ & $t_{ij}$ & \\
yes & - & $t_{ij}$ & $c_{ij} = t_{ij}$, insert \\
yes & $c_{ij}$ & - & \\
yes & - & - & \\
\hline
\end{tabular}
}
\caption{No Mask, with the FIRST operator as the accumulator.
\label{tab:maskaccum_nomask_1st}}
\end{center}
\end{table}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{SuiteSparse:GraphBLAS Options} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{options}
SuiteSparse:GraphBLAS includes two type-generic methods, \verb'GxB_set' and
\verb'GxB_get', that set and query various options and parameters settings,
including a generic way to set values in the \verb'GrB_Descriptor' object.
Using these methods, the user application can provide hints to
SuiteSparse:GraphBLAS on how it should store and operate on its matrices.
These hints have no effect on the results of any GraphBLAS operation (except
perhaps floating-point roundoff differences), but they can have a great impact
on the amount of time or memory taken.
\begin{itemize}
\item \verb'GxB_set (field, value)' sets global options.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GxB_HYPER_SWITCH' & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH' & \verb'double [8]' & bitmap control \\
\verb'GxB_FORMAT' & \verb'int' & \verb'GxB_BY_ROW'
or \verb'GxB_BY_COL' \\
\verb'GxB_GLOBAL_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_GLOBAL_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_BURBLE' & \verb'int' & diagnostic output \\
\verb'GxB_PRINTF' & see below & diagnostic output \\
\verb'GxB_FLUSH' & see below & diagnostic output \\
\verb'GxB_MEMORY_POOL' & \verb'int64_t [64]' & memory pool control \\
\verb'GxB_PRINT_1BASED' & \verb'int' & for printing matrices/vectors \\
\hline
\end{tabular}
}
\item \verb'GxB_set (GrB_Matrix A, field, value)' provides hints to
SuiteSparse: GraphBLAS on how to store a particular matrix.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GxB_HYPER_SWITCH' & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH' & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_FORMAT' & \verb'int' & \verb'GxB_BY_ROW'
or \verb'GxB_BY_COL' \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int' & 0 to 15 \\
\hline
\end{tabular}
}
\item \verb'GxB_set (GrB_Vector v, field, value)' provides hints to
SuiteSparse: GraphBLAS on how to store a particular vector.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GxB_BITMAP_SWITCH' & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int' & 0 to 15 \\
\hline
\end{tabular}
}
\item \verb'GxB_set (GrB_Descriptor desc, field, value)' sets
the value of a field in a \verb'GrB_Descriptor'.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GrB_OUTP' & \verb'GrB_Desc_Value' & replace option \\
\verb'GrB_MASK' & \verb'GrB_Desc_Value' & mask option \\
\verb'GrB_INP0' & \verb'GrB_Desc_Value' & transpose input 0 \\
\verb'GrB_INP1' & \verb'GrB_Desc_Value' & transpose input 1 \\
\verb'GxB_DESCRIPTOR_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_DESCRIPTOR_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_AxB_METHOD' & \verb'int' & method for matrix multiply \\
\verb'GxB_SORT' & \verb'int' & lazy vs aggressive sort \\
\verb'GxB_COMPRESSION' & \verb'int' & compression for serialization \\
\verb'GxB_IMPORT' & \verb'GrB_Desc_Value' & trust data on import/pack \\
\hline
\end{tabular}
}
\end{itemize}
\verb'GxB_get' queries a \verb'GrB_Descriptor', a \verb'GrB_Matrix',
a \verb'GrB_Vector', or the global options.
\begin{itemize}
\item \verb'GxB_get (field, &value)' retrieves the value of a global option.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GxB_HYPER_SWITCH' & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH' & \verb'double [8]' & bitmap control \\
\verb'GxB_FORMAT' & \verb'int' & \verb'GxB_BY_ROW' or \verb'GxB_BY_COL' \\
\verb'GxB_GLOBAL_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_GLOBAL_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_BURBLE' & \verb'int' & diagnostic output \\
\verb'GxB_PRINTF' & see below & diagnostic output \\
\verb'GxB_FLUSH' & see below & diagnostic output \\
\verb'GxB_MEMORY_POOL' & \verb'int64_t [64]' & memory pool control \\
\verb'GxB_PRINT_1BASED' & \verb'int' & for printing matrices/vectors \\
\verb'GxB_MODE' & \verb'int' & blocking/non-blocking \\
\verb'GxB_LIBRARY_NAME' & \verb'char *' & name of library \\
\verb'GxB_LIBRARY_VERSION' & \verb'int [3]' & library version \\
\verb'GxB_LIBRARY_DATE' & \verb'char *' & release date \\
\verb'GxB_LIBRARY_ABOUT' & \verb'char *' & about the library \\
\verb'GxB_LIBRARY_LICENSE' & \verb'char *' & license \\
\verb'GxB_LIBRARY_COMPILE_DATE' & \verb'char *' & date of compilation \\
\verb'GxB_LIBRARY_COMPILE_TIME' & \verb'char *' & time of compilation \\
\verb'GxB_LIBRARY_OPENMP' & \verb'bool' & true if compiled with OpenMP\\
\verb'GxB_LIBRARY_URL' & \verb'char *' & url of library \\
\verb'GxB_API_VERSION' & \verb'int [3]' & C API version \\
\verb'GxB_API_DATE' & \verb'char *' & C API date \\
\verb'GxB_API_ABOUT' & \verb'char *' & about the C API \\
\verb'GxB_API_URL' & \verb'char *' & \verb'http://graphblas.org' \\
\verb'GxB_COMPILER_NAME' & \verb'char *' & C compiler name \\
\verb'GxB_COMPILER_VERSION' & \verb'int [3]' & C compiler version \\
\hline
\end{tabular}
}
\item \verb'GxB_get (GrB_Matrix A, field, &value)' retrieves the current
value of an option from a particular matrix \verb'A'.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GxB_HYPER_SWITCH' & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH' & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_FORMAT' & \verb'int' & \verb'GxB_BY_ROW'
or \verb'GxB_BY_COL' \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int' & 0 to 15 \\
\verb'GxB_SPARSITY_STATUS' & \verb'int' & 1, 2, 4, or 8 \\
\hline
\end{tabular}
}
\item \verb'GxB_get (GrB_Vector A, field, &value)' retrieves the current
value of an option from a particular vector \verb'v'.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GxB_BITMAP_SWITCH' & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_FORMAT' & \verb'int' & \verb'GxB_BY_ROW'
or \verb'GxB_BY_COL' \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int' & 0 to 15 \\
\verb'GxB_SPARSITY_STATUS' & \verb'int' & 1, 2, 4, or 8 \\
\hline
\end{tabular}
}
\item \verb'GxB_get (GrB_Descriptor desc, field, &value)' retrieves the value
of a field in a descriptor.
{\footnotesize
\begin{tabular}{lll}
field & value & description \\
\hline
\verb'GrB_OUTP' & \verb'GrB_Desc_Value' & replace option \\
\verb'GrB_MASK' & \verb'GrB_Desc_Value' & mask option \\
\verb'GrB_INP0' & \verb'GrB_Desc_Value' & transpose input 0 \\
\verb'GrB_INP1' & \verb'GrB_Desc_Value' & transpose input 1 \\
\verb'GxB_DESCRIPTOR_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_NTHREADS' & \verb'int' & number of threads to use \\
\verb'GxB_DESCRIPTOR_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_CHUNK' & \verb'double' & chunk size \\
\verb'GxB_AxB_METHOD' & \verb'int' & method for matrix multiply \\
\verb'GxB_SORT' & \verb'int' & lazy vs aggressive sort \\
\verb'GxB_COMPRESSION' & \verb'int' & compression for serialization \\
\verb'GxB_IMPORT' & \verb'GrB_Desc_Value' & trust data on import/pack \\
\hline
\end{tabular}
}
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{OpenMP parallelism}
%-------------------------------------------------------------------------------
\label{omp_parallelism}
SuiteSparse:GraphBLAS is a parallel library, based on OpenMP. By
default, all GraphBLAS operations will use up to the maximum number of threads
specified by the \verb'omp_get_max_threads' OpenMP function. For small
problems, GraphBLAS may choose to use fewer threads, using two parameters: the
maximum number of threads to use (which may differ from the
\verb'omp_get_max_threads' value), and a parameter called the \verb'chunk'.
Suppose \verb'work' is a measure of the work an operation needs to perform (say
the number of entries in the two input matrices for \verb'GrB_eWiseAdd'). No
more than \verb'floor(work/chunk)' threads will be used (or one thread if the
ratio is less than 1).
The default \verb'chunk' value is 65,536, but this may change in future versions,
or it may be modified when GraphBLAS is installed on a particular machine.
Both parameters can be set in two ways:
\begin{itemize}
\item Globally: If the following methods are used, then all subsequent
GraphBLAS operations will use these settings. Note the typecast,
\verb'(double)' \verb'chunk'. This is necessary if a literal constant such as
\verb'20000' is passed as this argument. The type of the constant must be
\verb'double'.
{\footnotesize
\begin{verbatim}
int nthreads_max = 40 ;
GxB_set (GxB_NTHREADS, nthreads_max) ;
GxB_set (GxB_CHUNK, (double) 20000) ; \end{verbatim} }
\item Per operation: Most GraphBLAS operations take a \verb'GrB_Descriptor'
input, and this can be modified to set the number of threads and chunk
size for the operation that uses this descriptor. Note that \verb'chunk'
is a \verb'double'.
{\footnotesize
\begin{verbatim}
GrB_Descriptor desc ;
GrB_Descriptor_new (&desc)
int nthreads_max = 40 ;
GxB_set (desc, GxB_NTHREADS, nthreads_max) ;
double chunk = 20000 ;
GxB_set (desc, GxB_CHUNK, chunk) ; \end{verbatim} }
\end{itemize}
The smaller of \verb'nthreads_max' and \verb'floor(work/chunk)' is used for any
given GraphBLAS operation, except that a single thread is used if this value is
zero or less.
If either parameter is set to \verb'GxB_DEFAULT', then default values are used.
The default for \verb'nthreads_max' is the return value from
\verb'omp_get_max_threads', and the default chunk size is currently 65,536.
If a descriptor value for either parameter is left at its default, or set to
\verb'GxB_DEFAULT', then the global setting is used. This global setting may
have been modified from its default, and this modified value will be used.
For example, suppose \verb'omp_get_max_threads' reports 8 threads. If \newline
\verb'GxB_set (GxB_NTHREADS, 4)' is used, then the global setting is four
threads, not eight. If a descriptor is used but its \verb'GxB_NTHREADS' is not
set, or set to \verb'GxB_DEFAULT', then any operation that uses this descriptor
will use 4 threads.
GraphBLAS may be compiled without OpenMP, by setting \verb'-DNOPENMP=1'.
The library will be thread-safe, with one exception. \verb'GrB_wait' is
intended to provide thread-safety by flushing the cache of one user thread
so the object can be safely read by another thread. This is accomplished
with \verb'pragma omp flush', but if OpenMP is not available, this does
nothing. If OpenMP is not available or \verb'-DNOPEMP=1' is used, then
user applications need to ensure their own thread safety when one user thread
computes a result that is then read by another thread.
You can query GraphBLAS at run time to ask if it was compiled with OpenMP:
\begin{verbatim}
bool have_openmp ;
GxB_get (GxB_LIBRARY_OPENMP, &have_openmp) ;
if (!have_openmp) printf ("GraphBLAS not compiled with OpenMP\n") :
\end{verbatim}
Compiling GraphBLAS without OpenMP is not recommended for installation in a
package manager (Linux, conda-forge, spack, brew, vcpkg, etc).
%-------------------------------------------------------------------------------
\subsection{Storing a matrix by row or by column}
%-------------------------------------------------------------------------------
The GraphBLAS \verb'GrB_Matrix' is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored. However,
choices made in how the matrix is represented in a particular implementation,
such as SuiteSparse:GraphBLAS, can have a large impact on performance.
Many graph algorithms are just as fast in any format, but some algorithms are
much faster in one format or the other. For example, suppose the user
application stores a directed graph as a matrix \verb'A', with the edge $(i,j)$
represented as the value \verb'A(i,j)', and the application makes many accesses
to the $i$th row of the matrix, with \verb'GrB_Col_extract'
\verb'(w,...,A,GrB_ALL,...,i,desc)' with the transposed descriptor
(\verb'GrB_INP0' set to \verb'GrB_TRAN'). If the matrix is stored by column
this can be extremely slow, just like the expression \verb'w=A(i,:)' in MATLAB,
where \verb'i' is a scalar. Since this is a typical use-case in graph
algorithms, the default format in SuiteSparse:GraphBLAS is to store its
matrices by row, in Compressed Sparse Row format (CSR).
MATLAB stores its sparse matrices by column, in ``non-hypersparse'' format, in
what is called the Compressed Sparse Column format, or CSC for short. An
\verb'm'-by-\verb'n' matrix in MATLAB is represented as a set of \verb'n'
column vectors, each with a sorted list of row indices and values of the
nonzero entries in that column. As a result, \verb'w=A(:,j)' is very fast in
MATLAB, since the result is already held in the data structure a single list,
the $j$th column vector. However, \verb'w=A(i,:)' is very slow in MATLAB,
since every column in the matrix has to be searched to see if it contains row
\verb'i'. In MATLAB, if many such accesses are made, it is much better to
transpose the matrix (say \verb"AT=A'") and then use \verb"w=AT(:,i)" instead.
This can have a dramatic impact on the performance of MATLAB.
Likewise, if \verb'u' is a very sparse column vector and \verb'A' is stored by
column, then \verb"w=u'*A" (via \verb'GrB_vxm') is slower than \verb'w=A*u'
(via \verb'GrB_mxv'). The opposite is true if the matrix is stored by row.
SuiteSparse:GraphBLAS stores its matrices by row, by default (with one
exception described below). However, it can also be instructed to store any
selected matrices, or all matrices, by column instead (just like MATLAB), so
that \verb'w=A(:,j)' (via \verb'GrB_Col_extract') is very fast. The change in
data format has no effect on the result, just the time and memory usage. To
use a column-oriented format by default, the following can be done in a user
application that tends to access its matrices by column.
{\footnotesize
\begin{verbatim}
GrB_init (...) ;
// just after GrB_init: do the following:
#ifdef GxB_SUITESPARSE_GRAPHBLAS
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
#endif \end{verbatim} }
If this is done, and no other \verb'GxB_set' calls are made with
\verb'GxB_FORMAT', all matrices will be stored by column.
The default format is \verb'GxB_BY_ROW'.
All vectors (\verb'GrB_Vector') are held by column, and this cannot be changed.
By default, matrices of size \verb'm-by-1' are held by column, regardless of
the global setting described above. Matrices of size \verb'1-by-n' with
\verb'n' not equal to 1 are held by row, regardless of the global setting.
The global setting only affects matrices with both \verb'm > 1' and \verb'n > 1'.
Empty matrices (\verb'0-by-0') are also controlled by the global setting.
After creating a matrix with \verb'GrB_Matrix_new (&A, ...)',
its format can be changed arbitrarily with \verb'GxB_set (A, GxB_FORMAT, ...)'.
So even an \verb'm-by-1' matrix can then be changed to be held by row, for
example. Likewise, once a \verb'1-by-n' matrix is created, it can be converted
to column-oriented format.
%-------------------------------------------------------------------------------
\subsection{Hypersparse matrices}
\label{hypersparse}
%-------------------------------------------------------------------------------
MATLAB can store an \verb'm'-by-\verb'n' matrix with a very large value of
\verb'm', since a CSC data structure takes $O(n+|{\bf A}|)$ memory, independent
of \verb'm', where $|{\bf A}|$ is the number of nonzeros in the matrix. It
cannot store a matrix with a huge \verb'n', and this structure is also
inefficient when $|{\bf A}|$ is much smaller than \verb'n'. In contrast,
SuiteSparse:GraphBLAS can store its matrices in {\em hypersparse} format,
taking only $O(|{\bf A}|)$ memory, independent of how it is stored (by row or
by column) and independent of both \verb'm' and \verb'n'
\cite{BulucGilbert08,BulucGilbert12}.
In both the CSR and CSC formats, the matrix is held as a set of sparse vectors.
In non-hypersparse format, the set of sparse vectors is itself dense; all
vectors are present, even if they are empty. For example, an
\verb'm'-by-\verb'n' matrix in non-hypersparse CSC format contains \verb'n'
sparse vectors. Each column vector takes at least one integer to represent,
even for a column with no entries. This allows for quick lookup for a
particular vector, but the memory required is $O(n+|{\bf A}|)$. With a
hypersparse CSC format, the set of vectors itself is sparse, and columns with
no entries take no memory at all. The drawback of the hypersparse format is
that finding an arbitrary column vector \verb'j', such as for the computation
\verb'C=A(:,j)', takes $O(\log k)$ time if there $k \le n$ vectors in the data
structure. One advantage of the hypersparse structure is the memory required
for an \verb'm'-by-\verb'n' hypersparse CSC matrix is only $O(|{\bf A}|)$,
independent of \verb'm' and \verb'n'. Algorithms that must visit all non-empty
columns of a matrix are much faster when working with hypersparse matrices,
since empty columns can be skipped.
The \verb'hyper_switch' parameter controls the hypersparsity of the internal
data structure for a matrix. The parameter is typically in the range 0 to 1.
The default is \verb'hyper_switch' = \verb'GxB_HYPER_DEFAULT', which is an
\verb'extern' \verb'const' \verb'double' value, currently set to 0.0625, or
1/16. This default ratio may change in the future.
The \verb'hyper_switch' determines how the matrix is converted between the
hypersparse and non-hypersparse formats. Let $n$ be the number of columns of a
CSC matrix, or the number of rows of a CSR matrix. The matrix can have at most
$n$ non-empty vectors.
Let $k$ be the actual number of non-empty vectors. That is, for the CSC
format, $k \le n$ is the number of columns that have at least one entry. Let
$h$ be the value of \verb'hyper_switch'.
If a matrix is currently hypersparse, it can be converted to non-hypersparse if
the either condition $n \le 1$ or $k > 2nh$ holds, or both. Otherwise, it
stays hypersparse. Note that if $n \le 1$ the matrix is always stored as
non-hypersparse.
If currently non-hypersparse, it can be converted to hypersparse if
both conditions $n > 1$ and $k \le nh$ hold. Otherwise, it stays
non-hypersparse. Note that if $n \le 1$ the matrix always remains
non-hypersparse.
The default value of \verb'hyper_switch' is assigned at startup by
\verb'GrB_init', and can then be modified globally with \verb'GxB_set'. All
new matrices are created with the same \verb'hyper_switch', determined by the
global value. Once a particular matrix \verb'A' has been constructed, its
hypersparsity ratio can be modified from the default with:
{\footnotesize
\begin{verbatim}
double hyper_switch = 0.2 ;
GxB_set (A, GxB_HYPER_SWITCH, hyper_switch) ; \end{verbatim}}
To force a matrix to always be non-hypersparse, use \verb'hyper_switch' equal to
\verb'GxB_NEVER_HYPER'. To force a matrix to always stay hypersparse, set
\verb'hyper_switch' to \verb'GxB_ALWAYS_HYPER'.
A \verb'GrB_Matrix' can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC. All \verb'GrB_Vector' objects are always stored
in non-hypersparse CSC format.
A new matrix created via \verb'GrB_Matrix_new' starts with $k=0$ and is created
in hypersparse form by default unless $n \le 1$ or if $h<0$, where $h$ is the
global \verb'hyper_switch' value. The matrix is created in either
\verb'GxB_BY_ROW' or \verb'GxB_BY_COL' format, as determined by the last call
to \verb'GxB_set(GxB_FORMAT,...)' or \verb'GrB_init'.
A new matrix \verb'C' created via \verb'GrB_dup (&C,A)' inherits the CSR/CSC
format, hypersparsity format, and \verb'hyper_switch' from \verb'A'.
%-------------------------------------------------------------------------------
\subsection{Bitmap matrices}
\label{bitmap_switch}
%-------------------------------------------------------------------------------
By default, SuiteSparse:GraphBLAS switches between all four formats
(hypersparse, sparse, bitmap, and full) automatically. Let $d = |{\bf A}|/mn$
for an $m$-by-$n$ matrix $\bf A$ with $|{\bf A}|$ entries. If the matrix is
currently in sparse or hypersparse format, and is modified so that $d$ exceeds
a given threshold, it is converted into bitmap format. The default threshold
is controlled by the \verb'GxB_BITMAP_SWITCH' setting, which can be set
globally, or for a particular matrix or vector.
The default value of the switch to bitmap format depends on $\min(m,n)$, for a
matrix of size $m$-by-$n$. For the global setting, the bitmap switch is a
\verb'double' array of size \verb'GxB_NBITMAP_SWITCH'. The defaults are given
below:
\vspace{0.2in}
{\small
\begin{tabular}{lll}
parameter & default & matrix sizes \\
\hline
\verb'bitmap_switch [0]' & 0.04 & $\min(m,n) = 1$ (and all vectors) \\
\verb'bitmap_switch [1]' & 0.05 & $\min(m,n) = 2$ \\
\verb'bitmap_switch [2]' & 0.06 & $\min(m,n) = 3$ to 4 \\
\verb'bitmap_switch [3]' & 0.08 & $\min(m,n) = 5$ to 8 \\
\verb'bitmap_switch [4]' & 0.10 & $\min(m,n) = 9$ to 16\\
\verb'bitmap_switch [5]' & 0.20 & $\min(m,n) = 17$ to 32\\
\verb'bitmap_switch [6]' & 0.30 & $\min(m,n) = 33$ to 64 \\
\verb'bitmap_switch [7]' & 0.40 & $\min(m,n) > 64$ \\
\end{tabular}
}
\vspace{0.2in}
That is, by default a \verb'GrB_Vector' is held in bitmap format if its density
exceeds 4\%. To change the global settings, do the following:
{\footnotesize
\begin{verbatim}
double bswitch [GxB_NBITMAP_SWITCH] = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 } ;
GxB_set (GxB_BITMAP_SWITCH, bswitch) ;
\end{verbatim}
}
If the matrix is currently in bitmap format, it is converted to full if all
entries are present, or to sparse/hypersparse if $d$ drops below $b/2$, if its
bitmap switch is $b$. A matrix or vector with $d$ between $b/2$ and $b$
remains in its current format.
%-------------------------------------------------------------------------------
\subsection{Parameter types}
%-------------------------------------------------------------------------------
The \verb'GxB_Option_Field' enumerated type gives the type of the \verb'field'
parameter for the second argument of \verb'GxB_set' and \verb'GxB_get',
for setting global options or matrix options.
{\footnotesize
\begin{verbatim}
typedef enum
{
// for matrix/vector get/set and global get/set:
GxB_HYPER_SWITCH = 0, // defines switch to hypersparse (double value)
GxB_BITMAP_SWITCH = 34, // defines switch to hypersparse (double value)
GxB_FORMAT = 1, // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL
GxB_SPARSITY_CONTROL = 32, // control the sparsity of a matrix or vector
// for global get/set only:
GxB_GLOBAL_NTHREADS = GxB_NTHREADS, // max number of threads to use
GxB_GLOBAL_CHUNK = GxB_CHUNK, // chunk size for small problems
GxB_BURBLE = 99, // diagnositic output
GxB_PRINTF = 101, // printf function for diagnostic output
GxB_FLUSH = 102, // flush function for diagnostic output
GxB_MEMORY_POOL = 103, // memory pool control
GxB_PRINT_1BASED = 104, // print matrices as 0-based or 1-based
// for matrix/vector get only:
GxB_SPARSITY_STATUS = 33, // query the sparsity of a matrix or vector
// for global get only:
GxB_MODE = 2, // mode passed to GrB_init (blocking or non-blocking)
GxB_LIBRARY_NAME = 8, // name of the library (char *)
GxB_LIBRARY_VERSION = 9, // library version (3 int's)
GxB_LIBRARY_DATE = 10, // date of the library (char *)
GxB_LIBRARY_ABOUT = 11, // about the library (char *)
GxB_LIBRARY_URL = 12, // URL for the library (char *)
GxB_LIBRARY_LICENSE = 13, // license of the library (char *)
GxB_LIBRARY_COMPILE_DATE = 14, // date library was compiled (char *)
GxB_LIBRARY_COMPILE_TIME = 15, // time library was compiled (char *)
GxB_LIBRARY_OPENMP = 25, // library compiled with OpenMP
GxB_API_VERSION = 16, // API version (3 int's)
GxB_API_DATE = 17, // date of the API (char *)
GxB_API_ABOUT = 18, // about the API (char *)
GxB_API_URL = 19, // URL for the API (char *)
}
GxB_Option_Field ;
\end{verbatim} }
The \verb'GxB_FORMAT' field can be by row or by column, set to a value
with the type \verb'GxB_Format_Value':
{\footnotesize
\begin{verbatim}
typedef enum
{
GxB_BY_ROW = 0, // CSR: compressed sparse row format
GxB_BY_COL = 1 // CSC: compressed sparse column format
}
GxB_Format_Value ;
\end{verbatim} }
The default format is given by the predefined value \verb'GxB_FORMAT_DEFAULT',
which is equal to \verb'GxB_BY_ROW'.
The default hypersparsity
ratio is 0.0625 (1/16), but this value may change in the future.
Setting the \verb'GxB_HYPER_SWITCH' field to \verb'GxB_ALWAYS_HYPER' ensures a matrix
always stays hypersparse. If set to \verb'GxB_NEVER_HYPER', it always stays
non-hypersparse. At startup, \verb'GrB_init' defines the following initial
settings:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER_SWITCH, GxB_HYPER_DEFAULT) ;
GxB_set (GxB_FORMAT, GxB_BY_ROW) ;
\end{verbatim} }
That is, by default, all new matrices are held by row in CSR format (except
for \verb'n-by-1' matrices; see \verb'GrB_Matrix_new').
If a matrix has fewer than $n/16$
columns, it can be converted to hypersparse format. If it has more than $n/8$
columns, it can be converted to non-hypersparse format. These options can be
changed for all future matrices with \verb'GxB_set'. For example, to change
all future matrices to be in non-hypersparse CSC when created, use:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
\end{verbatim} }
Then if a particular matrix needs a different format, then (as an example):
{\footnotesize
\begin{verbatim}
GxB_set (A, GxB_HYPER_SWITCH, 0.1) ;
GxB_set (A, GxB_FORMAT, GxB_BY_ROW) ;
\end{verbatim} }
This changes the matrix \verb'A' so that it is stored by row, and it is
converted from non-hypersparse to hypersparse format if it has fewer than 10\%
non-empty columns. If it is hypersparse, it is a candidate for conversion to
non-hypersparse if has 20\% or more non-empty columns. If it has between 10\%
and 20\% non-empty columns, it remains in its current format.
MATLAB only supports a non-hypersparse CSC format. The format in
SuiteSparse:GraphBLAS that is equivalent to the MATLAB format is:
{\footnotesize
\begin{verbatim}
GrB_init (...) ;
GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
// no subsequent use of GxB_HYPER_SWITCH or GxB_FORMAT
\end{verbatim} }
The \verb'GxB_HYPER_SWITCH' and \verb'GxB_FORMAT' options should be considered as
suggestions from the user application as to how SuiteSparse:GraphBLAS can
obtain the best performance for a particular application.
SuiteSparse:GraphBLAS is free to ignore any of these suggestions, both now and
in the future, and the available options and formats may be augmented in the
future. Any prior options no longer needed in future versions of
SuiteSparse:GraphBLAS will be silently ignored, so the use these options is
safe for future updates.
The sparsity status of a matrix can be queried with the following, which
returns a value of \verb'GxB_HYPERSPARSE' \verb'GxB_SPARSE' \verb'GxB_BITMAP'
or \verb'GxB_FULL'.
{\footnotesize
\begin{verbatim}
int sparsity ;
GxB_get (A, GxB_SPARSITY_STATUS, &sparsity) ; \end{verbatim}}
The sparsity format of a matrix can be controlled with \verb'GxB_set', which
can be any mix (a sum or bitwise or) of \verb'GxB_HYPERSPARSE'
\verb'GxB_SPARSE' \verb'GxB_BITMAP', and \verb'GxB_FULL'. By default, a matrix
or vector can be held in any format, with the default setting
\verb'GxB_AUTO_SPARSITY', which is equal to \verb'GxB_HYPERSPARSE' +
\verb'GxB_SPARSE' + \verb'GxB_BITMAP' + \verb'GxB_FULL'. To enable a matrix to
take on just \verb'GxB_SPARSE' or \verb'GxB_FULL' formats, but not
\verb'GxB_HYPERSPARSE' or \verb'GxB_BITMAP', for example, use the following:
{\footnotesize
\begin{verbatim}
GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_FULL) ; \end{verbatim}}
In this case, SuiteSparse:GraphBLAS will hold the matrix in sparse format
(\verb'CSC' or \verb'CSC', depending on its \verb'GxB_FORMAT'), unless all
entries are present, in which case it will be converted to full format.
Only the least 4 bits of the sparsity control are considered, so the
formats can be bitwise negated. For example, to allow for any format
except full:
{\footnotesize
\begin{verbatim}
GxB_set (A, GxB_SPARSITY_CONTROL, ~GxB_FULL) ; \end{verbatim}}
%-------------------------------------------------------------------------------
\subsection{{\sf GxB\_BURBLE}, {\sf GxB\_PRINTF}, {\sf GxB\_FLUSH}: diagnostics}
%-------------------------------------------------------------------------------
\verb'GxB_set (GxB_BURBLE, ...)' controls the burble setting. It can also be
controlled via \verb'GrB.burble(b)' in the MATLAB/Octave interface.
{\footnotesize
\begin{verbatim}
GxB_set (GxB_BURBLE, true) ; // enable burble
GxB_set (GxB_BURBLE, false) ; // disable burble \end{verbatim}}
If enabled, SuiteSparse:GraphBLAS reports which internal kernels it uses, and
how much time is spent. If you see the word \verb'generic', it means that
SuiteSparse:GraphBLAS was unable to use is faster kernels in
\verb'Source/Generated2', but used a generic kernel that relies on function
pointers. This is done for user-defined types and operators, and when
typecasting is performed, and it is typically slower than the kernels in
\verb'Source/Generated2'.
If you see a lot of \verb'wait' statements, it may mean that a lot of time is
spent finishing a matrix or vector. This may be the result of an inefficient
use of the \verb'setElement' and \verb'assign' methods. If this occurs you
might try changing the sparsity format of a vector or matrix to
\verb'GxB_BITMAP', assuming there's enough space for it.
\verb'GxB_set (GxB_PRINTF, printf)' allows the user application to change the
function used to print diagnostic output. This also controls the output of the
\verb'GxB_*print' functions. By default this parameter is \verb'NULL', in
which case the ANSI C11 \verb'printf' function is used. The parameter is a
function pointer with the same signature as the ANSI C11 \verb'printf'
function. The MATLAB/Octave interface to GraphBLAS uses the following so that
GraphBLAS can print to the MATLAB/Octave Command Window:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_PRINTF, mexPrintf) \end{verbatim}}
After each call to the \verb'printf' function, an optional
\verb'flush' function is called, which is \verb'NULL' by default. If
\verb'NULL', the function is not used. This can be changed with
\verb'GxB_set (GxB_FLUSH, flush)'. The \verb'flush' function takes no
arguments, and returns an \verb'int' which is 0 if successful, or any nonzero
value on failure (the same output as the ANSI C11 \verb'fflush' function,
except that \verb'flush' has no inputs).
%-------------------------------------------------------------------------------
\subsection{Other global options}
%-------------------------------------------------------------------------------
\verb'GxB_MODE' can only be
queried by \verb'GxB_get'; it cannot be modified by \verb'GxB_set'. The mode
is the value passed to \verb'GrB_init' (blocking or non-blocking).
All threads in the same user application share the same global options,
including hypersparsity, bitmap options, and CSR/CSC format determined by
\verb'GxB_set', and the blocking mode determined by \verb'GrB_init'.
Specific format and hypersparsity parameters of each matrix are specific to
that matrix and can be independently changed.
The \verb'GxB_LIBRARY_*' options can be used with \verb'GxB_get' to query the
current implementation. For all of these, \verb'GxB_get' returns a string
(\verb'char *'), except for \verb'GxB_LIBRARY_VERSION', which takes as input an
\verb'int' array of size three. The \verb'GxB_API_*' options can be used with
\verb'GxB_get' to query the current GraphBLAS C API Specification. For all of
these, \verb'GxB_get' returns a string (\verb'char *'), except for
\verb'GxB_API_VERSION', which takes as input an \verb'int' array of size three.
%===============================================================================
\subsection{{\sf GxB\_Global\_Option\_set:} set a global option}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set // set a global default option
(
const GxB_Option_Field field, // option to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_set' sets the value of a global option.
The \verb'field' parameter can be
\verb'GxB_HYPER_SWITCH',
\verb'GxB_BITMAP_SWITCH',
\verb'GxB_FORMAT',
\verb'GxB_NTHREADS',
\verb'GxB_CHUNK',
\verb'GxB_BURBLE',
\verb'GxB_PRINTF',
\verb'GxB_FLUSH',
\verb'GxB_MEMORY_POOL',
or
\verb'GxB_PRINT_1BASED'.
For example, the following usage sets the global hypersparsity ratio to 0.2,
the format of future matrices to \verb'GxB_BY_COL', the maximum number
of threads to 4, the chunk size to 10000, and enables the burble.
No existing matrices are changed.
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER_SWITCH, 0.2) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
GxB_set (GxB_NTHREADS, 4) ;
GxB_set (GxB_CHUNK, (double) 10000) ;
GxB_set (GxB_BURBLE, true) ;
GxB_set (GxB_PRINTF, mexPrintf) ;
\end{verbatim} }
The memory pool parameter sets an upper bound on the number of freed blocks of
memory that SuiteSparse:GraphBLAS keeps in its internal memory pool for future
allocations. \verb'free_pool_limit' is an \verb'int64_t' array of size 64,
and \verb'free_pool_limit [k]' is the upper bound on the number of blocks
of size $2^k$ that are kept in the pool. Passing in a \verb'NULL' pointer
sets the defaults. Passing in an array of size 64 whose entries are all zero
disables the memory pool entirely.
%===============================================================================
\subsection{{\sf GxB\_Matrix\_Option\_set:} set a matrix option}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set // set an option in a matrix
(
GrB_Matrix A, // matrix to modify
const GxB_Option_Field field, // option to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_set' sets the value of a matrix option, for a
particular matrix.
The \verb'field' parameter can be
\verb'GxB_HYPER_SWITCH',
\verb'GxB_BITMAP_SWITCH',
\verb'GxB_SPARSITY_CONTROL', or
\verb'GxB_FORMAT'.
For example, the following usage sets the hypersparsity ratio to 0.2, and the
format of \verb'GxB_BY_COL', for a particular matrix \verb'A', and sets the
sparsity control to \verb'GxB_SPARSE+GxB_FULL' (allowing the matrix to be held
in CSC or FullC formats, but not BitmapC or HyperCSC). SuiteSparse:GraphBLAS
currently applies these changes immediately, but since they are simply hints,
future versions of SuiteSparse:GraphBLAS may delay the change in format if it
can obtain better performance.
If the setting is just \verb'GxB_FULL' and some entries are missing, then
the matrix is held in bitmap format.
{\footnotesize
\begin{verbatim}
GxB_set (A, GxB_HYPER_SWITCH, 0.2) ;
GxB_set (A, GxB_FORMAT, GxB_BY_COL) ;
GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_FULL) ;
\end{verbatim} }
For performance, the matrix option should be set as soon as it is created with
\verb'GrB_Matrix_new', so the internal transformation takes less time.
If an error occurs, \verb'GrB_error(&err,A)' returns details about the error.
%===============================================================================
\subsection{{\sf GxB\_Desc\_set:} set a {\sf GrB\_Descriptor} value}
%===============================================================================
\label{gxbset}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
const GrB_Desc_Field field, // parameter to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
This usage is similar to \verb'GrB_Descriptor_set', just with a name that is
consistent with the other usages of this generic function. Unlike
\verb'GrB_Descriptor_set', the \verb'field' may also be \verb'GxB_NTHREADS',
\verb'GxB_CHUNK', \verb'GxB_SORT', \verb'GxB_COMPRESSION', or
\verb'GxB_IMPORT'. Refer to Sections~\ref{descriptor_set}~and~\ref{desc_set}
for details. If an error occurs, \verb'GrB_error(&err,desc)' returns details
about the error.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Global\_Option\_get:} retrieve a global option}
%===============================================================================
\label{gxbget}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get // gets the current global default option
(
const GxB_Option_Field field, // option to query
... // return value of the global option
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_get' retrieves the value of a global option. The
\verb'field' parameter can be one of the following:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GxB_HYPER_SWITCH' & sparse/hyper setting \\
\verb'GxB_BITMAP_SWITCH' & bitmap/sparse setting \\
\verb'GxB_FORMAT' & by row/col setting \\
\verb'GxB_MODE' & blocking / non-blocking \\
\verb'GxB_NTHREADS' & default number of threads \\
\verb'GxB_CHUNK' & default chunk size \\
\verb'GxB_BURBLE' & burble setting \\
\verb'GxB_PRINTF' & printf function \\
\verb'GxB_FLUSH' & flush function \\
\verb'GxB_MEMORY_POOL' & memory pool control \\
\verb'GxB_PRINT_1BASED' & for printing matrices/vectors \\
\hline
\verb'GxB_LIBRARY_NAME' & the string
\verb'"SuiteSparse:GraphBLAS"' \\
\verb'GxB_LIBRARY_VERSION' & \verb'int' array of size 3 \\
\verb'GxB_LIBRARY_DATE' & date of release \\
\verb'GxB_LIBRARY_ABOUT' & author, copyright \\
\verb'GxB_LIBRARY_LICENSE' & license for the library \\
\verb'GxB_LIBRARY_COMPILE_DATE' & date of compilation \\
\verb'GxB_LIBRARY_COMPILE_TIME' & time of compilation \\
\verb'GxB_LIBRARY_OPENMP' & library compiled with OpenMP\\
\verb'GxB_LIBRARY_URL' & URL of the library \\
\hline
\verb'GxB_API_VERSION' & GraphBLAS C API Specification Version \\
\verb'GxB_API_DATE' & date of the C API Spec. \\
\verb'GxB_API_ABOUT' & about of the C API Spec. \\
\verb'GxB_API_URL' & URL of the specification \\
\hline
\end{tabular}
}
\vspace{0.2in}
For example:
{\footnotesize
\begin{verbatim}
double h ;
GxB_get (GxB_HYPER_SWITCH, &h) ;
printf ("hyper_switch = %g for all new matrices\n", h) ;
double b [GxB_BITMAP_SWITCH] ;
GxB_get (GxB_BITMAP_SWITCH, b) ;
for (int k = 0 ; k < GxB_NBITMAP_SWITCH ; k++)
{
printf ("bitmap_switch [%d] = %g ", k, b [k]) ;
if (k == 0)
{
printf ("for vectors and matrices with 1 row or column\n") ;
}
else if (k == GxB_NBITMAP_SWITCH - 1)
{
printf ("for matrices with min dimension > %d\n", 1 << (k-1)) ;
}
else
{
printf ("for matrices with min dimension %d to %d\n",
(1 << (k-1)) + 1, 1 << k) ;
}
}
GxB_Format_Value s ;
GxB_get (GxB_FORMAT, &s) ;
if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") ;
else printf ("all new matrices are stored by row\n") ;
GrB_mode mode ;
GxB_get (GxB_MODE, &mode) ;
if (mode == GrB_BLOCKING) printf ("GrB_init(GrB_BLOCKING) was called.\n") ;
else printf ("GrB_init(GrB_NONBLOCKING) was called.\n") ;
int nthreads_max ;
GxB_get (GxB_NTHREADS, &nthreads_max) ;
printf ("max # of threads to use: %d\n", nthreads_max) ;
double chunk ;
GxB_get (GxB_CHUNK, &chunk) ;
printf ("chunk size: %g\n", chunk) ;
int64_t free_pool_limit [64] ;
GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;
for (int k = 0 ; k < 64 ; k++)
printf ("pool %d: limit %ld\n", free_pool_limit [k]) ;
char *name ;
int ver [3] ;
GxB_get (GxB_LIBRARY_NAME, &name) ;
GxB_get (GxB_LIBRARY_VERSION, ver) ;
printf ("Library %s, version %d.%d.%d\n", name, ver [0], ver [1], ver [2]) ; \end{verbatim} }
%===============================================================================
\subsection{{\sf GxB\_Matrix\_Option\_get:} retrieve a matrix option}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get // gets the current option of a matrix
(
GrB_Matrix A, // matrix to query
GxB_Option_Field field, // option to query
... // return value of the matrix option
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_get' retrieves the value of a matrix option. The
\verb'field' parameter can be
\verb'GxB_HYPER_SWITCH',
\verb'GxB_BITMAP_SWITCH',
\verb'GxB_SPARSITY_CONTROL',
\verb'GxB_SPARSITY_STATUS',
or
\verb'GxB_FORMAT'.
For example:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
double h, b ;
int sparsity, scontrol ;
GxB_get (A, GxB_SPARSITY_STATUS, &sparsity) ;
GxB_get (A, GxB_HYPER_SWITCH, &h) ;
printf ("matrix A has hyper_switch = %g\n", h) ;
GxB_get (A, GxB_BITMAP_SWITCH, &b) ;
printf ("matrix A has bitmap_switch = %g\n", b) ;
switch (sparsity)
{
case GxB_HYPERSPARSE: printf ("matrix A is hypersparse\n") ; break ;
case GxB_SPARSE: printf ("matrix A is sparse\n" ) ; break ;
case GxB_BITMAP: printf ("matrix A is bitmap\n" ) ; break ;
case GxB_FULL: printf ("matrix A is full\n" ) ; break ;
}
GxB_Format_Value s ;
GxB_get (A, GxB_FORMAT, &s) ;
printf ("matrix A is stored by %s\n", (s == GxB_BY_COL) ? "col" : "row") ;
GxB_get (A, GxB_SPARSITY_CONTROL, &scontrol) ;
if (scontrol & GxB_HYPERSPARSE) printf ("A may become hypersparse\n") ;
if (scontrol & GxB_SPARSE ) printf ("A may become sparse\n") ;
if (scontrol & GxB_BITMAP ) printf ("A may become bitmap\n") ;
if (scontrol & GxB_FULL ) printf ("A may become full\n") ; \end{verbatim} }
\newpage
%===============================================================================
\subsection{{\sf GxB\_Desc\_get:} retrieve a {\sf GrB\_Descriptor} value}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get // get a parameter from a descriptor
(
GrB_Descriptor desc, // descriptor to query; NULL means defaults
GrB_Desc_Field field, // parameter to query
... // value of the parameter
) ;
\end{verbatim} } \end{mdframed}
This usage is the same as \verb'GxB_Desc_get'. The \verb'field' parameter can
be \verb'GrB_OUTP', \verb'GrB_MASK', \verb'GrB_INP0', \verb'GrB_INP1',
\verb'GxB_AxB_METHOD',
\verb'GxB_NTHREADS',
\verb'GxB_CHUNK',
\verb'GxB_SORT',
\verb'GxB_COMPRESSION', or
\verb'GxB_IMPORT'.
Refer to Section~\ref{desc_get} for details.
%===============================================================================
\subsection{Summary of usage of {\sf GxB\_set} and {\sf GxB\_get}}
%===============================================================================
The different usages of \verb'GxB_set' and \verb'GxB_get' are summarized below.
\noindent
To set/get the global options:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER_SWITCH, double h) ;
GxB_set (GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;
GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
GxB_get (GxB_HYPER_SWITCH, double *h) ;
double b [GxB_NBITMAP_SWITCH] ;
GxB_set (GxB_BITMAP_SWITCH, b) ;
GxB_set (GxB_BITMAP_SWITCH, NULL) ; // set defaults
GxB_get (GxB_BITMAP_SWITCH, b) ;
GxB_set (GxB_FORMAT, GxB_BY_ROW) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;
GxB_set (GxB_NTHREADS, int nthreads_max) ;
GxB_get (GxB_NTHREADS, int *nthreads_max) ;
GxB_set (GxB_CHUNK, double chunk) ;
GxB_get (GxB_CHUNK, double *chunk) ;
GxB_set (GxB_BURBLE, bool burble) ;
GxB_get (GxB_BURBLE, bool *burble) ;
GxB_set (GxB_PRINTF, void *printf_function) ;
GxB_get (GxB_PRINTF, void **printf_function) ;
GxB_set (GxB_FLUSH, void *flush_function) ;
GxB_get (GxB_FLUSH, void **flush_function) ;
int64_t free_pool_limit [64] ;
GxB_set (GxB_MEMORY_POOL, free_pool_limit) ;
GxB_set (GxB_MEMORY_POOL, NULL) ; // set defaults
GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;
GxB_set (GxB_PRINT_1BASED, bool onebased) ;
GxB_get (GxB_PRINT_1BASED, bool *onebased) ; \end{verbatim} }
\noindent
To get global options that can be queried but not modified:
{\footnotesize
\begin{verbatim}
GxB_get (GxB_MODE, GrB_Mode *mode) ;
GxB_get (GxB_LIBRARY_NAME, char **) ;
GxB_get (GxB_LIBRARY_VERSION, int *) ;
GxB_get (GxB_LIBRARY_DATE, char **) ;
GxB_get (GxB_LIBRARY_ABOUT, char **) ;
GxB_get (GxB_LIBRARY_LICENSE, char **) ;
GxB_get (GxB_LIBRARY_COMPILE_DATE, char **) ;
GxB_get (GxB_LIBRARY_COMPILE_TIME, char **) ;
GxB_get (GxB_LIBRARY_OPENMP, bool *) ;
GxB_get (GxB_LIBRARY_URL, char **) ;
GxB_get (GxB_API_VERSION, int *) ;
GxB_get (GxB_API_DATE, char **) ;
GxB_get (GxB_API_ABOUT, char **) ;
GxB_get (GxB_API_URL, char **) ; \end{verbatim} }
\noindent
To set/get a matrix option or status
{\footnotesize
\begin{verbatim}
GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, double h) ;
GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;
GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
GxB_get (GrB_Matrix A, GxB_HYPER_SWITCH, double *h) ;
GxB_set (GrB_Matrix A, GxB_BITMAP_SWITCH, double b) ;
GxB_get (GrB_Matrix A, GxB_BITMAP_SWITCH, double *b) ;
GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;
GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ;
GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;
GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, scontrol) ;
GxB_get (GrB_Matrix A, GxB_SPARSITY_CONTROL, int *scontrol) ;
GxB_get (GrB_Matrix A, GxB_SPARSITY_STATUS, int *sparsity) ; \end{verbatim} }
\noindent
To set/get a vector option or status:
{\footnotesize
\begin{verbatim}
GxB_set (GrB_Vector v, GxB_BITMAP_SWITCH, double b) ;
GxB_get (GrB_Vector v, GxB_BITMAP_SWITCH, double *b) ;
GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_ROW) ;
GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GrB_Vector v, GxB_FORMAT, GxB_Format_Value *s) ;
GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;
GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, scontrol) ;
GxB_get (GrB_Vector v, GxB_SPARSITY_CONTROL, int *scontrol) ;
GxB_get (GrB_Vector v, GxB_SPARSITY_STATUS, int *sparsity) ; \end{verbatim} }
\noindent
To set/get a descriptor field:
{\footnotesize
\begin{verbatim}
GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;
GxB_get (GrB_Descriptor d, GrB_OUTP, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_STRUCTURE) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP+GrB_STRUCTURE) ;
GxB_get (GrB_Descriptor d, GrB_MASK, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GrB_INP0, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_INP0, GrB_TRAN) ;
GxB_get (GrB_Descriptor d, GrB_INP0, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN) ;
GxB_get (GrB_Descriptor d, GrB_INP1, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HASH) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_SAXPY) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_DOT) ;
GxB_get (GrB_Descriptor d, GrB_AxB_METHOD, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GxB_NTHREADS, int nthreads) ;
GxB_get (GrB_Descriptor d, GxB_NTHREADS, int *nthreads) ;
GxB_set (GrB_Descriptor d, GxB_CHUNK, double chunk) ;
GxB_get (GrB_Descriptor d, GxB_CHUNK, double *chunk) ;
GxB_set (GrB_Descriptor d, GxB_SORT, sort) ;
GxB_get (GrB_Descriptor d, GxB_SORT, int *sort) ;
GxB_set (GrB_Descriptor d, GxB_COMPRESSION, GxB_FAST_IMPORT) ;
GxB_set (GrB_Descriptor d, GxB_COMPRESSION, GxB_SECURE_IMPORT) ;
GxB_get (GrB_Descriptor d, GxB_COMPRESSION, GrB_Desc_Value *method) ;
GxB_set (GrB_Descriptor d, GxB_IMPORT, int method) ;
GxB_get (GrB_Descriptor d, GxB_IMPORT, int *method) ; \end{verbatim} }
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{SuiteSparse:GraphBLAS Colon and Index Notation} %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{colon}
MATLAB/Octave uses a colon notation to index into matrices, such as
\verb'C=A(2:4,3:8)', which extracts \verb'C' as 3-by-6 submatrix from \verb'A',
from rows 2 through 4 and columns 3 to 8 of the matrix \verb'A'. A single
colon is used to denote all rows, \verb'C=A(:,9)', or all columns,
\verb'C=A(12,:)', which refers to the 9th column and 12th row of \verb'A',
respectively. An arbitrary integer list can be given as well, such as the
MATLAB/Octave statements:
{\footnotesize
\begin{verbatim}
I = [2 1 4] ;
J = [3 5] ;
C = A (I,J) ; \end{verbatim} }
\noindent
which creates the 3-by-2 matrix \verb'C' as follows:
\[
C =
\left[
\begin{array}{cc}
a_{2,3} & a_{2,5} \\
a_{1,3} & a_{1,5} \\
a_{4,3} & a_{4,5} \\
\end{array}
\right]
\]
The GraphBLAS API can do the equivalent of \verb'C=A(I,J)',
\verb'C=A(:,J)', \verb'C=A(I,:)', and \verb'C=A(:,:)', by passing a parameter
\verb'const GrB_Index *I' as either an array of size \verb'ni', or as the
special value \verb'GrB_ALL', which corresponds to the stand-alone colon
\verb'C=A(:,J)', and the same can be done for \verb'J'.. To compute
\verb'C=A(2:4,3:8)' in GraphBLAS requires the user application to create two
explicit integer arrays \verb'I' and \verb'J' of size 3 and 5, respectively,
and then fill them with the explicit values \verb'[2,3,4]' and
\verb'[3,4,5,6,7,8]'. This works well if the lists are small, or if the matrix
has more entries than rows or columns.
However, particularly with hypersparse matrices, the size of the explicit
arrays \verb'I' and \verb'J' can vastly exceed the number of entries in the
matrix. When using its hypersparse format, SuiteSparse:GraphBLAS allows the
user application to create a \verb'GrB_Matrix' with dimensions up to $2^{60}$,
with no memory constraints. The only constraint on memory usage in a
hypersparse matrix is the number of entries in the matrix.
For example, creating a $n$-by-$n$ matrix \verb'A' of type \verb'GrB_FP64' with
$n=2^{60}$ and one million entries is trivial to do in Version 2.1 (and later)
of SuiteSparse:GraphBLAS, taking at most 24MB of space. SuiteSparse:GraphBLAS
Version 2.1 (or later) could do this on an old smartphone. However, using just
the pure GraphBLAS API, constructing \verb'C=A(0:(n/2),0:(n/2))'
in SuiteSparse Version 2.0 would require the creation of an integer array
\verb'I' of size $2^{59}$, containing the sequence 0, 1, 2, 3, ...., requiring
about 4 ExaBytes of memory (4 million terabytes). This is roughly 1000 times
larger than the memory size of the world's largest computer in 2018.
SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS API with a
full implementation of the MATLAB colon notation for integers,
\verb'I=begin:inc:end'. This extension allows the construction of the matrix
\verb'C=A(0:(n/2),0:(n/2))' in this example, with dimension $2^{59}$, probably
taking just milliseconds on an old smartphone.
The \verb'GrB_extract', \verb'GrB_assign', and \verb'GxB_subassign' operations
(described in the Section~\ref{operations}) each have parameters that define a
list of integer indices, using two parameters:
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
const GrB_Index *I ; // an array, or a special value GrB_ALL
GrB_Index ni ; // the size of I, or a special value \end{verbatim}}
\vspace{-0.05in}
These two parameters define five kinds of index lists, which can be used to
specify either an explicit or implicit list of row indices and/or column
indices. The length of the list of indices is denoted \verb'|I|'. This
discussion applies equally to the row indices \verb'I' and the column indices
\verb'J'. The five kinds are listed below.
\begin{enumerate}
\item
An explicit list of indices, such as \verb'I = [2 1 4 7 2]' in MATLAB
notation, is handled by passing in \verb'I' as a pointer to an array of
size 5, and passing \verb'ni=5' as the size of the list.
The length of the explicit list is \verb'ni=|I|'.
Duplicates may appear, except that for some uses of \verb'GrB_assign'
and \verb'GxB_subassign', duplicates lead to undefined behavior
according to the GraphBLAS C API Specification.
SuiteSparse:GraphBLAS specifies how duplicates are handled in all cases,
as an addition to the specification.
See Section~\ref{duplicates} for details.
\item To specify all rows of a matrix, use \verb'I = GrB_ALL'. The
parameter \verb'ni' is ignored. This is equivalent to \verb'C=A(:,J)'
in MATLAB. In GraphBLAS, this is the sequence \verb'0:(m-1)' if \verb'A'
has \verb'm' rows, with length \verb'|I|=m'. If \verb'J' is used the
columns of an \verb'm'-by-\verb'n' matrix, then \verb'J=GrB_ALL' refers to
all columns, and is the sequence \verb'0:(n-1)', of length \verb'|J|=n'.
\begin{alert}
{\bf SPEC:} If \verb'I' or \verb'J' are \verb'GrB_ALL', the specification
requires that \verb'ni' be passed in as \verb'm' (the number of rows)
and \verb'nj' be passed in as \verb'n'. Any other value is an error.
SuiteSparse:GraphBLAS ignores these scalar inputs and treats them as if
they are equal to their only possible correct value.
\end{alert}
\item To specify a contiguous range of indices, such as \verb'I=10:20'
in MATLAB, the array \verb'I' has size 2, and \verb'ni' is passed to
SuiteSparse:GraphBLAS as the special value \verb'ni = GxB_RANGE'. The
beginning index is \verb'I[GxB_BEGIN]' and the ending index is
\verb'I[GxB_END]'. Both values must be non-negative since
\verb'GrB_Index' is an unsigned integer (\verb'uint64_t'). The value of
\verb'I[GxB_INC]' is ignored.
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
// to specify I = 10:20
GrB_Index I [2], ni = GxB_RANGE ;
I [GxB_BEGIN] = 10 ; // the start of the sequence
I [GxB_END ] = 20 ; // the end of the sequence \end{verbatim}}
\vspace{-0.05in}
Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]',
The sequence has length zero if $b > e$; otherwise the length is
$|I| = (e-b) + 1$.
\item To specify a strided range of indices with a non-negative stride,
such as \verb'I=3:2:10', the array \verb'I' has size 3, and \verb'ni' has
the special value \verb'GxB_STRIDE'. This is the sequence 3, 5, 7, 9, of
length 4. Note that 10 does not appear in the list. The end point need
not appear if the increment goes past it.
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
// to specify I = 3:2:10
GrB_Index I [3], ni = GxB_STRIDE ;
I [GxB_BEGIN ] = 3 ; // the start of the sequence
I [GxB_INC ] = 2 ; // the increment
I [GxB_END ] = 10 ; // the end of the sequence \end{verbatim}}
\vspace{-0.05in}
The \verb'GxB_STRIDE' sequence is the same as the \verb'List' generated by
the following for loop:
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
int64_t k = 0 ;
GrB_Index *List = (a pointer to an array of large enough size)
for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])
{
// i is the kth entry in the sequence
List [k++] = i ;
} \end{verbatim}}
\vspace{-0.05in}
Then passing the explicit array \verb'List' and its length \verb'ni=k' has
the same effect as passing in the array \verb'I' of size 3, with
\verb'ni=GxB_STRIDE'. The latter is simply much faster to produce, and
much more efficient for SuiteSparse:GraphBLAS to process.
Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]', and let
$\Delta$ = \verb'I[GxB_INC]'. The sequence has length zero if $b > e$ or
$\Delta=0$. Otherwise, the length of the sequence is
\[
|I| = \Bigl\lfloor\dfrac{e-b}{\Delta}\Bigr\rfloor + 1
\]
\item
In MATLAB notation, if the stride is negative, the sequence is decreasing.
For example, \verb'10:-2:1' is the sequence 10, 8, 6, 4, 2, in that order.
In SuiteSparse:GraphBLAS, use \verb'ni = GxB_BACKWARDS', with an array
\verb'I' of size 3. The following example specifies defines the equivalent
of the MATLAB expression \verb'10:-2:1' in SuiteSparse:GraphBLAS:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
// to specify I = 10:-2:1
GrB_Index I [3], ni = GxB_BACKWARDS ;
I [GxB_BEGIN ] = 10 ; // the start of the sequence
I [GxB_INC ] = 2 ; // the magnitude of the increment
I [GxB_END ] = 1 ; // the end of the sequence \end{verbatim}}
\vspace{-0.1in}
The value -2 cannot be assigned to the \verb'GrB_Index' array \verb'I',
since that is an unsigned type. The signed increment is represented
instead with the special value \verb'ni = GxB_BACKWARDS'.
The \verb'GxB_BACKWARDS' sequence is the same as generated by the following
for loop:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
int64_t k = 0 ;
GrB_Index *List = (a pointer to an array of large enough size)
for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])
{
// i is the kth entry in the sequence
List [k++] = i ;
} \end{verbatim}}
\vspace{-0.1in}
Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]', and let
$\Delta$ = \verb'I[GxB_INC]' (note that $\Delta$ is not negative). The
sequence has length zero if $b < e$ or $\Delta=0$. Otherwise, the length
of the sequence is
\[
|I| = \Bigl\lfloor\dfrac{b-e}{\Delta}\Bigr\rfloor + 1
\]
\end{enumerate}
Since \verb'GrB_Index' is an unsigned integer, all three values
\verb'I[GxB_BEGIN]', \verb'I[GxB_INC]', and \verb'I[GxB_END]' must
be non-negative.
Just as in MATLAB, it is valid to specify an empty sequence of length zero.
For example, \verb'I = 5:3' has length zero in MATLAB and the same is
true for a \verb'GxB_RANGE' sequence in SuiteSparse:GraphBLAS, with
\verb'I[GxB_BEGIN]=5' and \verb'I[GxB_END]=3'. This has the same
effect as array \verb'I' with \verb'ni=0'.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Operations} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{operations}
The next sections define each of the GraphBLAS operations, also listed in the
table below.
\vspace{0.2in}
{\small
\begin{tabular}{lll}
\hline
\verb'GrB_mxm' & matrix-matrix multiply & ${\bf C \langle M \rangle = C \odot AB}$ \\
\verb'GrB_vxm' & vector-matrix multiply & ${\bf w^{\sf T}\langle m^{\sf T}\rangle = w^{\sf T}\odot u^{\sf T}A}$ \\
\verb'GrB_mxv' & matrix-vector multiply & ${\bf w \langle m \rangle = w \odot Au}$ \\
\hline
\verb'GrB_eWiseMult' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \otimes B)}$ \\
& set intersection & ${\bf w \langle m \rangle = w \odot (u \otimes v)}$ \\
\hline
\verb'GrB_eWiseAdd' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \oplus B)}$ \\
& set union & ${\bf w \langle m \rangle = w \odot (u \oplus v)}$ \\
\hline
\verb'GxB_eWiseUnion'& element-wise, & ${\bf C \langle M \rangle = C \odot (A \oplus B)}$ \\
& set union & ${\bf w \langle m \rangle = w \odot (u \oplus v)}$ \\
\hline
\verb'GrB_extract' & extract submatrix & ${\bf C \langle M \rangle = C \odot A(I,J)}$ \\
& & ${\bf w \langle m \rangle = w \odot u(i)}$ \\
\hline
\verb'GxB_subassign' & assign submatrix, & ${\bf C (I,J) \langle M \rangle = C(I,J) \odot A}$ \\
& with submask for ${\bf C(I,J)}$
& ${\bf w (i) \langle m \rangle = w(i) \odot u}$ \\
\hline
\verb'GrB_assign' & assign submatrix & ${\bf C \langle M \rangle (I,J) = C(I,J) \odot A}$ \\
& with submask for ${\bf C}$
& ${\bf w \langle m \rangle (i) = w(i) \odot u}$ \\
\hline
\verb'GrB_apply' & apply unary operator & ${\bf C \langle M \rangle = C \odot} f{\bf (A)}$ \\
& & ${\bf w \langle m \rangle = w \odot} f{\bf (u)}$ \\
& apply binary operator & ${\bf C \langle M \rangle = C \odot} f(x,{\bf A})$ \\
& & ${\bf C \langle M \rangle = C \odot} f({\bf A},y)$ \\
& & ${\bf w \langle m \rangle = w \odot} f(x,{\bf x})$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},y)$ \\
& apply index-unary op & ${\bf C \langle M \rangle = C \odot} f({\bf A},i,j,k)$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},i,0,k)$ \\
\hline
\verb'GrB_select' & select entries & ${\bf C \langle M \rangle = C \odot} \mbox{select}({\bf A},i,j,k)$ \\
& & ${\bf w \langle m \rangle = w \odot} \mbox{select}({\bf u},i,0,k)$ \\
\hline
\verb'GrB_reduce' & reduce to vector & ${\bf w \langle m \rangle = w \odot} [{\oplus}_j {\bf A}(:,j)]$ \\
& reduce to scalar & $s = s \odot [{\oplus}_{ij} {\bf A}(I,J)]$ \\
\hline
\verb'GrB_transpose' & transpose & ${\bf C \langle M \rangle = C \odot A^{\sf T}}$ \\
\hline
\verb'GrB_kronecker' & Kronecker product & ${\bf C \langle M \rangle = C \odot \mbox{kron}(A, B)}$ \\
\hline
\end{tabular}
}
\vspace{0.2in}
If an error occurs, \verb'GrB_error(&err,C)' or \verb'GrB_error(&err,w)'
returns details about the error, for operations that return a modified matrix
\verb'C' or vector \verb'w'. The only operation that cannot return an error
string is reduction to a scalar with \verb'GrB_reduce'.
\newpage
%===============================================================================
\subsection{{\sf GrB\_mxm:} matrix-matrix multiply} %===========================
%===============================================================================
\label{mxm}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_mxm // C<Mask> = accum (C, A*B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Semiring semiring, // defines '+' and '*' for A*B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_mxm' multiplies two sparse matrices \verb'A' and \verb'B' using the
\verb'semiring'. The input matrices \verb'A' and \verb'B' may be transposed
according to the descriptor, \verb'desc' (which may be \verb'NULL') and then
typecasted to match the multiply operator of the \verb'semiring'. Next,
\verb'T=A*B' is computed on the \verb'semiring', precisely defined in the
\verb'GB_spec_mxm.m' script in \verb'GraphBLAS/Test'. The actual algorithm
exploits sparsity and does not take $O(n^3)$ time, but it computes the
following:
{\footnotesize
\begin{verbatim}
[m s] = size (A.matrix) ;
[s n] = size (B.matrix) ;
T.matrix = zeros (m, n, multiply.ztype) ;
T.pattern = zeros (m, n, 'logical') ;
T.matrix (:,:) = identity ; % the identity of the semiring's monoid
T.class = multiply.ztype ; % the ztype of the semiring's multiply op
A = cast (A.matrix, multiply.xtype) ; % the xtype of the semiring's multiply op
B = cast (B.matrix, multiply.ytype) ; % the ytype of the semiring's multiply op
for j = 1:n
for i = 1:m
for k = 1:s
% T (i,j) += A (i,k) * B (k,j), using the semiring
if (A.pattern (i,k) && B.pattern (k,j))
z = multiply (A (i,k), B (k,j)) ;
T.matrix (i,j) = add (T.matrix (i,j), z) ;
T.pattern (i,j) = true ;
end
end
end
end \end{verbatim}}
Finally, \verb'T' is typecasted into the type of \verb'C', and the results are
written back into \verb'C' via the \verb'accum' and \verb'Mask', ${\bf C
\langle M \rangle = C \odot T}$. The latter step is reflected in the MATLAB
function \verb'GB_spec_accum_mask.m', discussed in Section~\ref{accummask}.
\paragraph{\bf Performance considerations:}
Suppose all matrices are in \verb'GxB_BY_COL' format, and \verb'B' is extremely
sparse but \verb'A' is not as sparse. Then computing \verb'C=A*B' is very
fast, and much faster than when \verb'A' is extremely sparse. For example, if
\verb'A' is square and \verb'B' is a column vector that is all nonzero except
for one entry \verb'B(j,0)=1', then \verb'C=A*B' is the same as extracting
column \verb'A(:,j)'. This is very fast if \verb'A' is stored by column but
slow if \verb'A' is stored by row. If \verb'A' is a sparse row with a single
entry \verb'A(0,i)=1', then \verb'C=A*B' is the same as extracting row
\verb'B(i,:)'. This is fast if \verb'B' is stored by row but slow if \verb'B'
is stored by column.
If the user application needs to repeatedly extract rows and columns from a
matrix, whether by matrix multiplication or by \verb'GrB_extract', then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.
By default, \verb'GrB_mxm', \verb'GrB_mxv', \verb'GrB_vxm', and
\verb'GrB_reduce' (to vector) can return their result in a jumbled state, with
the sort left pending. It can sometimes be faster for these methods to do the
sort as they compute their result. Use the \verb'GxB_SORT' descriptor setting
to select this option. Refer to Section~\ref{descriptor} for details.
\newpage
%===============================================================================
\subsection{{\sf GrB\_vxm:} vector-matrix multiply} %===========================
%===============================================================================
\label{vxm}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_vxm // w'<mask> = accum (w, u'*A)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Semiring semiring, // defines '+' and '*' for u'*A
const GrB_Vector u, // first input: vector u
const GrB_Matrix A, // second input: matrix A
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_vxm' multiplies a row vector \verb"u'" times a matrix \verb'A'. The
matrix \verb'A' may be first transposed according to \verb'desc' (as the second
input, \verb'GrB_INP1'); the column vector \verb'u' is never transposed via the
descriptor. The inputs \verb'u' and \verb'A' are typecasted to match the
\verb'xtype' and \verb'ytype' inputs, respectively, of the multiply operator of
the \verb'semiring'. Next, an intermediate column vector \verb"t=A'*u" is
computed on the \verb'semiring' using the same method as \verb'GrB_mxm'.
Finally, the column vector \verb't' is typecasted from the \verb'ztype' of the
multiply operator of the \verb'semiring' into the type of \verb'w', and the
results are written back into \verb'w' using the optional accumulator
\verb'accum' and \verb'mask'.
The last step is ${\bf w \langle m \rangle = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.
\paragraph{\bf Performance considerations:} % u'=u'*A
If the \verb'GxB_FORMAT' of \verb'A' is \verb'GxB_BY_ROW', and the default
descriptor is used (\verb'A' is not transposed), then \verb'GrB_vxm' is faster
than than \verb'GrB_mxv' with its default descriptor, when the vector \verb'u'
is very sparse.
However, if the \verb'GxB_FORMAT' of \verb'A' is \verb'GxB_BY_COL', then
\verb'GrB_mxv' with its default descriptor is faster than \verb'GrB_vxm' with
its default descriptor, when the vector \verb'u' is very sparse.
Using the non-default \verb'GrB_TRAN' descriptor for \verb'A' makes the
\verb'GrB_vxm' operation equivalent to \verb'GrB_mxv' with its default
descriptor (with the operands reversed in the multiplier, as well). The
reverse is true as well; \verb'GrB_mxv' with \verb'GrB_TRAN' is the same as
\verb'GrB_vxm' with a default descriptor.
\newpage
%===============================================================================
\subsection{{\sf GrB\_mxv:} matrix-vector multiply} %===========================
%===============================================================================
\label{mxv}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_mxv // w<mask> = accum (w, A*u)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Semiring semiring, // defines '+' and '*' for A*B
const GrB_Matrix A, // first input: matrix A
const GrB_Vector u, // second input: vector u
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_mxv' multiplies a matrix \verb'A' times a column vector \verb'u'.
The matrix \verb'A' may be first transposed according to \verb'desc' (as the
first input); the column vector \verb'u' is never transposed via the
descriptor. The inputs \verb'A' and \verb'u' are typecasted to match the
\verb'xtype' and \verb'ytype' inputs, respectively, of the multiply operator of
the \verb'semiring'. Next, an intermediate column vector \verb't=A*u' is
computed on the \verb'semiring' using the same method as \verb'GrB_mxm'.
Finally, the column vector \verb't' is typecasted from the \verb'ztype' of the
multiply operator of the \verb'semiring' into the type of \verb'w', and the
results are written back into \verb'w' using the optional accumulator
\verb'accum' and \verb'mask'.
The last step is ${\bf w \langle m \rangle = w \odot t}$, as described
in Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.
\paragraph{\bf Performance considerations:} % u=A*u
Refer to the discussion of \verb'GrB_vxm'. In SuiteSparse:GraphBLAS,
\verb'GrB_mxv' is very efficient when \verb'u' is sparse or dense, when the
default descriptor is used, and when the matrix is \verb'GxB_BY_COL'. When
\verb'u' is very sparse and \verb'GrB_INP0' is set to its non-default
\verb'GrB_TRAN', then this method is not efficient if the matrix is in
\verb'GxB_BY_COL' format. If an application needs to perform \verb"A'*u"
repeatedly where \verb'u' is very sparse, then use the \verb'GxB_BY_ROW' format
for \verb'A' instead.
\newpage
%===============================================================================
\subsection{{\sf GrB\_eWiseMult:} element-wise operations, set intersection} %==
%===============================================================================
\label{eWiseMult}
Element-wise ``multiplication'' is shorthand for applying a binary operator
element-wise on two matrices or vectors \verb'A' and \verb'B', for all entries
that appear in the set intersection of the patterns of \verb'A' and \verb'B'.
This is like \verb'A.*B' for two sparse matrices in MATLAB, except that in
GraphBLAS any binary operator can be used, not just multiplication.
The pattern of the result of the element-wise ``multiplication'' is exactly
this set intersection. Entries in \verb'A' but not \verb'B', or visa versa, do
not appear in the result.
Let $\otimes$ denote the binary operator to be used. The computation ${\bf T =
A \otimes B}$ is given below. Entries not in the intersection of ${\bf A}$ and
${\bf B}$ do not appear in the pattern of ${\bf T}$. That is:
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
\> \> $t_{ij} = a_{ij} \otimes b_{ij}$ \\
\end{tabbing} }
\vspace{-0.2in}
Depending on what kind of operator is used and what the implicit value is
assumed to be, this can give the Hadamard product. This is the case for
\verb'A.*B' in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the \verb'eWiseMult' operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of \verb'A' and \verb'B', and discards any entry outside this
intersection. Its usefulness in a user's application does not depend upon it
computing a Hadamard product in all cases. The operator need not be
associative, commutative, nor have any particular property except for type
compatibility with \verb'A' and \verb'B', and the output matrix \verb'C'.
The generic name for this operation is \verb'GrB_eWiseMult', which can be used
for both matrices and vectors.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_eWiseMult:} element-wise vector multiply}
%-------------------------------------------------------------------------------
\label{eWiseMult_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseMult // w<mask> = accum (w, u.*v)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> multiply, // defines '.*' for t=u.*v
const GrB_Vector u, // first input: vector u
const GrB_Vector v, // second input: vector v
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_eWiseMult' computes the element-wise ``multiplication'' of two
vectors \verb'u' and \verb'v', element-wise using any binary operator (not just
times). The vectors are not transposed via the descriptor. The vectors
\verb'u' and \verb'v' are first typecasted into the first and second inputs of
the \verb'multiply' operator. Next, a column vector \verb't' is computed,
denoted ${\bf t = u \otimes v}$. The pattern of \verb't' is the set
intersection of \verb'u' and \verb'v'. The result \verb't' has the type of the
output \verb'ztype' of the \verb'multiply' operator.
The \verb'operator' is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'multiply' binary operator.
If given a semiring (\verb'GrB_Semiring'), the multiply operator of the
semiring is used as the \verb'multiply' binary operator.
The next and final step is ${\bf w \langle m \rangle = w \odot t}$, as
described in Section~\ref{accummask}, except that all the terms are column
vectors instead of matrices. Note for all GraphBLAS operations, including this
one, the accumulator ${\bf w \odot t}$ is always applied in a set union manner,
even though ${\bf t = u \otimes v}$ for this operation is applied in a set
intersection manner.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_eWiseMult:} element-wise matrix multiply}
%-------------------------------------------------------------------------------
\label{eWiseMult_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> multiply, // defines '.*' for T=A.*B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_eWiseMult' computes the element-wise ``multiplication'' of two
matrices \verb'A' and \verb'B', element-wise using any binary operator (not
just times). The input matrices may be transposed first, according to the
descriptor \verb'desc'. They are then typecasted into the first and second
inputs of the \verb'multiply' operator. Next, a matrix \verb'T' is computed,
denoted ${\bf T = A \otimes B}$. The pattern of \verb'T' is the set
intersection of \verb'A' and \verb'B'. The result \verb'T' has the type of the
output \verb'ztype' of the \verb'multiply' operator.
The \verb'multiply' operator is typically a \verb'GrB_BinaryOp', but the method
is type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'multiply' binary operator.
If given a semiring (\verb'GrB_Semiring'), the multiply operator of the
semiring is used as the \verb'multiply' binary operator.
\vspace{0.05in}
The operation can be expressed in MATLAB notation as:
{\footnotesize
\begin{verbatim}
[nrows, ncols] = size (A.matrix) ;
T.matrix = zeros (nrows, ncols, multiply.ztype) ;
T.class = multiply.ztype ;
p = A.pattern & B.pattern ;
A = cast (A.matrix (p), multiply.xtype) ;
B = cast (B.matrix (p), multiply.ytype) ;
T.matrix (p) = multiply (A, B) ;
T.pattern = p ; \end{verbatim} }
The final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}. Note for all GraphBLAS operations, including this
one, the accumulator ${\bf C \odot T}$ is always applied in a set union manner,
even though ${\bf T = A \otimes B}$ for this operation is applied in a set
intersection manner.
\newpage
%===============================================================================
\subsection{{\sf GrB\_eWiseAdd:} element-wise operations, set union} %==========
%===============================================================================
\label{eWiseAdd}
Element-wise ``addition'' is shorthand for applying a binary operator
element-wise on two matrices or vectors \verb'A' and \verb'B', for all entries
that appear in the set intersection of the patterns of \verb'A' and \verb'B'.
This is like \verb'A+B' for two sparse matrices in MATLAB, except that in
GraphBLAS any binary operator can be used, not just addition. The pattern of
the result of the element-wise ``addition'' is the set union of the pattern of
\verb'A' and \verb'B'. Entries in neither in \verb'A' nor in \verb'B' do
not appear in the result.
Let $\oplus$ denote the binary operator to be used. The computation ${\bf T =
A \oplus B}$ is exactly the same as the computation with accumulator operator
as described in Section~\ref{accummask}. It acts like a sparse matrix
addition, except that any operator can be used. The pattern of ${\bf A \oplus
B}$ is the set union of the patterns of ${\bf A}$ and ${\bf B}$, and the
operator is applied only on the set intersection of ${\bf A}$ and ${\bf B}$.
Entries not in either the pattern of ${\bf A}$ or ${\bf B}$ do not appear in
the pattern of ${\bf T}$. That is:
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
\> \> $t_{ij} = a_{ij} \oplus b_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf A \setminus B}$ \\
\> \> $t_{ij} = a_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf B \setminus A}$ \\
\> \> $t_{ij} = b_{ij}$
\end{tabbing}
}
The only difference between element-wise ``multiplication'' (${\bf T =A \otimes
B}$) and ``addition'' (${\bf T = A \oplus B}$) is the pattern of the result,
and what happens to entries outside the intersection. With $\otimes$ the
pattern of ${\bf T}$ is the intersection; with $\oplus$ it is the set union.
Entries outside the set intersection are dropped for $\otimes$, and kept for
$\oplus$; in both cases the operator is only applied to those (and only those)
entries in the intersection. Any binary operator can be used interchangeably
for either operation.
Element-wise operations do not operate on the implicit values, even implicitly,
since the operations make no assumption about the semiring. As a result, the
results can be different from MATLAB, which can always assume the implicit
value is zero. For example, \verb'C=A-B' is the conventional matrix
subtraction in MATLAB. Computing \verb'A-B' in GraphBLAS with \verb'eWiseAdd'
will apply the \verb'MINUS' operator to the intersection, entries in \verb'A'
but not \verb'B' will be unchanged and appear in \verb'C', and entries in
neither \verb'A' nor \verb'B' do not appear in \verb'C'. For these cases, the
results matches the MATLAB \verb'C=A-B'. Entries in \verb'B' but not \verb'A'
do appear in \verb'C' but they are not negated; they cannot be subtracted from
an implicit value in \verb'A'. This is by design. If conventional matrix
subtraction of two sparse matrices is required, and the implicit value is known
to be zero, use \verb'GrB_apply' to negate the values in \verb'B', and then
use \verb'eWiseAdd' with the \verb'PLUS' operator, to compute \verb'A+(-B)'.
The generic name for this operation is \verb'GrB_eWiseAdd', which can be used
for both matrices and vectors.
There is another minor difference in two variants of the element-wise
functions. If given a \verb'semiring', the \verb'eWiseAdd' functions use the
binary operator of the semiring's monoid, while the \verb'eWiseMult' functions
use the multiplicative operator of the semiring.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_eWiseAdd:} element-wise vector addition}
%-------------------------------------------------------------------------------
\label{eWiseAdd_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseAdd // w<mask> = accum (w, u+v)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> add, // defines '+' for t=u+v
const GrB_Vector u, // first input: vector u
const GrB_Vector v, // second input: vector v
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_eWiseAdd' computes the element-wise ``addition'' of two
vectors \verb'u' and \verb'v', element-wise using any binary operator (not just
plus). The vectors are not transposed via the descriptor. Entries in the
intersection of \verb'u' and \verb'v' are first typecasted into the first and
second inputs of the \verb'add' operator. Next, a column vector \verb't' is
computed, denoted ${\bf t = u \oplus v}$. The pattern of \verb't' is the set
union of \verb'u' and \verb'v'. The result \verb't' has the type of the output
\verb'ztype' of the \verb'add' operator.
The \verb'add' operator is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'add' binary operator. If
given a semiring (\verb'GrB_Semiring'), the additive operator of the monoid of
the semiring is used as the \verb'add' binary operator.
The final step is ${\bf w \langle m \rangle = w \odot t}$, as described in
Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_eWiseAdd:} element-wise matrix addition}
%-------------------------------------------------------------------------------
\label{eWiseAdd_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> add, // defines '+' for T=A+B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_eWiseAdd' computes the element-wise ``addition'' of two
matrices \verb'A' and \verb'B', element-wise using any binary operator (not
just plus). The input matrices may be transposed first, according to the
descriptor \verb'desc'. Entries in the intersection then typecasted into the
first and second inputs of the \verb'add' operator. Next, a matrix \verb'T' is
computed, denoted ${\bf T = A \oplus B}$. The pattern of \verb'T' is the set
union of \verb'A' and \verb'B'. The result \verb'T' has the type of the output
\verb'ztype' of the \verb'add' operator.
The \verb'add' operator is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'add' binary operator. If
given a semiring (\verb'GrB_Semiring'), the additive operator of the monoid of
the semiring is used as the \verb'add' binary operator.
\vspace{0.05in}
The operation can be expressed in MATLAB notation as:
{\footnotesize
\begin{verbatim}
[nrows, ncols] = size (A.matrix) ;
T.matrix = zeros (nrows, ncols, add.ztype) ;
p = A.pattern & B.pattern ;
A = GB_mex_cast (A.matrix (p), add.xtype) ;
B = GB_mex_cast (B.matrix (p), add.ytype) ;
T.matrix (p) = add (A, B) ;
p = A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;
p = ~A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;
T.pattern = A.pattern | B.pattern ;
T.class = add.ztype ; \end{verbatim} }
Except for when typecasting is performed, this is identical to how the
\verb'accum' operator is applied in Figure~\ref{fig_accummask}.
The final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}.
\newpage
%===============================================================================
\subsection{{\sf GxB\_eWiseUnion:} element-wise operations, set union} %========
%===============================================================================
\label{eWiseUnion}
\verb'GxB_eWiseUnion' computes a result with the same pattern
\verb'GrB_eWiseAdd', namely, a set union of its two inputs. It differs in how
the binary operator is applied.
Let $\oplus$ denote the binary operator to be used. The operator is applied to
every entry in $\bf A$ and $\bf B$. A pair of scalars, $\alpha$ and $\beta$
(\verb'alpha' and \verb'beta' in the API, respectively) define the
inputs to the operator when entries are present in one matrix but not the
other.
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
\> \> $t_{ij} = a_{ij} \oplus b_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf A \setminus B}$ \\
\> \> $t_{ij} = a_{ij} \oplus \beta $ \\
\> for all entries $(i,j)$ in ${\bf B \setminus A}$ \\
\> \> $t_{ij} = \alpha \oplus b_{ij}$
\end{tabbing}
}
\verb'GxB_eWiseUnion' is useful in contexts where \verb'GrB_eWiseAdd' cannot be
used because of the typecasting rules of GraphBLAS. In particular, suppose
\verb'A' and \verb'B' are matrices with a user-defined type, and suppose
\verb'<' is a user-defined operator that compares two entries of this type and
returns a Boolean value. Then \verb'C=A<B' can be computed with
\verb'GxB_eWiseUnion' but not with \verb'GrB_eWiseAdd'. In the latter, if
\verb'A(i,j)' is present but \verb'B(i,j)' is not, then \verb'A(i,j)' must
typecasted to the type of \verb'C' (\verb'GrB_BOOL' in this case), and the
assigment \verb'C(i,j) = (bool) A(i,j)' would be performed. This is not
possible because user-defined types cannot be typecasted to any other type.
Another advantage of \verb'GxB_eWiseUnion' is its performance. For example,
the MATLAB/Octave expression \verb'C=A-B' computes \verb'C(i,j)=-B(i,j)' when
\verb'A(i,j)' is not present. This cannot be done with a single call
\verb'GrB_eWiseAdd', but it can be done with a single call to
\verb'GxB_eWiseUnion', with the \verb'GrB_MINUS_FP64' operator, and with both
\verb'alpha' and \verb'beta' scalars equal to zero. It is possible to
compute this result with a temporary matrix, \verb'E=-B', computed with
\verb'GrB_apply' and \verb'GrB_AINV_FP64', followed by a call to
\verb'GrB_eWiseAdd' to compute \verb'C=A+E', but this is slower than a single
call to \verb'GxB_eWiseUnion', and uses more memory.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_eWiseUnion:} element-wise vector addition}
%-------------------------------------------------------------------------------
\label{eWiseUnion_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_eWiseUnion // w<mask> = accum (w, u+v)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp add, // defines '+' for t=u+v
const GrB_Vector u, // first input: vector u
const GrB_Scalar alpha,
const GrB_Vector v, // second input: vector v
const GrB_Scalar beta,
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
Identical to \verb'GrB_Vector_eWiseAdd' except that two scalars are used
to define how to compute the result when entries are present in one of
the two input vectors (\verb'u' and \verb'v'), but not the other.
Each of the two input scalars, \verb'alpha' and \verb'beta'
must contain an entry.
When computing the result \verb't=u+v',
if \verb'u(i)' is present but \verb'v(i)' is not, then \verb't(i)=u(i)+beta'.
Likewise,
if \verb'v(i)' is present but \verb'u(i)' is not, then \verb't(i)=alpha+v(i)',
where \verb'+' denotes the binary operator, \verb'add'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_eWiseUnion:} element-wise matrix addition}
%-------------------------------------------------------------------------------
\label{eWiseUnion_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_eWiseUnion // C<M> = accum (C, A+B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp add, // defines '+' for T=A+B
const GrB_Matrix A, // first input: matrix A
const GrB_Scalar alpha,
const GrB_Matrix B, // second input: matrix B
const GrB_Scalar beta,
const GrB_Descriptor desc // descriptor for C, M, A, and B
) ;
\end{verbatim} } \end{mdframed}
Identical to \verb'GrB_Matrix_eWiseAdd' except that two scalars are used
to define how to compute the result when entries are present in one of
the two input matrices (\verb'A' and \verb'B'), but not the other.
Each of the two input scalars, \verb'alpha' and \verb'beta'
must contain an entry.
When computing the result \verb'T=A+B',
if \verb'A(i,j)' is present but \verb'B(i,j))' is not, then \verb'T(i,j)=A(i,j)+beta'.
Likewise,
if \verb'B(i,j)' is present but \verb'A(i,j)' is not, then \verb'T(i,j)=alpha+B(i,j)',
where \verb'+' denotes the binary operator, \verb'add'.
\newpage
%===============================================================================
\subsection{{\sf GrB\_extract:} submatrix extraction } %========================
%===============================================================================
\label{extract}
The \verb'GrB_extract' function is a generic name for three specific functions:
\verb'GrB_Vector_extract', \verb'GrB_Col_extract', and
\verb'GrB_Matrix_extract'. The generic name appears in the function signature,
but the specific function name is used when describing what each variation
does.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extract:} extract subvector from vector}
%-------------------------------------------------------------------------------
\label{extract_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract // w<mask> = accum (w, u(I))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_extract' extracts a subvector from another vector, identical
to \verb't = u (I)' in MATLAB where \verb'I' is an integer vector of row
indices. Refer to \verb'GrB_Matrix_extract' for further details; vector
extraction is the same as matrix extraction with \verb'n'-by-1 matrices.
See Section~\ref{colon} for a description of \verb'I' and \verb'ni'.
The final step is ${\bf w \langle m \rangle = w \odot
t}$, as described in Section~\ref{accummask}, except that all the terms are
column vectors instead of matrices.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extract:} extract submatrix from matrix}
%-------------------------------------------------------------------------------
\label{extract_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extract' extracts a submatrix from another matrix, identical
to \verb'T = A(I,J)' in MATLAB where \verb'I' and \verb'J' are integer vectors
of row and column indices, respectively, except that indices are zero-based in
GraphBLAS and one-based in MATLAB. The input matrix \verb'A' may be transposed
first, via the descriptor. The type of \verb'T' and \verb'A' are the same.
The size of \verb'C' is \verb'|I|'-by-\verb'|J|'.
Entries outside \verb'A(I,J)' are not accessed and do not take part in the
computation. More precisely, assuming the matrix \verb'A' is not transposed,
the matrix \verb'T' is defined as follows:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj
T.pattern = false (ni, nj) ;
for i = 1:ni
for j = 1:nj
if (A (I(i),J(j)).pattern)
T (i,j).matrix = A (I(i),J(j)).matrix ;
T (i,j).pattern = true ;
end
end
end \end{verbatim}}
\vspace{-0.1in}
If duplicate indices are present in \verb'I' or \verb'J', the above method
defines the result in \verb'T'. Duplicates result in the same values of
\verb'A' being copied into different places in \verb'T'.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.
The final step is ${\bf C \langle M \rangle = C \odot
T}$, as described in Section~\ref{accummask}.
\paragraph{\bf Performance considerations:} % C=A(I,J)
If \verb'A' is not transposed via input descriptor: if \verb'|I|' is small,
then it is fastest if \verb'A' is \verb'GxB_BY_ROW'; if
\verb'|J|' is small, then it is fastest if \verb'A' is
\verb'GxB_BY_COL'. The opposite is true if \verb'A' is transposed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Col\_extract:} extract column vector from matrix}
%-------------------------------------------------------------------------------
\label{extract_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Col_extract' extracts a subvector from a matrix, identical to
\verb't = A (I,j)' in MATLAB where \verb'I' is an integer vector of row indices
and where \verb'j' is a single column index. The input matrix \verb'A' may be
transposed first, via the descriptor, which results in the extraction of a
single row \verb'j' from the matrix \verb'A', the result of which is a column
vector \verb'w'. The type of \verb't' and \verb'A' are the same.
The size of \verb'w' is \verb'|I|'-by-1.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni'.
The final step is ${\bf w \langle m
\rangle = w \odot t}$, as described in Section~\ref{accummask}, except that
all the terms are column vectors instead of matrices.
\paragraph{\bf Performance considerations:} % w = A(I,j)
If \verb'A' is not transposed: it is fastest if the format of \verb'A' is
\verb'GxB_BY_COL'. The opposite is true if \verb'A' is transposed.
\newpage
%===============================================================================
\subsection{{\sf GxB\_subassign:} submatrix assignment} %=======================
%===============================================================================
\label{subassign}
The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'. All
methods can be used in their generic form with the single name
\verb'GxB_subassign'. This is reflected in the prototypes. However, to avoid
confusion between the different kinds of assignment, the name of the specific
function is used when describing each variation. If the discussion applies to
all variations, the simple name \verb'GxB_subassign' is used.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.
\verb'GxB_subassign' is very similar to \verb'GrB_assign', described in
Section~\ref{assign}. The two operations are compared and contrasted in
Section~\ref{compare_assign}. For a discussion of how duplicate indices
are handled in \verb'I' and \verb'J', see Section~\ref{duplicates}.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{subassign_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'. The method is identical to
\verb'GxB_Matrix_subassign' described in Section~\ref{subassign_matrix}, where
all matrices have a single column each. The \verb'mask' has the same size as
\verb'w(I)' and \verb'u'. The only other difference is that the input \verb'u'
in this method is not transposed via the \verb'GrB_INP0' descriptor.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{subassign_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign' operates only on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'. For this operation, the result is not
the entire matrix \verb'C', but a submatrix \verb'S=C(I,J)' of \verb'C'. The
steps taken are as follows, except that ${\bf A}$ may be optionally transposed
via the \verb'GrB_INP0' descriptor option.
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
& notation & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & extract the ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$ & apply the accumulator/mask to the submatrix ${\bf S}$\\
3 & ${\bf C(I,J)}= {\bf S}$ & put the submatrix ${\bf S}$ back into ${\bf C(I,J)}$ \\
\hline
\end{tabular}
\vspace{0.1in}
The accumulator/mask step in Step 2 is the same as for all other GraphBLAS
operations, described in Section~\ref{accummask}, except that for
\verb'GxB_subassign', it is applied to just the submatrix ${\bf S} = {\bf
C(I,J)}$, and thus the \verb'Mask' has the same size as ${\bf A}$,
${\bf S}$, and ${\bf C(I,J)}$.
The \verb'GxB_subassign' operation is the reverse of matrix extraction:
\begin{itemize}
\item
For submatrix extraction, \verb'GrB_Matrix_extract',
the submatrix \verb'A(I,J)' appears on the right-hand side of the assignment,
\verb'C=A(I,J)', and entries outside of the submatrix are not accessed and do
not take part in the computation.
\item
For submatrix assignment, \verb'GxB_Matrix_subassign',
the submatrix \verb'C(I,J)' appears on the left-hand-side of the assignment,
\verb'C(I,J)=A', and entries outside of the submatrix are not accessed and do
not take part in the computation.
\end{itemize}
In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the \verb'Mask' matrix is present it is the same
size as the submatrix:
\begin{itemize}
\item
For submatrix extraction,
${\bf C \langle M \rangle = C \odot A(I,J)}$ is computed,
where the submatrix is on the right.
The mask ${\bf M}$ has the same size as the submatrix ${\bf A(I,J)}$.
\item
For submatrix assignment,
${\bf C(I,J) \langle M \rangle = C(I,J) \odot A}$ is computed,
where the submatrix is on the left.
The mask ${\bf M}$ has the same size as the submatrix ${\bf C(I,J)}$.
\end{itemize}
In Step 1, the submatrix \verb'S' is first computed by the
\verb'GrB_Matrix_extract' operation, \verb'S=C(I,J)'.
Step 2 accumulates the results ${\bf S \langle M \rangle = S \odot T}$,
exactly as described in Section~\ref{accummask}, but operating on the submatrix
${\bf S}$, not ${\bf C}$, using the optional \verb'Mask' and \verb'accum'
operator. The matrix ${\bf T}$ is simply ${\bf T}={\bf A}$, or ${\bf T}={\bf
A}^{\sf T}$ if ${\bf A}$ is transposed via the \verb'desc' descriptor,
\verb'GrB_INP0'. The \verb'GrB_REPLACE' option in the descriptor clears ${\bf
S}$ after computing ${\bf Z = T}$ or ${\bf Z = C \odot T}$, not all of ${\bf
C}$ since this operation can only modify the specified submatrix of ${\bf C}$.
Finally, Step 3 writes the result (which is the modified submatrix \verb'S' and
not all of \verb'C') back into the \verb'C' matrix that contains it, via the
assignment \verb'C(I,J)=S', using the reverse operation from the method
described for matrix extraction:
{\footnotesize
\begin{verbatim}
for i = 1:ni
for j = 1:nj
if (S (i,j).pattern)
C (I(i),J(j)).matrix = S (i,j).matrix ;
C (I(i),J(j)).pattern = true ;
end
end
end \end{verbatim}}
\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Col\_subassign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(I,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(I,j) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Col_subassign' modifies a single sub-column of a matrix \verb'C'. It
is the same as \verb'GxB_Matrix_subassign' where the index vector \verb'J[0]=j'
is a single column index (and thus \verb'nj=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single column. The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'. The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed. Refer to \verb'GxB_Matrix_subassign' for
further details.
\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GxB_BY_COL'. \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GxB_BY_ROW'.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Row\_subassign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_row}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(i,J)<mask'> = accum (C(i,J),u')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,J) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Row_subassign' modifies a single sub-row of a matrix \verb'C'. It is
the same as \verb'GxB_Matrix_subassign' where the index vector \verb'I[0]=i' is
a single row index (and thus \verb'ni=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single row. The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'. The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed. Refer to \verb'GxB_Matrix_subassign' for
further details.
\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GxB_BY_COL'. \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GxB_BY_ROW'.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{subassign_vector_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign_<type>' assigns a single scalar to an entire
subvector of the vector \verb'w'. The operation is exactly like setting a
single entry in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column
index for a vector is implicitly \verb'j=0'. For further details of this
function, see \verb'GxB_Matrix_subassign_<type>' in
Section~\ref{subassign_matrix_scalar}.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{subassign_matrix_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J) and Mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB. The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', with all entries present and equal to \verb'x',
and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GxB_Matrix_subassign'. Refer
to that function in Section~\ref{subassign_matrix} for further details.
For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.
The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}). Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of ANSI C11. For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.
If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined. No error status will be returned since GraphBLAS has no way of
catching this error.
If \verb'x' is a \verb'GrB_Scalar' with no entry, then it is implicitly
expanded into a matrix \verb'A' of size \verb'ni' by \verb'nj', with no entries
present.
\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%===============================================================================
\subsection{{\sf GrB\_assign:} submatrix assignment} %==========================
%===============================================================================
\label{assign}
The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'. All
methods can be used in their generic form with the single name
\verb'GrB_assign'. These methods are very similar to their
\verb'GxB_subassign' counterparts in Section~\ref{subassign}. They differ
primarily in the size of the \verb'Mask', and how the \verb'GrB_REPLACE' option
works. Section~\ref{compare_assign} compares
\verb'GxB_subassign' and \verb'GrB_assign'.
See Section~\ref{colon} for a description of
\verb'I', \verb'ni', \verb'J', and \verb'nj'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_assign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{assign_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_assign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'. The \verb'mask' vector has the same
size as \verb'w'. The method is identical to \verb'GrB_Matrix_assign'
described in Section~\ref{assign_matrix}, where all matrices have a single
column each. The only other difference is that the input \verb'u' in this
method is not transposed via the \verb'GrB_INP0' descriptor.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_assign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{assign_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_assign' operates on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'. It may also modify all of \verb'C',
depending on the input descriptor \verb'desc' and the \verb'Mask'.
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
& notation & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & extract ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S} = {\bf S} \odot {\bf A}$ & apply the accumulator (but not the mask) to ${\bf S}$\\
3 & ${\bf Z} = {\bf C}$ & make a copy of ${\bf C}$ \\
4 & ${\bf Z(I,J)} = {\bf S}$ & put the submatrix into ${\bf Z(I,J)}$ \\
5 & ${\bf C \langle M \rangle = Z}$ & apply the mask/replace phase to all of ${\bf C}$ \\
\hline
\end{tabular}
\vspace{0.1in}
In contrast to \verb'GxB_subassign', the \verb'Mask' has the same as \verb'C'.
Step 1 extracts the submatrix and then Step 2 applies the accumulator
(or ${\bf S}={\bf A}$ if \verb'accum' is \verb'NULL'). The \verb'Mask' is
not yet applied.
Step 3 makes a copy of the ${\bf C}$ matrix, and then Step 4 writes the
submatrix ${\bf S}$ into ${\bf Z}$. This is the same as Step 3 of
\verb'GxB_subassign', except that it operates on a temporary matrix ${\bf Z}$.
Finally, Step 5 writes ${\bf Z}$ back into ${\bf C}$ via the \verb'Mask', using
the Mask/Replace Phase described in Section~\ref{accummask}. If
\verb'GrB_REPLACE' is enabled, then all of ${\bf C}$ is cleared prior to
writing ${\bf Z}$ via the mask. As a result, the \verb'GrB_REPLACE' option can
delete entries outside the ${\bf C(I,J)}$ submatrix.
\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Col\_assign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{assign_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(:,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(:,j) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Col_assign' modifies a single sub-column of a matrix \verb'C'. It is
the same as \verb'GrB_Matrix_assign' where the index vector \verb'J[0]=j' is a
single column index, and where all matrices in \verb'GrB_Matrix_assign' (except
\verb'C') consist of a single column.
Unlike \verb'GrB_Matrix_assign', the \verb'mask' is a vector with the same size
as a single column of \verb'C'.
The input descriptor \verb'GrB_INP0' is ignored; the input vector \verb'u' is
not transposed. Refer to \verb'GrB_Matrix_assign' for further details.
\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GrB_Col_assign' is much faster than \verb'GrB_Row_assign' if the format
of \verb'C' is \verb'GxB_BY_COL'. \verb'GrB_Row_assign' is much faster than
\verb'GrB_Col_assign' if the format of \verb'C' is \verb'GxB_BY_ROW'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Row\_assign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{assign_row}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<mask'>(i,J) = accum (C(i,J),u')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,:), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,:) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Row_assign' modifies a single sub-row of a matrix \verb'C'. It is
the same as \verb'GrB_Matrix_assign' where the index vector \verb'I[0]=i' is
a single row index, and where all matrices in \verb'GrB_Matrix_assign'
(except \verb'C') consist of a single row.
Unlike \verb'GrB_Matrix_assign', the \verb'mask' is a vector with the same size
as a single row of \verb'C'.
The input descriptor \verb'GrB_INP0' is ignored; the input vector \verb'u' is
not transposed. Refer to \verb'GrB_Matrix_assign' for further details.
\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GrB_Col_assign' is much faster than \verb'GrB_Row_assign' if the format
of \verb'C' is \verb'GxB_BY_COL'. \verb'GrB_Row_assign' is much faster than
\verb'GrB_Col_assign' if the format of \verb'C' is \verb'GxB_BY_ROW'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_assign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{assign_vector_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_assign_<type>' assigns a single scalar to an entire subvector
of the vector \verb'w'. The operation is exactly like setting a single entry
in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column index for a
vector is implicitly \verb'j=0'. The \verb'mask' vector has the same size as
\verb'w'. For further details of this function, see
\verb'GrB_Matrix_assign_<type>' in the next section
(\ref{assign_matrix_scalar}).
Following the C API Specification, results are well-defined if \verb'I'
contains duplicate indices. Duplicate indices are simply ignored. See
Section~\ref{duplicates} for more details.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_assign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{assign_matrix_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C and Mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_assign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB. The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GrB_Matrix_assign'. Refer
to that function in Section~\ref{assign_matrix} for further details.
The \verb'Mask' has the same size as \verb'C'.
For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.
The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}). Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of ANSI C11. For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.
If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined. No error status will be returned since GraphBLAS has no way of
catching this error.
If \verb'x' is a \verb'GrB_Scalar' with no entry, then it is implicitly
expanded into a matrix \verb'A' of size \verb'ni' by \verb'nj', with no entries
present.
Following the C API Specification, results are well-defined if \verb'I' or
\verb'J' contain duplicate indices. Duplicate indices are simply ignored. See
Section~\ref{duplicates} for more details.
\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%===============================================================================
\subsection{Duplicate indices in {\sf GrB\_assign} and {\sf GxB\_subassign}}
%===============================================================================
\label{duplicates}
According to the GraphBLAS C API Specification if the index vectors \verb'I' or
\verb'J' contain duplicate indices, the results are undefined for
\verb'GrB_Matrix_assign', \verb'GrB_Matrix_assign', \verb'GrB_Col_assign', and
\verb'GrB_Row_assign'. Only the scalar assignment operations
(\verb'GrB_Matrix_assign_TYPE' and \verb'GrB_Matrix_assign_TYPE') are
well-defined when duplicates appear in \verb'I' and \verb'J'. In those two
functions, duplicate indices are ignored.
As an extension to the specification, SuiteSparse:GraphBLAS provides a
definition of how duplicate indices are handled in all cases. If \verb'I' has
duplicate indices, they are ignored and the last unique entry in the list is
used. When no mask and no accumulator is present, the results are identical to
how MATLAB handles duplicate indices in the built-in expression
\verb'C(I,J)=A'. Details of how this is done is shown below.
{\small
\begin{verbatim}
function C = subassign (C, I, J, A)
% submatrix assignment with pre-sort of I and J; and remove duplicates
% delete duplicates from I, keeping the last one seen
[I2 I2k] = sort (I) ;
Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;
I2 = I2 (~Idupl) ;
I2k = I2k (~Idupl) ;
assert (isequal (I2, unique (I)))
% delete duplicates from J, keeping the last one seen
[J2 J2k] = sort (J) ;
Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;
J2 = J2 (~Jdupl) ;
J2k = J2k (~Jdupl) ;
assert (isequal (J2, unique (J)))
% do the submatrix assignment, with no duplicates in I2 or J2
C (I2,J2) = A (I2k,J2k) ;
\end{verbatim}}
If a mask is present, then it is replaced with \verb'M = M (I2k, J2k)' for
\verb'GxB_subassign', or with \verb'M = M (I2, J2)' for \verb'GrB_assign'.
If an accumulator operator is present, it is applied after the duplicates
are removed, as (for example):
{\small
\begin{verbatim}
C (I2,J2) = C (I2,J2) + A (I2k,J2k) ;
\end{verbatim}}
These definitions allow the MATLAB/Octave interface to GraphBLAS to return the same
results for \verb'C(I,J)=A' for a \verb'GrB' object as they do for built-in
MATLAB/Octave matrices. They also allow the assignment to be done in parallel.
Results are always well-defined in SuiteSparse:GraphBLAS, but they might not be
what you expect. For example, suppose the \verb'MIN' operator is being used
the following assigment to the vector \verb'x', and suppose \verb'I' contains
the entries \verb'[0 0]'. Suppose \verb'x' is initially empty, of length 1,
and suppose \verb'y' is a vector of length 2 with the values \verb'[5 7]'.
{\small
\begin{verbatim}
#include "GraphBLAS.h"
#include <stdio.h>
int main (void)
{
GrB_init (GrB_NONBLOCKING) ;
GrB_Vector x, y ;
GrB_Vector_new (&x, GrB_INT32, 1) ;
GrB_Vector_new (&y, GrB_INT32, 2) ;
GrB_Index I [2] = {0, 0} ;
GrB_Vector_setElement (y, 5, 0) ;
GrB_Vector_setElement (y, 7, 1) ;
GrB_Vector_wait (&y) ;
GxB_print (x, 3) ;
GxB_print (y, 3) ;
GrB_assign (x, NULL, GrB_MIN_INT32, y, I, 2, NULL) ;
GrB_Vector_wait (&y) ;
GxB_print (x, 3) ;
GrB_finalize ( ) ;
}
\end{verbatim}}
You might (wrongly) expect the result to be the vector \verb'x(0)=5', since
two entries seem to be assigned, and the min operator might be expected to
take the minimum of the two. This is not how SuiteSparse:GraphBLAS handles
duplicates.
Instead, the first duplicate index of \verb'I' is discarded
(\verb'I [0] = 0', and \verb'y(0)=5').
and only the second entry is used
(\verb'I [1] = 0', and \verb'y(1)=7').
The output of the above program is:
{\small
\begin{verbatim}
1x1 GraphBLAS int32_t vector, sparse by col:
x, no entries
2x1 GraphBLAS int32_t vector, sparse by col:
y, 2 entries
(0,0) 5
(1,0) 7
1x1 GraphBLAS int32_t vector, sparse by col:
x, 1 entry
(0,0) 7
\end{verbatim}}
You see that the result is \verb'x(0)=7', since the \verb'y(0)=5' entry
has been ignored because of the duplicate indices in \verb'I'.
\begin{alert}
{\bf SPEC:} Providing a well-defined behavior for duplicate
indices with matrix and vector assignment is an extension to the specification.
The specification only defines the behavior when assigning a scalar into a matrix
or vector, and states that duplicate indices otherwise lead to undefined
results.
\end{alert}
\newpage
%===============================================================================
\subsection{Comparing {\sf GrB\_assign} and {\sf GxB\_subassign}} %=============
%===============================================================================
\label{compare_assign}
The \verb'GxB_subassign' and \verb'GrB_assign' operations are very similar, but
they differ in two ways:
\begin{enumerate}
\item {\bf The Mask has a different size:}
The mask in \verb'GxB_subassign' has the same dimensions as \verb'w(I)' for
vectors and \verb'C(I,J)' for matrices. In \verb'GrB_assign', the mask is
the same size as \verb'w' or \verb'C', respectively (except for the row/col
variants). The two masks are related. If \verb'M' is the mask for
\verb'GrB_assign', then \verb'M(I,J)' is the mask for \verb'GxB_subassign'.
If there is no mask, or if \verb'I' and \verb'J' are both \verb'GrB_ALL',
the two masks are the same.
For \verb'GrB_Row_assign' and \verb'GrB_Col_assign', the \verb'mask' vector
is the same size as a row or column of \verb'C', respectively. For the
corresponding \verb'GxB_Row_subassign' and \verb'GxB_Col_subassign'
operations, the \verb'mask' is the same size as the sub-row \verb'C(i,J)' or
subcolumn \verb'C(I,j)', respectively.
\item {\bf \verb'GrB_REPLACE' is different:}
They differ in how \verb'C' is affected in areas outside the \verb'C(I,J)'
submatrix. In \verb'GxB_subassign', the \verb'C(I,J)' submatrix is the
only part of \verb'C' that can be modified, and no part of \verb'C' outside
the submatrix is ever modified. In \verb'GrB_assign', it is possible to
delete entries in \verb'C' outside the submatrix, but only in one specific
manner. Suppose the mask \verb'M' is present (or, suppose it is not
present but \verb'GrB_COMP' is true). After (optionally) complementing the
mask, the value of \verb'M(i,j)' can be 0 for some entry outside the
\verb'C(I,J)' submatrix. If the \verb'GrB_REPLACE' descriptor is
true, \verb'GrB_assign' deletes this entry.
\end{enumerate}
\verb'GxB_subassign' and \verb'GrB_assign' are identical if \verb'GrB_REPLACE'
is set to its default value of false, and if the masks happen to be the same.
The two masks can be the same in two cases: either the \verb'Mask' input is
\verb'NULL' (and it is not complemented via \verb'GrB_COMP'), or \verb'I' and
\verb'J' are both \verb'GrB_ALL'.
If all these conditions hold,
the two algorithms are identical and have the same performance. Otherwise,
\verb'GxB_subassign' is much faster than \verb'GrB_assign' when the latter
must examine the entire matrix \verb'C' to delete entries (when
\verb'GrB_REPLACE' is true), and if it must deal with a much larger \verb'Mask'
matrix. However, both methods have specific uses.
Consider using \verb'C(I,J)+=F' for many submatrices \verb'F' (for example,
when assembling a finite-element matrix). If the \verb'Mask' is meant as a
specification for which entries of \verb'C' should appear in the final result,
then use \verb'GrB_assign'.
If instead the \verb'Mask' is meant to control which entries of the submatrix
\verb'C(I,J)' are modified by the finite-element \verb'F', then use
\verb'GxB_subassign'. This is particularly useful is the \verb'Mask' is a
template that follows along with the finite-element \verb'F', independent of
where it is applied to \verb'C'. Using \verb'GrB_assign' would be very
difficult in this case since a new \verb'Mask', the same size as \verb'C',
would need to be constructed for each finite-element \verb'F'.
In GraphBLAS notation, the two methods can be described as follows:
\vspace{0.05in}
\begin{tabular}{ll}
\hline
matrix and vector subassign & ${\bf C(I,J) \langle M \rangle} = {\bf C(I,J)} \odot {\bf A}$ \\
matrix and vector assign & ${\bf C \langle M \rangle (I,J)} = {\bf C(I,J)} \odot {\bf A}$ \\
\hline
\end{tabular}
\vspace{0.05in}
This notation does not include the details of the \verb'GrB_COMP' and
\verb'GrB_REPLACE' descriptors, but it does illustrate the difference in the
\verb'Mask'. In the subassign, \verb'Mask' is the same size as \verb'C(I,J)'
and \verb'A'. If \verb'I[0]=i' and \verb'J[0]=j', Then \verb'Mask(0,0)'
controls how \verb'C(i,j)' is modified by the subassign, from the value
\verb'A(0,0)'. In the assign, \verb'Mask' is the same size as \verb'C', and
\verb'Mask(i,j)' controls how \verb'C(i,j)' is modified.
The \verb'GxB_subassign' and \verb'GrB_assign' functions have the same
signatures; they differ only in how they consider the \verb'Mask' and the
\verb'GrB_REPLACE' descriptor
Details of each step of the two operations are listed below:
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & \verb'GrB_Matrix_assign' & \verb'GxB_Matrix_subassign' \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & ${\bf S} = {\bf C(I,J)}$ \\
2 & ${\bf S} = {\bf S} \odot {\bf A}$ & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$ \\
3 & ${\bf Z} = {\bf C}$ & ${\bf C(I,J)}= {\bf S}$ \\
4 & ${\bf Z(I,J)} = {\bf S}$ & \\
5 & ${\bf C \langle M \rangle = Z}$ & \\
\hline
\end{tabular}
\vspace{0.1in}
Step 1 is the same. In the Accumulator Phase (Step 2), the expression
${\bf S} \odot {\bf A}$,
described in Section~\ref{accummask}, is the same in both
operations. The result is simply ${\bf A}$ if \verb'accum' is \verb'NULL'. It
only applies to the submatrix ${\bf S}$, not the whole matrix.
The result ${\bf S} \odot {\bf A}$ is used differently in the Mask/Replace
phase.
The Mask/Replace Phase, described in Section~\ref{accummask} is different:
\begin{itemize}
\item
For \verb'GrB_assign' (Step 5), the mask is applied to all of ${\bf
C}$. The mask has the same size as ${\bf C}$. Just prior to making the
assignment via the mask, the \verb'GrB_REPLACE' option can be used to clear
all of ${\bf C}$ first. This is the only way in which entries in ${\bf C}$ that
are outside the ${\bf C(I,J)}$ submatrix can be modified by this operation.
\item
For \verb'GxB_subassign' (Step 2b), the mask is applied to just
${\bf S}$. The mask has the same size as ${\bf C(I,J)}$, ${\bf S}$, and
${\bf A}$. Just prior to making the assignment via the mask, the
\verb'GrB_REPLACE' option can be used to clear ${\bf S}$ first. No entries
in ${\bf C}$ that are outside the ${\bf C(I,J)}$ can be modified by this
operation. Thus, \verb'GrB_REPLACE' has no effect on entries in ${\bf C}$
outside the ${\bf C(I,J)}$ submatrix.
\end{itemize}
The differences between \verb'GrB_assign' and
\verb'GxB_subassign' can be seen in Tables~\ref{insubmatrix} and
\ref{outsubmatrix}. The first table considers the case when the entry $c_{ij}$
is in the ${\bf C(I,J)}$ submatrix, and it describes what is computed for both
\verb'GrB_assign' and \verb'GxB_subassign'. They perform the
exact same computation; the only difference is how the value of the mask is
specified. Compare Table~\ref{insubmatrix} with Table~\ref{tab:maskaccum}
in Section~\ref{sec:maskaccum}.
The first column of Table~\ref{insubmatrix} is {\em yes} if \verb'GrB_REPLACE' is enabled,
and a dash otherwise. The second column is {\em yes} if an accumulator
operator is given, and a dash otherwise. The third column is $c_{ij}$ if the
entry is present in ${\bf C}$, and a dash otherwise. The fourth column is
$a_{i'j'}$ if the corresponding entry is present in ${\bf A}$, where
$i={\bf I}(i')$ and $j={\bf J}(i')$.
The {\em mask} column is 1 if the effective value of the mask mask allows ${\bf
C}$ to be modified, and 0 otherwise. This is $m_{ij}$ for \verb'GrB_assign',
and $m_{i'j'}$ for \verb'GxB_subassign', to reflect the difference in the mask,
but this difference is not reflected in the table. The value 1 or 0 is the
value of the entry in the mask after it is optionally complemented via the
\verb'GrB_COMP' option.
Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case $c_{ij}$ is not modified if present, or not
inserted into ${\bf C}$ if not present.
\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf A}$ & mask & action taken by \verb'GrB_assign' and \verb'GxB_subassign'\\
\hline
- &- & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, update \\
- &- & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
- &- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $a_{i'j'}$ not present \\
- &- & - & - & 1 & \\
- &- & $c_{ij}$ & $a_{i'j'}$ & 0 & \\
- &- & - & $a_{i'j'}$ & 0 & \\
- &- & $c_{ij}$ & - & 0 & \\
- &- & - & - & 0 & \\
\hline
yes&- & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, update \\
yes&- & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
yes&- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $a_{i'j'}$ not present \\
yes&- & - & - & 1 & \\
yes&- & $c_{ij}$ & $a_{i'j'}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & $a_{i'j'}$ & 0 & \\
yes&- & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & - & 0 & \\
\hline
- &yes & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = c_{ij} \odot a_{i'j'}$, apply accumulator \\
- &yes & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
- &yes & $c_{ij}$ & - & 1 & \\
- &yes & - & - & 1 & \\
- &yes & $c_{ij}$ & $a_{i'j'}$ & 0 & \\
- &yes & - & $a_{i'j'}$ & 0 & \\
- &yes & $c_{ij}$ & - & 0 & \\
- &yes & - & - & 0 & \\
\hline
yes&yes & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = c_{ij} \odot a_{i'j'}$, apply accumulator \\
yes&yes & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
yes&yes & $c_{ij}$ & - & 1 & \\
yes&yes & - & - & 1 & \\
yes&yes & $c_{ij}$ & $a_{i'j'}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & $a_{i'j'}$ & 0 & \\
yes&yes & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & - & 0 & \\
\hline
\end{tabular}
}
\caption{Results of assign and subassign for entries in the ${\bf C(I,J)}$ submatrix \label{insubmatrix}}
\end{table}
\newpage
Table~\ref{outsubmatrix} illustrates how \verb'GrB_assign' and
\verb'GxB_subassign' differ for entries outside the submatrix.
\verb'GxB_subassign' never modifies any entry outside the ${\bf C(I,J)}$
submatrix, but \verb'GrB_assign' can modify them in two cases listed in
Table~\ref{outsubmatrix}. When the \verb'GrB_REPLACE' option is selected, and
when the \verb'Mask(i,j)' for an entry $c_{ij}$ is false (or if the
\verb'Mask(i,j)' is true and \verb'GrB_COMP' is enabled via the descriptor),
then the entry is deleted by \verb'GrB_assign'.
The fourth column of Table~\ref{outsubmatrix} differs from
Table~\ref{insubmatrix}, since entries in ${\bf A}$ never affect these entries.
Instead, for all index pairs outside the $I \times J$ submatrix, ${\bf C}$ and
${\bf Z}$ are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either $c_{ij}$ is present, or not. This in
contrast to Table~\ref{insubmatrix}, where each section must consider four
different cases.
The \verb'GrB_Row_assign' and \verb'GrB_Col_assign' operations are slightly
different. They only affect a single row or column of ${\bf C}$.
For \verb'GrB_Row_assign', Table~\ref{outsubmatrix} only applies to entries in
the single row \verb'C(i,J)' that are outside the list of indices, \verb'J'.
For \verb'GrB_Col_assign', Table~\ref{outsubmatrix} only applies to entries in
the single column \verb'C(I,j)' that are outside the list of indices, \verb'I'.
\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf C=Z}$ & mask & action taken by \verb'GrB_assign' \\
\hline
- &- & $c_{ij}$ & $c_{ij}$ & 1 & \\
- &- & - & - & 1 & \\
- &- & $c_{ij}$ & $c_{ij}$ & 0 & \\
- &- & - & - & 0 & \\
\hline
yes & - & $c_{ij}$ & $c_{ij}$ & 1 & \\
yes & - & - & - & 1 & \\
yes & - & $c_{ij}$ & $c_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes & - & - & - & 0 & \\
\hline
- &yes & $c_{ij}$ & $c_{ij}$ & 1 & \\
- &yes & - & - & 1 & \\
- &yes & $c_{ij}$ & $c_{ij}$ & 0 & \\
- &yes & - & - & 0 & \\
\hline
yes & yes & $c_{ij}$ & $c_{ij}$ & 1 & \\
yes & yes & - & - & 1 & \\
yes & yes & $c_{ij}$ & $c_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes & yes & - & - & 0 & \\
\hline
\end{tabular}
}
\caption{Results of assign for entries outside the
${\bf C(I,J)}$ submatrix. Subassign has no effect on these entries. \label{outsubmatrix}}
\end{table}
%-------------------------------------------------------------------------------
\subsubsection{Example}
%-------------------------------------------------------------------------------
The difference between \verb'GxB_subassign' and \verb'GrB_assign' is
illustrated in the following example. Consider the 2-by-2 matrix ${\bf C}$
where all entries are present.
\[
{\bf C} = \left[
\begin{array}{rr}
11 & 12 \\
21 & 22 \\
\end{array}
\right]
\]
Suppose \verb'GrB_REPLACE' is true, and \verb'GrB_COMP' is false. Let the
\verb'Mask' be:
\[
{\bf M} = \left[
\begin{array}{rr}
1 & 1 \\
0 & 1 \\
\end{array}
\right].
\]
Let ${\bf A} = 100$, and let the index sets be ${\bf I}=0$ and ${\bf J}=1$.
Consider the computation
${\bf C \langle M \rangle} (0,1) = {\bf C}(0,1) + {\bf A}$,
using the \verb'GrB_assign' operation. The result is:
\[
{\bf C} = \left[
\begin{array}{rr}
11 & 112 \\
- & 22 \\
\end{array}
\right].
\]
The $(0,1)$ entry is updated and the $(1,0)$ entry is deleted because
its \verb'Mask' is zero. The other two entries are not modified since ${\bf Z}
= {\bf C}$ outside the submatrix, and those two values are written back into
${\bf C}$ because their \verb'Mask' values are 1. The $(1,0)$ entry is deleted
because the entry ${\bf Z}(1,0)=21$ is prevented from being written back into
${\bf C}$ since \verb'Mask(1,0)=0'.
Now consider the analogous \verb'GxB_subassign' operation. The \verb'Mask' has
the same size as ${\bf A}$, namely:
\[
{\bf M} = \left[
\begin{array}{r}
1 \\
\end{array}
\right].
\]
After computing
${\bf C} (0,1) {\bf \langle M \rangle} = {\bf C}(0,1) + {\bf A}$,
the result is
\[
{\bf C} = \left[
\begin{array}{rr}
11 & 112 \\
21 & 22 \\
\end{array}
\right].
\]
Only the ${\bf C(I,J)}$ submatrix, the single entry ${\bf C}(0,1)$, is modified
by \verb'GxB_subassign'. The entry ${\bf C}(1,0)=21$ is unaffected by
\verb'GxB_subassign', but it is deleted by \verb'GrB_assign'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{Performance of {\sf GxB\_subassign}, {\sf GrB\_assign}
and {\sf GrB\_*\_setElement}}
%-------------------------------------------------------------------------------
When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications to a
matrix by \verb'GxB_subassign', \verb'GrB_assign', and \verb'GrB_*_setElement'
can postponed, and computed all at once later on. This has a huge impact on
performance.
A sequence of assignments is fast if their completion can be postponed for as
long as possible, or if they do not modify the pattern at all. Modifying the
pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.
Consider a sequence of $t$ submatrix assignments \verb'C(I,J)=C(I,J)+A' to an
$n$-by-$n$ matrix \verb'C' where each submatrix \verb'A' has size $a$-by-$a$
with $s$ entries, and where \verb'C' starts with $c$ entries.
Assume the matrices are all stored in non-hypersparse form, by row
(\verb'GxB_BY_ROW').
If blocking mode is enabled, or if the sequence requires the matrix to be
completed after each assignment, each of the $t$ assignments takes $O(a + s
\log n)$ time to process the \verb'A' matrix and then $O(n + c + s \log s)$
time to complete \verb'C'. The latter step uses \verb'GrB_*_build' to build an
update matrix and then merge it with \verb'C'. This step does not occur if the
sequence of assignments does not add new entries to the pattern of \verb'C',
however. Assuming in the worst case that the pattern does change, the total
time is $O (t \left[ a + s \log n + n + c + s \log s \right] )$.
If the sequence can be computed with all updates postponed until the end of the
sequence, then the total time is no worse than $O(a + s \log n)$ to process
each \verb'A' matrix, for $t$ assignments, and then a single \verb'build' at
the end, taking $O(n + c + st \log st)$ time.
The total time is $O (t \left [a + s \log n \right] + (n + c + st \log st))$.
If no new entries appear in
\verb'C' the time drops to $O (t \left [a + s \log n \right])$, and in this
case, the time for both methods is the same; both are equally efficient.
A few simplifying assumptions are useful to compare these times. Consider a
graph of $n$ nodes with $O(n)$ edges, and with a constant bound on the degree
of each node. The asymptotic bounds assume a worst-case scenario where
\verb'C' has a least some dense rows (thus the $\log n$ terms). If these
are not present, if both $t$ and $c$ are $O(n)$, and if $a$ and $s$ are
constants, then the total time with blocking mode becomes $O(n^2)$, assuming
the pattern of \verb'C' changes at each assignment. This very high for a
sparse graph problem. In contrast, the non-blocking time becomes $O(n \log n)$
under these same assumptions, which is asymptotically much faster.
\newpage
The difference in practice can be very dramatic, since $n$ can be many millions
for sparse graphs with $n$ nodes and $O(n)$, which can be handled on a
commodity laptop.
The following guidelines should be considered when using
\verb'GxB_subassign', \verb'GrB_assign' and \verb'GrB_*_setElement'.
\begin{enumerate}
\item A sequence of assignments that does not modify the pattern at all is
fast, taking as little as $\Omega(1)$ time per entry modified. The worst case
time complexity is $O(\log n)$ per entry, assuming they all modify a dense
row of \verb'C' with \verb'n' entries, which can occur in practice. It is
more common, however, that most rows of \verb'C' have a constant number of
entries, independent of \verb'n'. No work is ever left pending when the
pattern of \verb'C' does not change.
\item A sequence of assignments that modifies the entries that already exist in
the pattern of a matrix, or adds new entries to the pattern (using the same
\verb'accum' operator), but does not delete any entries, is fast. The matrix
is not completed until the end of the sequence.
\item Similarly, a sequence that modifies existing entries, or deletes them,
but does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast. The
matrix is not completed until the end of the sequence.
\item A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assignment. The
time complexity can become quadratic in the worst case.
\item However, any single assignment takes no more than $O (a + s \log n + n +
c + s \log s )$ time, even including the time for a matrix completion, where
\verb'C' is $n$-by-$n$ with $c$ entries and \verb'A' is $a$-by-$a$ with $s$
entries. This time is essentially linear in the size of the matrix \verb'C',
if \verb'A' is relatively small and sparse compared with \verb'C'. In this
case, $n+c$ are the two dominant terms.
\item In general, \verb'GxB_subassign' is faster than \verb'GrB_assign'.
If \verb'GrB_REPLACE' is used with \verb'GrB_assign', the entire matrix
\verb'C' must be traversed. This is much slower than \verb'GxB_subassign',
which only needs to examine the \verb'C(I,J)' submatrix. Furthermore,
\verb'GrB_assign' must deal with a much larger \verb'Mask' matrix, whereas
\verb'GxB_subassign' has a smaller mask. Since its mask is smaller,
\verb'GxB_subassign' takes less time than \verb'GrB_assign' to access the mask.
\end{enumerate}
% see GraphBLAS/Test/test46.m
Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient, even
without considering the advantages of non-blocking mode discussed in
Section~\ref{compare_assign}. It can be up to 1000x faster than MATLAB R2019b,
or even higher depending on the kind of matrix assignment. MATLAB logical
indexing (the mask of GraphBLAS) is extremely faster with GraphBLAS as compared
in MATLAB R2019b; differences of up to 250,000x have been observed (0.4 seconds
in GraphBLAS versus 28 hours in MATLAB).
All of the 28 variants (each with their own source code) are either
asymptotically optimal, or to within a log factor of being asymptotically
optimal. The methods are also fully parallel. For hypersparse matrices, the
term $n$ in the expressions in the above discussion is dropped, and is replaced
with $h \log h$, at the worst case, where $h << n$ is the number of non-empty
columns of a hypersparse matrix stored by column, or the number of non-empty
rows of a hypersparse matrix stored by row. In many methods, $n$ is replaced
with $h$, not $h \log h$.
\newpage
%===============================================================================
\subsection{{\sf GrB\_apply:} apply a unary, binary, or index-unary operator}
%===============================================================================
\label{apply}
\verb'GrB_apply' is the generic name for 92 specific functions:
\begin{packed_itemize}
\item
\verb'GrB_Vector_apply' and \verb'GrB_Matrix_apply' apply a unary operator to
the entries of a matrix (two variants).
\item \verb'GrB_*_apply_BinaryOp1st_*' applies a binary
operator where a single scalar is provided as the $x$ input to the binary
operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').
\item \verb'GrB_*_apply_BinaryOp2nd_*' applies a binary operator where a
single scalar is provided as the $y$ input to the binary operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').
\item \verb'GrB_*_apply_IndexOp_*' applies a \verb'GrB_IndexUnaryOp',
single scalar is provided as the scalar $y$ input to the index-unary operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').
\end{packed_itemize}
The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation. When discussing features that apply to all
versions, the simple name \verb'GrB_apply' is used.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_apply:} apply a unary operator to a vector}
%-------------------------------------------------------------------------------
\label{apply_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply' applies a unary operator to the entries of a vector,
analogous to \verb't = op(u)' in MATLAB except the operator \verb'op' is only
applied to entries in the pattern of \verb'u'. Implicit values outside the
pattern of \verb'u' are not affected. The entries in \verb'u' are typecasted
into the \verb'xtype' of the unary operator. The vector \verb't' has the same
type as the \verb'ztype' of the unary operator. The final step is ${\bf w
\langle m \rangle = w \odot t}$, as described in Section~\ref{accummask},
except that all the terms are column vectors instead of matrices.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_apply:} apply a unary operator to a matrix}
%-------------------------------------------------------------------------------
\label{apply_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply'
applies a unary operator to the entries of a matrix, analogous to
\verb'T = op(A)' in MATLAB except the operator \verb'op' is only applied to
entries in the pattern of \verb'A'. Implicit values outside the pattern of
\verb'A' are not affected. The input matrix \verb'A' may be transposed first.
The entries in \verb'A' are typecasted into the \verb'xtype' of the unary
operator. The matrix \verb'T' has the same type as the \verb'ztype' of the
unary operator. The final step is ${\bf C \langle M \rangle = C \odot T}$, as
described in Section~\ref{accummask}.
The built-in \verb'GrB_IDENTITY_'$T$ operators (one for each built-in type $T$)
are very useful when combined with this function, enabling it to compute ${\bf
C \langle M \rangle = C \odot A}$. This makes \verb'GrB_apply' a direct
interface to the accumulator/mask function for both matrices and vectors.
The \verb'GrB_IDENTITY_'$T$ operators also provide the fastest stand-alone
typecasting methods in SuiteSparse:GraphBLAS, with all $13 \times 13=169$
methods appearing as individual functions, to typecast between any of the 13
built-in types.
To compute ${\bf C \langle M \rangle = A}$ or ${\bf C \langle M \rangle = C
\odot A}$ for user-defined types, the user application would need to define an
identity operator for the type. Since GraphBLAS cannot detect that it is an
identity operator, it must call the operator to make the full copy \verb'T=A'
and apply the operator to each entry of the matrix or vector.
The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is \verb'GrB_transpose', which does not require an
operator to perform this task. As a result, \verb'GrB_transpose' can be used
as an efficient and direct interface to the accumulator/mask function for
both built-in and user-defined types. However, it is only available for
matrices, not vectors.
\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp1st:} apply a binary operator to a vector; 1st scalar binding}
%===============================================================================
\label{vector_apply1st}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(x,u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp op, // operator to apply to the entries
<type> x, // first input: scalar x
const GrB_Vector u, // second input: vector u
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_BinaryOp1st_<type>' applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $x$ is bound to the first input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp2nd:} apply a binary operator to a vector; 2nd scalar binding}
%===============================================================================
\label{vector_apply2nd}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
<type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_BinaryOp2nd_<type>' applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $y$ is bound to the second input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.
\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_IndexOp:} apply an index-unary operator to a vector}
%===============================================================================
\label{vector_apply_idxunop}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_IndexUnaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const <type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_IndexOp_<type>' applies an index-unary operator
$z=f(x,i,0,y)$ to a vector.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp1st:} apply a binary operator to a matrix; 1st scalar binding}
%===============================================================================
\label{matrix_apply1st}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(x,A))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op, // operator to apply to the entries
<type> x, // first input: scalar x
const GrB_Matrix A, // second input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_BinaryOp1st_<type>' applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the first input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.
\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp2nd:} apply a binary operator to a matrix; 2nd scalar binding}
%===============================================================================
\label{matrix_apply2nd}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(A,y))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
<type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_BinaryOp2nd_<type>' applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the second input of the
operator.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_IndexOp:} apply an index-unary operator to a matrix}
%===============================================================================
\label{matrix_apply_idxunop}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(A,y))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_IndexUnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const <type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_IndexOp_<type>' applies an index-unary operator
$z=f(x,i,j,y)$ to a matrix.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.
\newpage
%===============================================================================
\subsection{{\sf GrB\_select:} select entries based on an index-unary operator}
%===============================================================================
\label{select}
The \verb'GrB_select' function is the generic name for 30 specific functions,
depending on whether it operates on a matrix or vector, and depending on the
type of the scalar \verb'y': (matrix or vector) x (13 built-in types,
\verb'void *' for user-defined types, and a \verb'GrB_Scalar'). The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation. When discussing features that apply to both
versions, the simple name \verb'GrB_select' is used.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_select:} select entries from a vector}
%-------------------------------------------------------------------------------
\label{select_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_select // w<mask> = accum (w, op(u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_IndexUnaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const <type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_select_*' applies a \verb'GrB_IndexUnaryOp' operator to the
entries of a vector. If the operator evaluates as \verb'true' for the entry
\verb'u(i)', it is copied to the vector \verb't', or not copied if the operator
evaluates to \verb'false'. The vector \verb't' is then written to the result
\verb'w' via the mask/accumulator step. This operation operates on vectors
just as if they were \verb'm'-by-1 matrices, except that GraphBLAS never
transposes a vector via the descriptor. Refer to the next section
(\ref{select_matrix}) on \verb'GrB_Matrix_select' for more details.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_select:} apply a select operator to a matrix}
%-------------------------------------------------------------------------------
\label{select_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_select // C<M>=accum(C,op(A))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_IndexUnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const GrB_Scalar y, // second input: scalar y
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_select_*' applies a \verb'GrB_IndexUnaryOp' operator to the
entries of a matrix. If the operator evaluates as \verb'true' for the entry
\verb'A(i,j)', it is copied to the matrix \verb'T', or not copied if the
operator evaluates to \verb'false'. The input matrix \verb'A' may be
transposed first. The entries in \verb'A' are typecasted into the \verb'xtype'
of the select operator. The final step is ${\bf C \langle M \rangle = C \odot
T}$, as described in Section~\ref{accummask}.
The matrix \verb'T' has the same size and type as \verb'A' (or the transpose of
\verb'A' if the input is transposed via the descriptor). The entries of
\verb'T' are a subset of those of \verb'A'. Each entry \verb'A(i,j)' of
\verb'A' is passed to the \verb'op', as $z=f(a_{ij},i,j,y)$. If
\verb'A' is transposed first then the operator is applied to entries in the
transposed matrix, \verb"A'". If $z$ is returned as true, then the entry is
copied into \verb'T', unchanged. If it returns false, the entry does not
appear in \verb'T'.
The action of \verb'GrB_select' with the built-in index-unary operators is
described in the table below. The MATLAB analogs are precise for \verb'tril'
and \verb'triu', but shorthand for the other operations. The MATLAB
\verb'diag' function returns a column with the diagonal, if \verb'A' is a
matrix, whereas the matrix \verb'T' in \verb'GrB_select' always has the same
size as \verb'A' (or its transpose if the \verb'GrB_INP0' is set to
\verb'GrB_TRAN'). In the MATLAB analog column, \verb'diag' is as if it
operates like \verb'GrB_select', where \verb'T' is a matrix.
The following operators may be used on matrices with a user-defined type:
\verb'GrB_ROWINDEX_*',
\verb'GrB_COLINDEX_*',
\verb'GrB_DIAGINDEX_*',
\verb'GrB_TRIL', \newline
\verb'GrB_TRIU',
\verb'GrB_DIAG',
\verb'GrB_OFFIAG',
\verb'GrB_COLLE',
\verb'GrB_COLGT',
\verb'GrB_ROWLE',
and
\verb'GrB_ROWGT'.
For floating-point values, comparisons with \verb'NaN' always return false.
The \verb'GrB_VALUE*' operators should not be used with a scalar \verb'y' that is
equal to \verb'NaN'. For this case, create a user-defined select operator that
performs the test with the ANSI C \verb'isnan' function instead.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS name & MATLAB/Octave & description \\
& analog & \\
\hline
\verb'GrB_ROWINDEX_*' & \verb'z=i+y' & select \verb'A(i,j)' if \verb'i != -y' \\
\verb'GrB_COLINDEX_*' & \verb'z=j+y' & select \verb'A(i,j)' if \verb'j != -y' \\
\verb'GrB_DIAGINDEX_*' & \verb'z=j-(i+y)' & select \verb'A(i,j)' if \verb'j != i+y' \\
\hline
\verb'GrB_TRIL' & \verb'z=(j<=(i+y))' & select entries on or below the \verb'y'th diagonal \\
\verb'GrB_TRIU' & \verb'z=(j>=(i+y))' & select entries on or above the \verb'y'th diagonal \\
\verb'GrB_DIAG' & \verb'z=(j==(i+y))' & select entries on the \verb'y'th diagonal \\
\verb'GrB_OFFDIAG' & \verb'z=(j!=(i+y))' & select entries not on the \verb'y'th diagonal \\
\verb'GrB_COLLE' & \verb'z=(j<=y)' & select entries in columns 0 to \verb'y' \\
\verb'GrB_COLGT' & \verb'z=(j>y)' & select entries in columns \verb'y+1' and above \\
\verb'GrB_ROWLE' & \verb'z=(i<=y)' & select entries in rows 0 to \verb'y' \\
\verb'GrB_ROWGT' & \verb'z=(i>y)' & select entries in rows \verb'y+1' and above \\
\hline
\verb'GrB_VALUENE_T' & \verb'z=(aij!=y)' & select \verb'A(i,j)' if it is not equal to \verb'y'\\
\verb'GrB_VALUEEQ_T' & \verb'z=(aij==y)' & select \verb'A(i,j)' is it equal to \verb'y'\\
\verb'GrB_VALUEGT_T' & \verb'z=(aij>y)' & select \verb'A(i,j)' is it greater than \verb'y' \\
\verb'GrB_VALUEGE_T' & \verb'z=(aij>=y)' & select \verb'A(i,j)' is it greater than or equal to \verb'y' \\
\verb'GrB_VALUELT_T' & \verb'z=(aij<y)' & select \verb'A(i,j)' is it less than \verb'y' \\
\verb'GrB_VALUELE_T' & \verb'z=(aij<=y)' & select \verb'A(i,j)' is it less than or equal to \verb'y' \\
%
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%===============================================================================
\subsection{{\sf GrB\_reduce:} reduce to a vector or scalar} %==================
%===============================================================================
\label{reduce}
The generic function name \verb'GrB_reduce' may be used for all specific
functions discussed in this section. When the details of a specific function
are discussed, the specific name is used for clarity.
\begin{alert}
{\bf SPEC:}
All methods below use a monoid for the reduction. The Specification also
allows reductions using an associative and commutative binary operator.
SuiteSparse:GraphBLAS permits the use of a \verb'GrB_BinaryOp' instead of a
\verb'GrB_Monoid', but only if the binary operator is built-in and corresponds
to a known built-in monoid. For example, the binary operator
\verb'GrB_PLUS_FP64' can be used, since this is the binary operator of the
built-in \verb'GrB_PLUS_MONOID_FP64'. For other binary ops (including any
user-defined ones), \verb'GrB_NOT_IMPLEMENTED' is returned.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_Monoid} reduce a matrix to a vector}
%-------------------------------------------------------------------------------
\label{reduce_to_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce // w<mask> = accum (w,reduce(A))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Monoid monoid, // reduce monoid for t=reduce(A)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_reduce_Monoid'
reduces a matrix to a column vector using a monoid, roughly analogous
to \verb"t = sum (A')" in MATLAB, in the default case, where \verb't' is a
column vector. By default, the method reduces across the rows to
obtain a column vector; use \verb'GrB_TRAN' to reduce down the columns.
The input matrix \verb'A' may be transposed first. Its entries are then
typecast into the type of the \verb'reduce' operator or monoid. The reduction
is applied to all entries in \verb'A (i,:)' to produce the scalar \verb't (i)'.
This is done without the use of the identity value of the monoid. If the
\verb'i'th row \verb'A (i,:)' has no entries, then \verb'(i)' is not an entry
in \verb't' and its value is implicit. If \verb'A (i,:)' has a single entry,
then that is the result \verb't (i)' and \verb'reduce' is not applied at all
for the \verb'i'th row. Otherwise, multiple entries in row \verb'A (i,:)' are
reduced via the \verb'reduce' operator or monoid to obtain a single scalar,
the result \verb't (i)'.
The final step is ${\bf w \langle m \rangle = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_reduce\_$<$type$>$:} reduce a vector to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_vector_to_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))
(
<type> *c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Vector u, // vector to reduce
const GrB_Descriptor desc // descriptor (currently unused)
) ;
GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))
(
GrB_Scalar c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Vector u, // vector to reduce
const GrB_Descriptor desc // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_reduce_<type>'
reduces a vector to a scalar, analogous to \verb't = sum (u)' in MATLAB,
except that in GraphBLAS any commutative and associative monoid can be used
in the reduction.
The scalar \verb'c' can be a pointer C type: \verb'bool', \verb'int8_t', ...
\verb'float', \verb'double', or \verb'void *' for a user-defined type,
or a \verb'GrB_Scalar'.
If \verb'c' is a \verb'void *' pointer to a user-defined type,
the type must be identical to the type of the vector \verb'u'.
This cannot be checked by GraphBLAS and thus results are undefined if the
types are not the same.
If the vector \verb'u' has no entries, that identity value of the \verb'monoid'
is copied into the scalar \verb't' (unless \verb'c' is a \verb'GrB_Scalar',
in which case \verb't' is an empty \verb'GrB_Scalar', with no entry).
Otherwise, all of the entries in the
vector are reduced to a single scalar using the \verb'monoid'.
The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API.
This function has no mask so its accumulator/mask step differs from the other
GraphBLAS operations. It does not use the methods described in
Section~\ref{accummask}, but uses the following method instead.
If \verb'accum' is \verb'NULL', then the scalar \verb't' is typecast into the
type of \verb'c', and \verb'c = t' is the final result. Otherwise, the scalar
\verb't' is typecast into the \verb'ytype' of the \verb'accum' operator, and
the value of \verb'c' (on input) is typecast into the \verb'xtype' of the
\verb'accum' operator. Next, the scalar \verb'z = accum (c,t)' is computed, of
the \verb'ztype' of the \verb'accum' operator. Finally, \verb'z' is typecast
into the final result, \verb'c'.
If \verb'c' is a non-opaque scalar, no error message can be returned by
\verb'GrB_error'. If \verb'c' is a \verb'GrB_Scalar', then
\verb'GrB_error(&err,c)' can be used to return an error string, if an error
occurs.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_$<$type$>$:} reduce a matrix to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_matrix_to_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))
(
<type> *c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Matrix A, // matrix to reduce
const GrB_Descriptor desc // descriptor (currently unused)
) ;
GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))
(
GrB_Scalar c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Matrix A, // matrix to reduce
const GrB_Descriptor desc // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_reduce_<type>' reduces a matrix \verb'A' to a scalar, roughly
analogous to \verb't = sum (A (:))' in MATLAB. This function is identical to
reducing a vector to a scalar, since the positions of the entries in a matrix
or vector have no effect on the result. Refer to the reduction to scalar
described in the previous Section~\ref{reduce_vector_to_scalar}.
\newpage
%===============================================================================
\subsection{{\sf GrB\_transpose:} transpose a matrix} %=========================
%===============================================================================
\label{transpose}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_transpose // C<Mask> = accum (C, A')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_transpose'
transposes a matrix \verb'A', just like the array transpose \verb"T = A.'" in
MATLAB. The internal result matrix \verb"T = A'" (or merely \verb"T = A" if
\verb'A' is transposed via the descriptor) has the same type as \verb'A'. The
final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}, which typecasts \verb'T' as needed and applies the
mask and accumulator.
To be consistent with the rest of the GraphBLAS API regarding the
descriptor, the input matrix \verb'A' may be transposed first by
setting the \verb'GrB_INP0' setting to \verb'GrB_TRAN'. This results in
a double transpose, and thus \verb'A' is not transposed is computed.
\newpage
%===============================================================================
\subsection{{\sf GrB\_kronecker:} Kronecker product} %==========================
%===============================================================================
\label{kron}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_kronecker // C<Mask> = accum (C, kron(A,B))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> op, // defines '*' for T=kron(A,B)
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_kronecker' computes the Kronecker product,
${\bf C \langle M \rangle = C \odot \mbox{kron}(A,B)}$ where
\[
\mbox{kron}{\bf (A,B)} =
\left[
\begin{array}{ccc}
a_{00} \otimes {\bf B} & \ldots & a_{0,n-1} \otimes {\bf B} \\
\vdots & \ddots & \vdots \\
a_{m-1,0} \otimes {\bf B} & \ldots & a_{m-1,n-1} \otimes {\bf B} \\
\end{array}
\right]
\]
The $\otimes$ operator is defined by the \verb'op' parameter. It is applied in
an element-wise fashion (like \verb'GrB_eWiseMult'), where the pattern of the
submatrix $a_{ij} \otimes {\bf B}$ is the same as the pattern of ${\bf B}$ if
$a_{ij}$ is an entry in the matrix ${\bf A}$, or empty otherwise. The input
matrices \verb'A' and \verb'B' can be of any dimension, and both matrices may
be transposed first via the descriptor, \verb'desc'. Entries in \verb'A' and
\verb'B' are typecast into the input types of the \verb'op'. The matrix
\verb'T=kron(A,B)' has the same type as the \verb'ztype' of the binary
operator, \verb'op'. The final step is ${\bf C \langle M \rangle = C \odot
T}$, as described in Section~\ref{accummask}.
The operator \verb'op' may be a \verb'GrB_BinaryOp', a \verb'GrB_Monoid', or a
\verb'GrB_Semiring'. In the latter case, the multiplicative operator of
the semiring is used.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Printing GraphBLAS objects} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{fprint}
The ten different objects handled by SuiteSparse:GraphBLAS are all opaque,
although nearly all of their contents can be extracted via methods such as
\verb'GrB_Matrix_extractTuples', \verb'GrB_Matrix_extractElement',
\verb'GxB_Matrix_type', and so on. The GraphBLAS C API has no mechanism for
printing all the contents of GraphBLAS objects, but this is helpful for
debugging. Ten type-specific methods and two type-generic methods are
provided:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GxB_Type_fprint' & print and check a \verb'GrB_Type' \\
\verb'GxB_UnaryOp_fprint' & print and check a \verb'GrB_UnaryOp' \\
\verb'GxB_BinaryOp_fprint' & print and check a \verb'GrB_BinaryOp' \\
\verb'GxB_IndexUnaryOP_fprint' & print and check a \verb'GrB_IndexUnaryOp' \\
\verb'GxB_Monoid_fprint' & print and check a \verb'GrB_Monoid' \\
\verb'GxB_Semiring_fprint' & print and check a \verb'GrB_Semiring' \\
\verb'GxB_Descriptor_fprint' & print and check a \verb'GrB_Descriptor' \\
\verb'GxB_Matrix_fprint' & print and check a \verb'GrB_Matrix' \\
\verb'GxB_Vector_fprint' & print and check a \verb'GrB_Vector' \\
\verb'GxB_Scalar_fprint' & print and check a \verb'GrB_Scalar' \\
\hline
\verb'GxB_fprint' & print/check any object to a file \\
\verb'GxB_print' & print/check any object to \verb'stdout' \\
\hline
\end{tabular}
}
\vspace{0.2in}
These methods do not modify the status of any object, and thus they
cannot return an error string for use by \verb'GrB_error'.
If a matrix or vector
has not been completed, the pending computations are guaranteed to {\em not} be
performed. The reason is simple. It is possible for a bug in the user
application (such as accessing memory outside the bounds of an array) to mangle
the internal content of a GraphBLAS object, and the \verb'GxB_*print' methods
can be helpful tools to track down this bug. If \verb'GxB_*print' attempted to
complete any computations prior to printing or checking the contents of the
matrix or vector, then further errors could occur, including a segfault.
By contrast, GraphBLAS methods and operations that return values into
user-provided arrays or variables might finish pending operations before the
return these values, and this would change their state. Since they do not
change the state of any object, the \verb'GxB_*print' methods provide a useful
alternative for debugging, and for a quick understanding of what GraphBLAS is
computing while developing a user application.
Each of the methods has a parameter of type \verb'GxB_Print_Level' that
specifies the amount to print:
{\footnotesize
\begin{verbatim}
typedef enum
{
GxB_SILENT = 0, // nothing is printed, just check the object
GxB_SUMMARY = 1, // print a terse summary
GxB_SHORT = 2, // short description, about 30 entries of a matrix
GxB_COMPLETE = 3, // print the entire contents of the object
GxB_SHORT_VERBOSE = 4, // GxB_SHORT but with "%.15g" for doubles
GxB_COMPLETE_VERBOSE = 5 // GxB_COMPLETE but with "%.15g" for doubles
}
GxB_Print_Level ; \end{verbatim}}
The ten type-specific functions include an additional argument, the
\verb'name' string. The \verb'name' is printed at the beginning of the display
(assuming the print level is not \verb'GxB_SILENT') so that the object can be
more easily identified in the output. For the type-generic methods
\verb'GxB_fprint' and \verb'GxB_print', the \verb'name' string is the variable
name of the object itself.
If the file \verb'f' is \verb'NULL', \verb'stdout' is used.
If \verb'name' is \verb'NULL', it is treated
as the empty string. These are not error conditions.
The methods check their input objects carefully and extensively, even when
\verb'pr' is equal to \verb'GxB_SILENT'. The following error codes can be
returned:
\begin{packed_itemize}
\item \verb'GrB_SUCCESS': object is valid
\item \verb'GrB_UNINITIALIZED_OBJECT': object is not initialized
\item \verb'GrB_INVALID_OBJECT': object is not valid
\item \verb'GrB_NULL_POINTER': object is a NULL pointer
\item \verb'GrB_INVALID_VALUE': \verb'fprintf' returned an I/O error.
\end{packed_itemize}
The content of any GraphBLAS object is opaque, and subject to change. As a
result, the exact content and format of what is printed is
implementation-dependent, and will change from version to version of
SuiteSparse:GraphBLAS. Do not attempt to rely on the exact content or format
by trying to parse the resulting output via another program. The intent of
these functions is to produce a report of an object for visual inspection. If
the user application needs to extract content from a GraphBLAS matrix or
vector, use \verb'GrB_*_extractTuples' or the import/export methods instead.
GraphBLAS matrices and vectors are zero-based, where indices of an $n$-by-$n$
matrix are in the range 0 to $n-1$. However, MATLAB, Octave, and Julia prefer
to print their matrices and vectors as one-based. To enable 1-based printing,
use \verb'GxB_set (GxB_PRINT_1BASED, true)'. Printing is done as zero-based by
default.
\newpage
%===============================================================================
\subsection{{\sf GxB\_fprint:} Print a GraphBLAS object to a file} %============
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_fprint // print and check a GraphBLAS object
(
GrB_<objecttype> object, // object to print and check
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
The \verb'GxB_fprint' function prints the contents of any of the ten GraphBLAS
objects to the file \verb'f'. If \verb'f' is \verb'NULL', the results are
printed to \verb'stdout'. For example, to print the entire contents of a
matrix \verb'A' to the file \verb'f', use
\verb'GxB_fprint (A, GxB_COMPLETE, f)'.
%===============================================================================
\subsection{{\sf GxB\_print:} Print a GraphBLAS object to {\sf stdout}} %=======
%===============================================================================
\label{gxb_print}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_print // print and check a GrB_Vector
(
GrB_<objecttype> object, // object to print and check
GxB_Print_Level pr // print level
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_print' is the same as \verb'GxB_fprint', except that it prints the
contents of the object to \verb'stdout' instead of a file \verb'f'. For
example, to print the entire contents of a matrix \verb'A', use
\verb'GxB_print (A, GxB_COMPLETE)'.
%===============================================================================
\subsection{{\sf GxB\_Type\_fprint:} Print a {\sf GrB\_Type}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_fprint // print and check a GrB_Type
(
GrB_Type type, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)'
prints the contents of the \verb'GrB_BOOL' object to the file \verb'f'.
\newpage
%===============================================================================
\subsection{{\sf GxB\_UnaryOp\_fprint:} Print a {\sf GrB\_UnaryOp}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_fprint // print and check a GrB_UnaryOp
(
GrB_UnaryOp unaryop, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)'
prints the \verb'GrB_LNOT' unary operator to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_BinaryOp\_fprint:} Print a {\sf GrB\_BinaryOp}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_fprint // print and check a GrB_BinaryOp
(
GrB_BinaryOp binaryop, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)' prints the
\verb'GrB_PLUS_FP64' binary operator to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_IndexUnaryOp\_fprint:} Print a {\sf GrB\_IndexUnaryOp}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_fprint // print and check a GrB_IndexUnaryOp
(
GrB_IndexUnaryOp op, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GrB_IndexUnaryOp_fprint (GrB_TRIL, "tril", GxB_COMPLETE, f)' prints
the \verb'GrB_TRIL' index-unary operator to the file \verb'f'.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Monoid\_fprint:} Print a {\sf GrB\_Monoid}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_fprint // print and check a GrB_Monoid
(
GrB_Monoid monoid, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",'
\verb'GxB_COMPLETE, f)'
prints the predefined \verb'GxB_PLUS_FP64_MONOID' (based on the binary
operator \verb'GrB_PLUS_FP64') to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Semiring\_fprint:} Print a {\sf GrB\_Semiring}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_fprint // print and check a GrB_Semiring
(
GrB_Semiring semiring, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_Semiring_fprint (GxB_PLUS_TIMES_FP64, "standard",'
\verb'GxB_COMPLETE, f)'
prints the predefined \verb'GxB_PLUS_TIMES_FP64' semiring to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Descriptor\_fprint:} Print a {\sf GrB\_Descriptor}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Descriptor_fprint // print and check a GrB_Descriptor
(
GrB_Descriptor descriptor, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)'
prints the descriptor \verb'd' to the file \verb'f'.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Matrix\_fprint:} Print a {\sf GrB\_Matrix}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_fprint // print and check a GrB_Matrix
(
GrB_Matrix A, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f)'
prints about 30 entries from the matrix \verb'A' to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Vector\_fprint:} Print a {\sf GrB\_Vector}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_fprint // print and check a GrB_Vector
(
GrB_Vector v, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Vector_fprint (v, "my vector", GxB_SHORT, f)'
prints about 30 entries from the vector \verb'v' to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Scalar\_fprint:} Print a {\sf GrB\_Scalar}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_fprint // print and check a GrB_Scalar
(
GrB_Scalar s, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Scalar_fprint (s, "my scalar", GxB_SHORT, f)'
prints a short description of the scalar \verb's' to the file \verb'f'.
\newpage
%===============================================================================
\subsection{Performance and portability considerations}
%===============================================================================
Even when the print level is \verb'GxB_SILENT', these methods extensively check
the contents of the objects passed to them, which can take some time. They
should be considered debugging tools only, not for final use in production.
The return value of the \verb'GxB_*print' methods can be relied upon, but the
output to the file (or \verb'stdout') can change from version to version. If
these methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of the
\verb'pr' value. This may be essential if the GraphBLAS library is installed
in a dedicated device, with no file output, for example.
Some implementations may wish to print nothing at all if the matrix is not yet
completed, or just an indication that the matrix has pending operations and
cannot be printed, when non-blocking mode is employed. In this case, use
\verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', or \verb'GxB_Scalar_wait' to
finish all pending computations first. If a matrix or vector has pending
operations, SuiteSparse:GraphBLAS prints a list of the {\em pending tuples},
which are the entries not yet inserted into the primary data structure. It can
also print out entries that remain in the data structure but are awaiting
deletion; these are called {\em zombies} in the output report.
Most of the rest of the report is self-explanatory.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Matrix and Vector iterators} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{iter}
The \verb'GxB_Iterator' is an object that allows user applications to iterate
over the entries of a matrix or vector, one entry at a time. Iteration can
be done in a linear manner (analogous to reading a file one entry at a time,
from start to finish), or in a random-access pattern (analogous to
the \verb'fseek' method for repositioning the access to file to a different
position).
Multiple iterators can be used on a single matrix or vector, even in parallel
by multiple user threads. While a matrix or vector is being used with an
iterator, the matrix or vector must not be modified. Doing so will lead to
undefined results.
Since accessing a matrix or vector via an iterator requires many calls to
the iterator methods, they must be very fast. Error checking is skipped,
except for the methods that create, attach, or free an iterator. Methods
that advance an iterator or that access values or indices from a matrix or
vector do not return error conditions. Instead, they have well-defined
preconditions that must be met (and which should be checked by the user
application). If those preconditions are not met, results are undefined.
The iterator methods are implemented in SuiteSparse:GraphBLAS as both macros
(via \verb'#define') and as functions of the same name that appear in the
compiled \verb'libgraphblas.so' library. This requires that the opaque
contents of the iterator object be defined in \verb'GraphBLAS.h' itself. The
user application must not access these contents directly, but can only do so
safely via the iterator methods provided by SuiteSparse:GraphBLAS.
The iterator object can be used in one of four sets of methods,
for four different access patterns:
\begin{enumerate}
\item {\em row iterator}: iterates across the rows of a matrix, and then
within each row to access the entries in a given row. Accessing all
the entries of a matrix using a row iterator requires an outer loop
(for the rows) and an inner loop (for the entries in each row).
A matrix can be accessed via a row iterator only if its format
(determined by \verb'GxB_get (A, GxB_FORMAT, &fmt)') is by-row
(that is, \verb'GxB_BY_ROW').
See Section~\ref{options}.
\item {\em column iterator}: iterates across the columns of a matrix, and
then within each column to access the entries in a given column.
Accessing all the entries of a matrix using a column iterator requires
an outer loop (for the columns) and an inner loop (for the entries in
each column). A matrix can be accessed via a column iterator only if
its format (determined by \verb'GxB_get (A, GxB_FORMAT, &fmt)') is
by-column (that is, \verb'GxB_BY_COL').
See Section~\ref{options}.
\item {\em entry iterator}: iterates across the entries of a matrix.
Accessing all the entries of a matrix using an entry iterator requires
just a single loop. Any matrix can be accessed with an entry iterator.
\item {\em vector iterator}: iterates across the entries of a vector.
Accessing all the entries of a vector using a vector iterator requires
just a single loop. Any vector can be accessed with a vector iterator.
\end{enumerate}
\newpage
%===============================================================================
\subsection{Creating and destroying an iterator}
%===============================================================================
The process for using an iterator starts with the creation of an iterator, with
\verb'GxB_Iterator_new'. This method creates an \verb'iterator' object but
does not {\em attach} it to any specific matrix or vector:
{\footnotesize
\begin{verbatim}
GxB_Iterator iterator ;
GxB_Iterator_new (&iterator) ; \end{verbatim}}
When finished, the \verb'iterator' is freed with either of these methods:
{\footnotesize
\begin{verbatim}
GrB_free (&iterator) ;
GxB_Iterator_free (&iterator) ; \end{verbatim}}
%===============================================================================
\subsection{Attaching an iterator to a matrix or vector}
%===============================================================================
This new \verb'iterator' object can be {\em attached} to any matrix or vector,
and used as a row, column, or entry iterator for any matrix, or as an iterator
for any vector. The \verb'iterator' can be used in any of these methods before
it is freed, but with just one access method at a time.
Once it is created, the \verb'iterator' must be attached to a matrix or
vector. This process also selects the method by which the \verb'iterator'
will be used for a matrix. Each of the four \verb'GxB_*Iterator_attach'
methods returns a \verb'GrB_Info' result. The descriptor \verb'desc' in the
examples below is used only to control the number of threads used for the
internal call to \verb'GrB_wait', if the matrix \verb'A' or vector \verb'v' has
pending operations.
\begin{enumerate}
\item {\em row iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_rowIterator_attach (iterator, A, desc) ; \end{verbatim}}
\item {\em column iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_colIterator_attach (iterator, A, desc) ; \end{verbatim}}
\item {\em entry iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, desc) ; \end{verbatim}}
\item {\em vector iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, desc) ; \end{verbatim}}
\end{enumerate}
On input to \verb'GxB_*Iterator_attach', the \verb'iterator' must already
exist, having been created by \verb'GxB_Iterator_new'. If the \verb'iterator'
is already attached to a matrix or vector, it is detached and then attached to
the given matrix \verb'A' or vector \verb'v'.
The return values for row/column methods are:
\begin{itemize}
\item
\verb'GrB_SUCCESS': if the \verb'iterator' is successfully
attached to the matrix \verb'A'.
\item
\verb'GrB_NULL_POINTER': if the \verb'iterator' or \verb'A' are NULL.
\item
\verb'GrB_INVALID_OBJECT': if the matrix \verb'A' is invalid.
\item
\verb'GrB_NOT_IMPLEMENTED': if the matrix \verb'A' cannot be iterated
in the requested access method (row iterators require the matrix to
be held by-row, and column iterators require the matrix to be held
by-column).
\item
\verb'GrB_OUT_OF_MEMORY': if the method runs out of memory.
\end{itemize}
The other two methods (entry iterator for matrices, or the vector iterator)
return the same error codes, except that they
do not return \verb'GrB_NOT_IMPLEMENTED'.
%===============================================================================
\subsection{Seeking to an arbitrary position}
%===============================================================================
Attaching the \verb'iterator' to a matrix or vector does not define a specific
position for the \verb'iterator'. To use the \verb'iterator', a single call to
the corresponding {\em seek} method is required. These
\verb'GxB*_Iterator_*seek*' methods may also be used later on to change the
position of the iterator arbitrarily.
\begin{enumerate}
\item {\em row iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_rowIterator_seekRow (iterator, row) ;
GrB_Index kount = GxB_rowIterator_kount (iterator) ;
GrB_Info info = GxB_rowIterator_kseek (iterator, k) ; \end{verbatim}}
These methods move a row iterator to a specific row, defined in one of
two ways: (1) the row index itself (in range 0 to \verb'nrows'-1), or
(2) by specifying \verb'k', which moves the iterator to the \verb'k'th
{\em explicit} row (in the range 0 to \verb'kount'-1). For sparse,
bitmap, or full matrices, these two methods are identical. For
hypersparse matrices, not all rows are present in the data structure;
these {\em implicit} rows are skipped and not included in the
\verb'kount'. Implicit rows contain no entries. The
\verb'GxB_rowIterator_kount' method returns the \verb'kount' of the
matrix, where \verb'kount' is equal to \verb'nrows' for sparse, bitmap,
and matrices, and \verb'kount' $\le$ \verb'nrows' for hypersparse
matrices. All three methods listed above can be used for any row
iterator.
The \verb'GxB_rowIterator_*seek*' methods return \verb'GrB_SUCCESS' if
the iterator has been moved to a row that contains at least one entry,
\verb'GrB_NO_VALUE' if the row has no entries, or \verb'GxB_EXHAUSTED'
if the row is out of bounds (\verb'row' $\ge$ \verb'nrows' or
if \verb'k' $\ge$ \verb'kount').
None of these return conditions are
errors; they are all informational.
For sparse, bitmap, and full matrices, \verb'GxB_rowIterator_seekRow'
always moves to the given row. For hypersparse matrices, if the
requested row is implicit, the iterator is moved to the first
explicit row following it. If no such row exists, the iterator
is exhausted and \verb'GxB_EXHAUSTED' is returned.
The \verb'GxB_rowIterator_kseek' method always moves to the \verb'k'th
explicit row, for any matrix.
Use \verb'GxB_rowIterator_getRowIndex', described below, to determine
the row index of the current position.
Precondition: on input, the \verb'iterator' must have been successfully
attached to a matrix via a prior call to \verb'GxB_rowIterator_attach'.
Results are undefined if this precondition is not met.
\item {\em column iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_colIterator_seekCol (iterator, col) ;
GrB_Index kount = GxB_colIterator_kount (iterator) ;
GrB_Info info = GxB_colIterator_kseek (iterator, k) ; \end{verbatim}}
These methods move a column iterator to a specific column, defined in
one of two ways: (1) the column index itself (in range 0 to
\verb'ncols'-1), or (2) by specifying \verb'k', which moves the
iterator to the \verb'k'th {\em explicit} column (in the range 0 to
\verb'kount'-1). For sparse, bitmap, or full matrices, these two
methods are identical. For hypersparse matrices, not all columns are
present in the data structure; these {\em implicit} columns are skipped
and not included in the \verb'kount'. Implicit columns contain no
entries. The \verb'GxB_colIterator_kount' method returns the
\verb'kount' of the matrix, where \verb'kount' is equal to \verb'ncols'
for sparse, bitmap, and matrices, and \verb'kount' $\le$ \verb'ncols'
for hypersparse matrices. All three methods listed above can be used
for any column iterator.
The \verb'GxB_colIterator_*seek*' methods return \verb'GrB_SUCCESS' if
the iterator has been moved to a column that contains at least one
entry, \verb'GrB_NO_VALUE' if the column has no entries, or
\verb'GxB_EXHAUSTED' if the column is out of bounds (\verb'col' $\ge$
\verb'ncols' or \verb'k' $\ge$ \verb'kount').
None of these return conditions are
errors; they are all informational.
For sparse, bitmap, and full matrices, \verb'GxB_colIterator_seekCol'
always moves to the given column. For hypersparse matrices, if the
requested column is implicit, the iterator is moved to the first
explicit column following it. If no such column exists, the iterator
is exhausted and \verb'GxB_EXHAUSTED' is returned.
The \verb'GxB_colIterator_kseek' method always moves to the \verb'k'th
explicit column, for any matrix.
Use \verb'GxB_colIterator_getColIndex', described below, to determine
the column index of the current position.
Precondition: on input, the \verb'iterator' must have been successfully
attached to a matrix via a prior call to \verb'GxB_colIterator_attach'.
Results are undefined if this precondition is not met.
\item {\em entry iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_Matrix_Iterator_seek (iterator, p) ;
GrB_Index pmax = GxB_Matrix_Iterator_getpmax (iterator) ;
GrB_Index p = GxB_Matrix_Iterator_getp (iterator); \end{verbatim}}
The \verb'GxB_Matrix_Iterator_seek' method moves the \verb'iterator' to
the given position \verb'p', which is in the range 0 to \verb'pmax'-1,
where the value of \verb'pmax' is obtained from
\verb'GxB_Matrix_Iterator_getpmax'.
For sparse, hypersparse, and full matrices, \verb'pmax' is the same as
\verb'nvals' returned by \verb'GrB_Matrix_nvals'. For bitmap matrices,
\verb'pmax' is equal to \verb'nrows*ncols'. If \verb'p' $\ge$
\verb'pmax', the iterator is exhausted and \verb'GxB_EXHAUSTED' is
returned. Otherwise, \verb'GrB_SUCCESS' is returned.
All entries in the matrix are given an ordinal position, \verb'p'.
Seeking to position \verb'p' will either move the \verb'iterator' to
that particular position, or to the next higher position containing an
entry if there is entry at position \verb'p'. The latter case only
occurs for bitmap matrices.
Use \verb'GxB_Matrix_Iterator_getp' to determine the current
position of the iterator.
Precondition: on input, the \verb'iterator' must have been successfully
attached to a matrix via a prior call to
\verb'GxB_Matrix_Iterator_attach'. Results are undefined if this
precondition is not met.
\item {\em vector iterator}:
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_Vector_Iterator_seek (iterator, p) ;
GrB_Index pmax = GxB_Vector_Iterator_getpmax (iterator) ;
GrB_Index p = GxB_Vector_Iterator_getp (iterator); \end{verbatim}}
The \verb'GxB_Vector_Iterator_seek' method is identical to the
entry iterator of a matrix, but applied to a \verb'GrB_Vector' instead.
Precondition: on input, the \verb'iterator' must have been successfully
attached to a vector via a prior call to
\verb'GxB_Vector_Iterator_attach'. Results are undefined if this
precondition is not met.
\end{enumerate}
%===============================================================================
\subsection{Advancing to the next position}
%===============================================================================
For best performance, the {\em seek} methods described above should be used
with care, since some of them require $O(\log n)$ time. The fastest method
for changing the position of the iterator is the corresponding {\em next}
method, described below for each iterator:
\begin{enumerate}
\item {\em row iterator}: To move to the next row.
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_rowIterator_nextRow (iterator) ; \end{verbatim}}
The row iterator is a 2-dimensional iterator, requiring an outer loop and
an inner loop. The outer loop iterates over the rows of the matrix, using
\verb'GxB_rowIterator_nextRow' to move to the next row. If the matrix is
hypersparse, the next row is always an explicit row; implicit rows are
skipped. The return conditions are identical to
\verb'GxB_rowIterator_seekRow'.
Preconditions: on input, the row iterator must already be attached to a
matrix via a prior call to \verb'GxB_rowIterator_attach', and the
\verb'iterator' must be at a specific row, via a prior call to
\verb'GxB_rowIterator_*seek*' or \verb'GxB_rowIterator_nextRow'.
Results are undefined if these conditions are not met.
\item {\em row iterator}: To move to the next entry within a row.
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_rowIterator_nextCol (iterator) ; \end{verbatim}}
The row iterator is moved to the next entry in the current row.
The method returns \verb'GrB_NO_VALUE' if the end of the row is reached.
The iterator does not move to the next row in this case.
The method returns \verb'GrB_SUCCESS' if the iterator has been moved
to a specific entry in the current row.
Preconditions: the same as \verb'GxB_rowIterator_nextRow'.
\item {\em column iterator}: To move to the next column
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_colIterator_nextCol (iterator) ; \end{verbatim}}
The column iterator is a 2-dimensional iterator, requiring an outer loop
and an inner loop. The outer loop iterates over the columns of the matrix,
using \verb'GxB_colIterator_nextCol' to move to the next column. If the
matrix is hypersparse, the next column is always an explicit column;
implicit columns are skipped. The return conditions are identical to
\verb'GxB_colIterator_seekCol'.
Preconditions: on input, the column iterator must already be attached to a
matrix via a prior call to \verb'GxB_colIterator_attach', and the
\verb'iterator' must be at a specific column, via a prior call to
\verb'GxB_colIterator_*seek*' or \verb'GxB_colIterator_nextCol'.
Results are undefined if these conditions are not met.
{\footnotesize
\item {\em column iterator}: To move to the next entry within a column.
\begin{verbatim}
GrB_Info info = GxB_colIterator_nextRow (iterator) ; \end{verbatim}}
The column iterator is moved to the next entry in the current column.
The method returns \verb'GrB_NO_VALUE' if the end of the column is reached.
The iterator does not move to the next column in this case.
The method returns \verb'GrB_SUCCESS' if the iterator has been moved
to a specific entry in the current column.
Preconditions: the same as \verb'GxB_colIterator_nextCol'.
\item {\em entry iterator}: To move to the next entry.
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_Matrix_Iterator_next (iterator) ; \end{verbatim}}
This method moves an iterator to the next entry of a matrix.
It returns \verb'GrB_SUCCESS' if the iterator is at an entry that
exists in the matrix, or \verb'GrB_EXHAUSTED' otherwise.
Preconditions: on input, the entry iterator must be already attached to a
matrix via \verb'GxB_Matrix_Iterator_attach', and the position of the
iterator must also have been defined by a prior call to
\verb'GxB_Matrix_Iterator_seek' or \verb'GxB_Matrix_Iterator_next'.
Results are undefined if these conditions are not met.
\item {\em vector iterator}: To move to the next entry.
{\footnotesize
\begin{verbatim}
GrB_Info info = GxB_Vector_Iterator_next (iterator) ; \end{verbatim}}
This method moves an iterator to the next entry of a vector.
It returns \verb'GrB_SUCCESS' if the iterator is at an entry that
exists in the vector, or \verb'GrB_EXHAUSTED' otherwise.
Preconditions: on input, the iterator must be already attached to a
vector via \verb'GxB_Vector_Iterator_attach', and the position of the
iterator must also have been defined by a prior call to
\verb'GxB_Vector_Iterator_seek' or \verb'GxB_Vector_Iterator_next'.
Results are undefined if these conditions are not met.
\end{enumerate}
%===============================================================================
\subsection{Accessing the indices of the current entry}
%===============================================================================
Once the iterator is attached to a matrix or vector, and is placed in position
at an entry in the matrix or vector, the indices and value of this entry can be
obtained. The methods for accessing the value of the entry are described in
Section~\ref{getvalu}. Accessing the indices is performed with four different
sets of methods, depending on which access pattern is in use, described below:
\begin{enumerate}
\item {\em row iterator}: To get the current row index.
{\footnotesize
\begin{verbatim}
GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ; \end{verbatim}}
The method returns \verb'nrows(A)' if the iterator is exhausted, or the
current row index \verb'i' otherwise. There need not be any entry in the
current row. Zero is returned if the iterator is attached to the matrix
but \verb'GxB_rowIterator_*seek*' has not been called, but this does not
mean the iterator is positioned at row zero.
Preconditions: on input, the iterator must be already successfully attached
to matrix as a row iterator via \verb'GxB_rowIterator_attach'.
Results are undefined if this condition is not met.
\item {\em row iterator}: To get the current column index.
{\footnotesize
\begin{verbatim}
GrB_Index j = GxB_rowIterator_getColIndex (iterator) ; \end{verbatim}}
Preconditions: on input, the iterator must be already successfully attached
to matrix as a row iterator via \verb'GxB_rowIterator_attach', and in
addition, the row iterator must be positioned at a valid entry present in
the matrix. That is, the last call to \verb'GxB_rowIterator_*seek*' or
\verb'GxB_rowIterator_*next*', must have returned \verb'GrB_SUCCESS'.
Results are undefined if these conditions are not met.
\item {\em column iterator}: To get the current column index.
{\footnotesize
\begin{verbatim}
GrB_Index j = GxB_colIterator_getColIndex (iterator) ; \end{verbatim}}
The method returns \verb'ncols(A)' if the iterator is exhausted, or the
current column index \verb'j' otherwise. There need not be any entry in the
current column. Zero is returned if the iterator is attached to the matrix
but \verb'GxB_colIterator_*seek*' has not been called, but this does not
mean the iterator is positioned at column zero.
Precondition: on input, the iterator must be already successfully attached
to matrix as a column iterator via \verb'GxB_colIterator_attach'.
Results are undefined if this condition is not met.
\item {\em column iterator}: To get the current row index.
{\footnotesize
\begin{verbatim}
GrB_Index i = GxB_colIterator_getRowIndex (iterator) ; \end{verbatim}}
Preconditions: on input, the iterator must be already successfully attached
to matrix as a column iterator via \verb'GxB_colIterator_attach', and in
addition, the column iterator must be positioned at a valid entry present in
the matrix. That is, the last call to \verb'GxB_colIterator_*seek*' or
\verb'GxB_colIterator_*next*', must have returned \verb'GrB_SUCCESS'.
Results are undefined if these conditions are not met.
\item {\em entry iterator}: To get the current row and column index.
{\footnotesize
\begin{verbatim}
GrB_Index i, j ;
GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ; \end{verbatim}}
Returns the row and column index of the current entry.
Preconditions: on input, the entry iterator must be already attached to a
matrix via \verb'GxB_Matrix_Iterator_attach', and the position of the
iterator must also have been defined by a prior call to
\verb'GxB_Matrix_Iterator_seek' or \verb'GxB_Matrix_Iterator_next', with a
return value of \verb'GrB_SUCCESS'.
Results are undefined if these conditions are not met.
\item {\em vector iterator}: To get the current index.
{\footnotesize
\begin{verbatim}
GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ; \end{verbatim}}
Returns the index of the current entry.
Preconditions: on input, the entry iterator must be already attached to a
matrix via \verb'GxB_Vector_Iterator_attach', and the position of the
iterator must also have been defined by a prior call to
\verb'GxB_Vector_Iterator_seek' or \verb'GxB_Vector_Iterator_next', with a
return value of \verb'GrB_SUCCESS'.
Results are undefined if these conditions are not met.
\end{enumerate}
%===============================================================================
\subsection{Accessing the value of the current entry}
\label{getvalu}
%===============================================================================
So far, all methods that create or use an iterator have been split into four
sets of methods, for the row, column, or entry iterators attached to a matrix,
or for a vector iterator. Accessing the value is different. All four
iterators use the same set of methods to access the value of their current
entry. These methods return the value of the current entry at the position
determined by the iterator. The return value can of course be typecasted
using standard C syntax once the value is returned to the caller.
Preconditions: on input, the prior call to \verb'GxB_*Iterator_*seek*', or
\verb'GxB_*Iterator_*next*' must have returned \verb'GrB_SUCCESS', indicating
that the iterator is at a valid current entry for either a matrix or vector.
No typecasting is permitted, in the sense that the method name must match the
type of the matrix or vector.
Results are undefined if these conditions are not met.
{\footnotesize
\begin{verbatim}
// for built-in types:
bool value = GxB_Iterator_get_BOOL (iterator) ;
int8_t value = GxB_Iterator_get_INT8 (iterator) ;
int16_t value = GxB_Iterator_get_INT16 (iterator) ;
int32_t value = GxB_Iterator_get_INT32 (iterator) ;
int64_t value = GxB_Iterator_get_INT64 (iterator) ;
uint8_t value = GxB_Iterator_get_UINT8 (iterator) ;
uint16_t value = GxB_Iterator_get_UINT16 (iterator) ;
uint32_t value = GxB_Iterator_get_UINT32 (iterator) ;
uint64_t value = GxB_Iterator_get_UINT64 (iterator) ;
float value = GxB_Iterator_get_FP32 (iterator) ;
double value = GxB_Iterator_get_FP64 (iterator) ;
GxB_FC32_t value = GxB_Iterator_get_FC32 (iterator) ;
GxB_FC64_t value = GxB_Iterator_get_FC64 (iterator) ;
// for user-defined types:
<type> value ;
GxB_Iterator_get_UDT (iterator, (void *) &value) ; \end{verbatim}}
%===============================================================================
\newpage
\subsection{Example: row iterator for a matrix}
%===============================================================================
The following example uses a row iterator to access all of the entries
in a matrix \verb'A' of type \verb'GrB_FP64'. Note the inner and outer loops.
The outer loop iterates over all rows of the matrix. The inner loop iterates
over all entries in the row \verb'i'. This access pattern requires the matrix
to be held by-row, but otherwise it works for any matrix. If the matrix is
held by-column, then use the column iterator methods instead.
{\footnotesize
\begin{verbatim}
// create an iterator
GxB_Iterator iterator ;
GxB_Iterator_new (&iterator) ;
// attach it to the matrix A, known to be type GrB_FP64
GrB_Info info = GxB_rowIterator_attach (iterator, A, NULL) ;
if (info < 0) { handle the failure ... }
// seek to A(0,:)
info = GxB_rowIterator_seekRow (iterator, 0) ;
while (info != GxB_EXHAUSTED)
{
// iterate over entries in A(i,:)
GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;
while (info == GrB_SUCCESS)
{
// get the entry A(i,j)
GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;
double aij = GxB_Iterator_get_FP64 (iterator) ;
// move to the next entry in A(i,:)
info = GxB_rowIterator_nextCol (iterator) ;
}
// move to the next row, A(i+1,:), or a subsequent one if i+1 is implicit
info = GxB_rowIterator_nextRow (iterator) ;
}
GrB_free (&iterator) ; \end{verbatim}}
%===============================================================================
\newpage
\subsection{Example: column iterator for a matrix}
%===============================================================================
The column iterator is analgous to the row iterator.
The following example uses a column iterator to access all of the entries in a
matrix \verb'A' of type \verb'GrB_FP64'. The outer loop iterates over all
columns of the matrix. The inner loop iterates over all entries in the column
\verb'j'. This access pattern requires the matrix to be held by-column, but
otherwise it works for any matrix. If the matrix is held by-row, then use
the row iterator methods instead.
{\footnotesize
\begin{verbatim}
// create an iterator
GxB_Iterator iterator ;
GxB_Iterator_new (&iterator) ;
// attach it to the matrix A, known to be type GrB_FP64
GrB_Info info = GxB_colIterator_attach (iterator, A, NULL) ;
// seek to A(:,0)
info = GxB_colIterator_seekCol (iterator, 0) ;
while (info != GxB_EXHAUSTED)
{
// iterate over entries in A(:,j)
GrB_Index j = GxB_colIterator_getColIndex (iterator) ;
while (info == GrB_SUCCESS)
{
// get the entry A(i,j)
GrB_Index i = GxB_colIterator_getRowIndex (iterator) ;
double aij = GxB_Iterator_get_FP64 (iterator) ;
// move to the next entry in A(:,j)
info = GxB_colIterator_nextRow (iterator) ;
OK (info) ;
}
// move to the next column, A(:,j+1), or a subsequent one if j+1 is implicit
info = GxB_colIterator_nextCol (iterator) ;
}
GrB_free (&iterator) ; \end{verbatim}}
%===============================================================================
\newpage
\subsection{Example: entry iterator for a matrix}
%===============================================================================
The entry iterator allows for a simpler access pattern, with a single loop, but
using a row or column iterator is faster. The method works for any matrix.
{\footnotesize
\begin{verbatim}
// create an iterator
GxB_Iterator iterator ;
GxB_Iterator_new (&iterator) ;
// attach it to the matrix A, known to be type GrB_FP64
GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, NULL) ;
if (info < 0) { handle the failure ... }
// seek to the first entry
info = GxB_Matrix_Iterator_seek (iterator, 0) ;
while (info != GxB_EXHAUSTED)
{
// get the entry A(i,j)
GrB_Index i, j ;
GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;
double aij = GxB_Iterator_get_FP64 (iterator) ;
// move to the next entry in A
info = GxB_Matrix_Iterator_next (iterator) ;
}
GrB_free (&iterator) ; \end{verbatim}}
%===============================================================================
\subsection{Example: vector iterator}
%===============================================================================
A vector iterator is used much like an entry iterator for a matrix.
{\footnotesize
\begin{verbatim}
// create an iterator
GxB_Iterator iterator ;
GxB_Iterator_new (&iterator) ;
// attach it to the vector v, known to be type GrB_FP64
GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, NULL) ;
if (info < 0) { handle the failure ... }
// seek to the first entry
info = GxB_Vector_Iterator_seek (iterator, 0) ;
while (info != GxB_EXHAUSTED)
{
// get the entry v(i)
GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;
double vi = GxB_Iterator_get_FP64 (iterator) ;
// move to the next entry in v
info = GxB_Vector_Iterator_next (iterator) ;
}
GrB_free (&iterator) ; \end{verbatim}}
%===============================================================================
\newpage
\subsection{Performance}
%===============================================================================
I have benchmarked the performance of the row and column iterators to compute
\verb'y=0' and then \verb'y+=A*x' where \verb'y' is a dense vector and \verb'A'
is a sparse matrix, using a single thread. The row and column iterators are
very fast, sometimes only 1\% slower than calling \verb'GrB_mxv' to compute the
same thing (also assuming a single thread), for large problems. For sparse
matrices that average just 1 or 2 entries per row, the row iterator can be
about 30\% slower than \verb'GrB_mxv', likely because of the slightly higher
complexity of moving from one row to the next using these methods.
It is possible to split up the problem for multiple user threads, each with its
own iterator. Given the low overhead of the row and column iterator for a
single thread, this should be very fast. Care must be taken to ensure a good
load balance. Simply spliting up the rows of a matrix and giving the same
number of rows to each user thread can result in imbalanced work. This is
handled internally in \verb'GrB_*' methods, but enabling parallelism when using
iterators is the responsibility of the user application.
The entry iterators are easier to use but harder to implement. The methods
must internally fuse both inner and outer loops so that the user application can
use a single loop. As a result, the computation \verb'y+=A*x' can be up to
4x slower (about 2x typical) than when using \verb'GrB_mxv' with a single
thread.
To obtain the best performace possible, many of the iterator methods are
implemented as macros in \verb'GraphBLAS.h'. Using macros is the default,
giving typical C and C++ applications access to the fastest methods possible.
To ensure access to these methods when not using the macros, these methods are
also defined as regular functions that appear in the compiled
\verb'libgraphblas.so' library with the same name as the macros. Applications
that cannot use the macro versions can \verb'#undef' the macros after the
\verb'#include <GraphBLAS.h>' statement, and then they would access the regular
compiled functions in \verb'libgraphblas.so'. This non-macro approach is not
the default, and the iterator methods may be slightly slower.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Iso-Valued Matrices and Vectors } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{iso}
The GraphBLAS C API states that the entries in all \verb'GrB_Matrix' and
\verb'GrB_Vector' objects have a numerical value, with either a built-in or
user-defined type. Representing an unweighted graph requires a value to be
placed on each edge, typically $a_{ij}=1$. Adding a structure-only data type
would not mix well with the rest of GraphBLAS, where all operators, monoids,
and semirings need to operate on a value, of some data type. And yet
unweighted graphs are very important in graph algorithms.
The solution is simple, and exploiting it in SuiteSparse:GraphBLAS requires
nearly no extensions to the GraphBLAS C API. SuiteSparse:GraphBLAS can often
detect when the user application is creating a matrix or vector where all
entries in the sparsity pattern take on the same numerical value.
For example, ${\bf C \langle C \rangle} = 1$, when the mask is structural, sets
all entries in $\bf C$ to the value 1. SuiteSparse:GraphBLAS detects this, and
performs this assignment in $O(1)$ time. It stores a single copy of this
``iso-value'' and sets an internal flag in the opaque data structure for $\bf
C$, which states that all entries in the pattern of $\bf C$ are equal to 1.
This saves both time and memory and allows for the efficient representation of
sparse adjacency matrices of unweighted graphs, yet does not change the C API.
To the user application, it still appears that $\bf C$ has \verb'nvals(C)'
entries, all equal to 1.
Creating and operating on iso-valued matrices (or just {\em iso matrices} for
short) is significantly faster than creating matrices with different data
values. A matrix that is iso requires only $O(1)$ space for its numerical
values. The sparse and hypersparse formats require an additional $O(n+e)$ or
$O(e)$ integer space to hold the pattern of an $n$-by-$n$ matrix \verb'C',
respectively, and a matrix \verb'C' in bitmap format requires $O(n^2)$ space
for the bitmap. A full matrix requires no integer storage, so a matrix that is
both iso and full requires only $O(1)$ space, regardless of its dimension.
The sections below a describe the methods that can be used to create iso
matrices and vectors. Let $a$, $b$, and $c$ denote the iso values of \verb'A',
\verb'B', and \verb'C', respectively.
%-------------------------------------------------------------------------------
\subsection{Using iso matrices and vectors in a graph algorithm}
%-------------------------------------------------------------------------------
\label{iso_usage}
There are two primary useful ways to use iso-valued matrices and vectors: (1)
as iso sparse/hypersparse adjacency matrices for unweighted graphs, and (2) as
iso full matrices or vectors used with operations that do not need to access
all of the content of the iso full matrix or vector.
In the first use case, simply create a \verb'GrB_Matrix' with values that are
all the same (those in the sparsity pattern). The
\verb'GxB_Matrix_build_Scalar' method can be used for this, since it
guarantees that the time and work spent on the numerical part of the array
is only $O(1)$. The method still must spend $O(e)$ or $O(e \log e)$ time
on the integer arrays that represent the sparsity pattern, but the reduction
in time and work on the numerical part of the matrix will improve performance.
The use of \verb'GxB_Matrix_build_Scalar' is optional. Matrices can also be
constructed with \verb'GrB*' methods. In particular, \verb'GrB_Matrix_build_*'
can be used. It first builds a non-iso matrix and then checks if all of the
values are the same, after assembling any duplicate entries. This does not
save time or memory for the construction of the matrix itself, but it will
lead to savings in time and memory later on, when the matrix is used.
To ensure a matrix \verb'C' is iso-valued, simply use \verb'GrB_assign' to
compute \verb'C<C,struct>=1', or assign whatever value of scalar you wish.
It is essential to use a structural mask. Otherwise, it is not clear that
all entries in \verb'C' will be assigned the same value. The following
code takes $O(1)$ time, and it resets the size of the numerical part of the
\verb'C' matrix to be $O(1)$ in size:
{\footnotesize
\begin{verbatim}
bool scalar = true ;
GrB_Matrix_assign (C, C, NULL, scalar, GrB_ALL, nrows, GrB_ALL, ncols,
GrB_DESC_S) ; \end{verbatim}}
The MATLAB/Octave analog of the code above is \verb'C=spones(C)'.
The second case for where iso matrices and vectors are useful is to use them
with operations that do not necessarily access all of their content.
Suppose you have a matrix \verb'A' of arbitrarily large dimension (say
\verb'n'-by-\verb'n' where \verb'n=2^60', of type \verb'GrB_FP64'). A matrix
this large can be represented by SuiteSparse:GraphBLAS, but only in a
hypersparse form.
Now, suppose you wish to compute the maximum value in each row, reducing the
matrix to a vector. This can be done with \verb'GrB_reduce':
{\footnotesize
\begin{verbatim}
GrB_Vector_new (&v, GrB_FP64, n) ;
GrB_reduce (v, NULL, GrB_MAX_MONOID_FP64, A, NULL) ; \end{verbatim}}
It can also be done with \verb'GrB_mxv', by creating an iso full vector
\verb'x'. The creation of \verb'x' takes $O(1)$ time and memory,
and the \verb'GrB_mxv' computation takes $O(e)$ time (with modest assumptions;
if \verb'A' needs to be transposed the time would be $O(e \log e)$).
{\footnotesize
\begin{verbatim}
GrB_Vector_new (&v, GrB_FP64, n) ;
GrB_Vector_new (&x, GrB_FP64, n) ;
GrB_assign (x, NULL, NULL, 1, GrB_ALL, n, NULL) ;
GrB_mxv (v, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, x, NULL) ; \end{verbatim}}
The above computations are identical in SuiteSparse:GraphBLAS. Internally,
\verb'GrB_reduce' creates \verb'x' and calls \verb'GrB_mxv'. Using
\verb'GrB_mxm' directly gives the user application additional flexibility in
creating new computations that exploit the multiplicative operator in the
semiring. \verb'GrB_reduce' always uses the \verb'FIRST' operator in its
semiring, but any other binary operator can be used instead when using
\verb'GrB_mxv'.
Below is a method for computing the argmax of each row of a square matrix
\verb'A' of dimension \verb'n' and type \verb'GrB_FP64'. The vector \verb'x'
contains the maximum value in each row, and the vector \verb'p' contains the
zero-based column index of the maximum value in each row. If there are
duplicate maximum values in each row, any one of them is selected arbitrarily
using the \verb'ANY' monoid. To select the minimum column index of the
duplicate maximum values, use the \verb'GxB_MIN_SECONDI_INT64' semiring instead
(this will be slightly slower than the \verb'ANY' monoid if there are many
duplicates).
To compute the argmax of each column, use the \verb'GrB_DESC_T0' descriptor
in \verb'GrB_mxv', and compute \verb'G=A*D' instead of \verb'G=D*A' with
\verb'GrB_mxm'. See the \verb'GrB.argmin' and \verb'GrB.argmax' functions
in the MATLAB/Octave interface for details.
% corresponds to GrB.argmax with dim = 2
{\footnotesize
\begin{verbatim}
GrB_Vector_new (&x, GrB_FP64, n) ;
GrB_Vector_new (&y, GrB_FP64, n) ;
GrB_Vector_new (&p, GrB_INT64, n) ;
// y (:) = 1, an iso full vector
GrB_assign (y, NULL, NULL, 1, GrB_ALL, n, NULL) ;
// x = max (A) where x(i) = max (A (i,:))
GrB_mxv (x, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, y, NULL) ;
// D = diag (x)
GrB_Matrix_diag (&D, x, 0) ;
// G = D*A using the ANY_EQ semiring
GrB_Matrix_new (&G, GrB_BOOL, n, n) ;
GrB_mxm (G, NULL, NULL, GxB_ANY_EQ_FP64, D, A, NULL) ;
// drop explicit zeros from G
GrB_select (G, NULL, NULL, GrB_VALUENE_BOOL, G, 0, NULL) ;
// find the position of any max entry in each row: p = G*y,
// so that p(i) = j if x(i) = A(i,j) = max (A (i,:))
GrB_mxv (p, NULL, NULL, GxB_ANY_SECONDI_INT64, G, y, NULL) ; \end{verbatim}}
No part of the above code takes $\Omega(n)$ time or memory. The data type of
the iso full vector \verb'y' can be anything, and its iso value can be
anything. It is operated on by the \verb'FIRST' operator in the first
\verb'GrB_mxv', and the \verb'SECONDI' positional operator in the second
\verb'GrB_mxv', and both operators are oblivious to the content and even the
type of \verb'y'. The semirings simply note that \verb'y' is a full vector and
compute their result according, by accessing the matrices only (\verb'A' and
\verb'G', respectively).
For floating-point values, \verb'NaN' values are ignored, and treated as if
they were not present in the input matrix, unless all entries in a given row
are equal to \verb'NaN'. In that case, if all entries in \verb'A(i,:)' are
equal to \verb'NaN', then \verb'x(i)' is \verb'NaN' and the entry \verb'p(i)'
is not present.
%-------------------------------------------------------------------------------
\subsection{Iso matrices from matrix multiplication}
%-------------------------------------------------------------------------------
\label{iso_mxm}
Consider \verb'GrB_mxm', \verb'GrB_mxv', and \verb'GrB_vxm', and
let \verb'C=A*B', where no mask is present, or \verb'C<M>=A*B' where
\verb'C' is initially empty. If \verb'C' is not initially empty,
then these rules apply to a temporary matrix \verb'T<M>=A*B', which is
initially empty and is then assigned to \verb'C' via \verb'C<M>=T'.
The iso property of \verb'C' is determined with the following rules,
where the first rule that fits defines the property and value of \verb'C'.
\begin{itemize}
\item If the semiring includes a positional multiplicative operator
(\verb'GxB_FIRSTI', \verb'GrB_SECONDI', and related operators), then
\verb'C' is never iso.
\item Define an {\em iso-monoid} as a built-in monoid with the property
that reducing a set of $n>1$ identical values $x$ returns the same value
$x$. These are the \verb'MIN' \verb'MAX' \verb'LOR' \verb'LAND' \verb'BOR'
\verb'BAND' and \verb'ANY' monoids. All other monoids are not iso monoids:
\verb'PLUS', \verb'TIMES', \verb'LXNOR', \verb'EQ', \verb'BXOR',
\verb'BXNOR', and all user-defined monoids. Currently, there is no
mechanism for telling SuiteSparse:GraphBLAS that a user-defined monoid
is an iso-monoid.
\item If the multiplicative op is \verb'PAIR' (same as \verb'ONEB'),
and the monoid is an
iso-monoid, or the \verb'EQ' or \verb'TIMES' monoids, then \verb'C' is
iso with a value of 1.
\item If both \verb'B' and the monoid are iso, and the multiplicative op is
\verb'SECOND' or \verb'ANY', then \verb'C' is iso with a value of $b$.
\item If both \verb'A' and the monoid are iso, and the multiplicative op is
\verb'FIRST' or \verb'ANY', then \verb'C' is iso with a value of $a$.
\item If \verb'A', \verb'B', and the monoid are all iso, then \verb'C'
is iso, with a value $c=f(a,b)$, where $f$ is any multiplicative op
(including user-defined, which assumes that a user-defined $f$ has no
side effects).
\item If \verb'A' and \verb'B' are both iso and full (all entries present,
regardless of the format of the matrices), then \verb'C' is iso and full.
Its iso value is computed in $O(\log(n))$ time, via a reduction of $n$
copies of the value $t=f(a,b)$ to a scalar. The storage required to
represent \verb'C' is just $O(1)$, regardless of its dimension.
Technically, the \verb'PLUS' monoid could be computed as $c=nt$ in $O(1)$
time, but the log-time reduction works for any monoid, including
user-defined ones.
\item Otherwise, \verb'C' is not iso.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices from eWiseMult and kronecker}
%-------------------------------------------------------------------------------
\label{iso_emult}
Consider \verb'GrB_eWiseMult'. Let
\verb'C=A.*B', or \verb'C<M>=A.*B' with any mask and where \verb'C' is
initially empty, where \verb'.*' denotes a binary operator $f(x,y)$
applied with \verb'eWiseMult'. These rules also apply to \verb'GrB_kronecker'.
\begin{itemize}
\item If the operator is positional (\verb'GxB_FIRSTI' and related) then
\verb'C' is not iso.
\item If the op is \verb'PAIR' (same as \verb'ONEB'),
then \verb'C' is iso with $c=1$.
\item If \verb'B' is iso and the op is \verb'SECOND' or \verb'ANY',
then \verb'C' is iso with $c=b$.
\item If \verb'A' is iso and the op is \verb'FIRST' or \verb'ANY',
then \verb'C' is iso with $c=a$.
\item If both \verb'A' and \verb'B' are iso,
then \verb'C' is iso with $c=f(a,b)$.
\item Otherwise, \verb'C' is not iso.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices from eWiseAdd}
%-------------------------------------------------------------------------------
\label{iso_add}
Consider \verb'GrB_eWiseAdd', and also the accumulator phase of \verb'C<M>+=T'
when an accumulator operator is present. Let \verb'C=A+B', or \verb'C<M>=A+B'
with any mask and where \verb'C' is initially empty.
\begin{itemize}
\item If both \verb'A' and \verb'B' are full (all entries present), then
the rules for \verb'eWiseMult' in Section~\ref{iso_emult} are used
instead.
\item If the operator is positional (\verb'GxB_FIRSTI' and related) then
\verb'C' is not iso.
\item If $a$ and $b$ differ (when typecasted to the type of \verb'C'),
then \verb'C' is not iso.
\item If $c=f(a,b) = a = b$ holds, then \verb'C' is iso,
where $f(a,b)$ is the operator.
\item Otherwise, \verb'C' is not iso.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices from eWiseUnion}
%-------------------------------------------------------------------------------
\label{iso_union}
\verb'GxB_eWiseUnion' is very similar to \verb'GrB_eWiseAdd', but the rules
for when the result is iso-valued are very different.
\begin{itemize}
\item If both \verb'A' and \verb'B' are full (all entries present), then
the rules for \verb'eWiseMult' in Section~\ref{iso_emult} are used
instead.
\item If the operator is positional (\verb'GxB_FIRSTI' and related) then
\verb'C' is not iso.
\item If the op is \verb'PAIR' (same as \verb'ONEB'),
then \verb'C' is iso with $c=1$.
\item If \verb'B' is iso and the op is \verb'SECOND' or \verb'ANY',
and the input scalar \verb'beta' matches $b$
(the iso-value of \verb'B'),
then \verb'C' is iso with $c=b$.
\item If \verb'A' is iso and the op is \verb'FIRST' or \verb'ANY',
and the input scalar \verb'alpha' matches $a$
(the iso-value of \verb'A'),
then \verb'C' is iso with $c=a$.
\item If both \verb'A' and \verb'B' are iso,
and $f(a,b) = f(\alpha,b) = f(a,\beta)$,
then \verb'C' is iso with $c=f(a,b)$.
\item Otherwise, \verb'C' is not iso.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Reducing iso matrices to a scalar or vector}
%-------------------------------------------------------------------------------
\label{iso_reduce}
If \verb'A' is iso with $e$ entries, reducing it to a scalar takes $O(\log(e))$
time, regardless of the monoid used to reduce the matrix to a scalar. Reducing
\verb'A' to a vector \verb'c' is the same as the matrix-vector multiply
\verb"c=A*x" or \verb"c=A'*x", depending on the descriptor, where \verb'x'
is an iso full vector (refer to Section~\ref{iso_mxm}).
%-------------------------------------------------------------------------------
\subsection{Iso matrices from apply}
%-------------------------------------------------------------------------------
\label{iso_apply}
Let \verb'C=f(A)' denote the application of a unary operator \verb'f',
and let \verb'C=f(A,s)' and \verb'C=f(s,A)' denote the application of a binary
operator with \verb's' a scalar.
\begin{itemize}
\item If the operator is positional (\verb'GxB_POSITION*',
\verb'GxB_FIRSTI', and related) then \verb'C' is not iso.
\item If the operator is \verb'ONE' or \verb'PAIR' (same as \verb'ONEB'),
then \verb'C' iso with $c=1$.
\item If the operator is \verb'FIRST' or \verb'ANY' with \verb'C=f(s,A)',
then \verb'C' iso with $c=s$.
\item If the operator is \verb'SECOND' or \verb'ANY' with \verb'C=f(A,s)',
then \verb'C' iso with $c=s$.
\item If \verb'A' is iso then \verb'C' is iso, with the following value
of $c$:
\begin{itemize}
\item If the op is \verb'IDENTITY', then $c=a$.
\item If the op is unary with \verb'C=f(A)', then $c=f(a)$.
\item If the op is binary with \verb'C=f(s,A)', then $c=f(s,a)$.
\item If the op is binary with \verb'C=f(A,s)', then $c=f(a,s)$.
\end{itemize}
\item Otherwise, \verb'C' is not iso.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices from select}
%-------------------------------------------------------------------------------
\label{iso_select}
Let \verb'C=select(A)' denote the application of a \verb'GrB_IndexUnaryOp' operator
in \verb'GrB_select'.
\begin{itemize}
\item If \verb'A' is iso, then \verb'C' is iso with $c=a$.
\item If the operator is any \verb'GrB_VALUE*_BOOL' operator,
with no typecasting, and the test is true only for a single boolean
value, then \verb'C' is iso.
\item If the operator is \verb'GrB_VALUEEQ_*', with no typecasting,
then \verb'C' is iso, with $c=t$ where $t$ is the value of the scalar
\verb'y'.
\item If the operator is \verb'GrB_VALUELE_UINT*', with no typecasting,
and the scalar \verb'y' is zero, then \verb'C' is iso with $c=0$.
\item Otherwise, \verb'C' is not iso.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices from assign and subassign}
%-------------------------------------------------------------------------------
\label{iso_assign}
These rules are somewhat complex. Consider the assignment \verb'C<M>(I,J)=...'
with \verb'GrB_assign'. Internally, this assignment is converted into
\verb'C(I,J)<M(I,J)>=...' and then \verb'GxB_subassign' is used. Thus,
all of the rules below assume the form \verb'C(I,J)<M>=...' where \verb'M'
has the same size as the submatrix \verb'C(I,J)'.
\subsubsection{Assignment with no accumulator operator}
If no accumulator operator is present, the following rules are used.
\begin{itemize}
\item
For matrix assignment, \verb'A' must be iso. For scalar assignment, the single
scalar is implicitly expanded into an iso matrix \verb'A' of the right size.
If these rules do not hold, \verb'C' is not iso.
\item
If \verb'A' is not iso, or if \verb'C' is not iso on input, then \verb'C' is
not iso on output.
\item
If \verb'C' is iso or empty on input, and \verb'A' is iso (or scalar assignment
is begin performed) and the iso values $c$ and $a$ (or the scalar $s$) match,
then the following forms of assignment result in an iso matrix \verb'C' on
output:
\begin{itemize}
\item \verb'C(I,J) = scalar'
\item \verb'C(I,J)<M> = scalar'
\item \verb'C(I,J)<!M> = scalar'
\item \verb'C(I,J)<M,replace> = scalar'
\item \verb'C(I,J)<!M,replace> = scalar'
\item \verb'C(I,J) = A'
\item \verb'C(I,J)<M> = A'
\item \verb'C(I,J)<!M> = A'
\item \verb'C(I,J)<M,replace> = A'
\item \verb'C(I,J)<!M,replace> = A'
\end{itemize}
\item
For these forms of assignment, \verb'C' is always iso on output, regardless
of its iso property on input:
\begin{itemize}
\item \verb'C = scalar'
\item \verb'C<M,struct>=scalar'; C empty on input.
\item \verb'C<C,struct>=scalar'
\end{itemize}
\item
For these forms of assignment, \verb'C' is always iso on output if \verb'A'
is iso:
\begin{itemize}
\item \verb'C = A'
\item \verb'C<M,str> = A'; C empty on input.
\end{itemize}
\end{itemize}
\subsubsection{Assignment with an accumulator operator}
If an accumulator operator is present, the following rules are used.
Positional operators (\verb'GxB_FIRSTI' and related) cannot be used as
accumulator operators, so these rules do not consider that case.
\begin{itemize}
\item
For matrix assignment, \verb'A' must be iso. For scalar assignment, the single
scalar is implicitly expanded into an iso matrix \verb'A' of the right size.
If these rules do not hold, \verb'C' is not iso.
\item For these forms of assignment \verb'C' is iso if \verb'C' is
empty on input, or if $c=c+a$ for the where $a$ is the iso value of \verb'A' or
the value of the scalar for scalar assignment.
\begin{itemize}
\item \verb'C(I,J) += scalar'
\item \verb'C(I,J)<M> += scalar'
\item \verb'C(I,J)<!M> += scalar'
\item \verb'C(I,J)<M,replace> += scalar'
\item \verb'C(I,J)<!M,replace> += scalar'
\item \verb'C(I,J)<M,replace> += A'
\item \verb'C(I,J)<!M,replace> += A'
\item \verb'C(I,J) += A'
\item \verb'C(I,J)<M> += A'
\item \verb'C(I,J)<!M> += A '
\item \verb'C += A'
\end{itemize}
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices from build methods}
%-------------------------------------------------------------------------------
\label{iso_build}
\verb'GxB_Matrix_build_Scalar' and \verb'GxB_Vector_build_Scalar'
always construct an iso matrix/vector.
\verb'GrB_Matrix_build' and \verb'GrB_Vector_build' can also construct iso
matrices and vectors. A non-iso matrix/vector is constructed first, and then
the entries are checked to see if they are all equal. The resulting iso-valued
matrix/vector will be efficient to use and will use less memory than a non-iso
matrix/vector. However, constructing an iso matrix/vector with
\verb'GrB_Matrix_build' and \verb'GrB_Vector_build' will take more time
and memory than constructing the matrix/vector with
\verb'GxB_Matrix_build_Scalar' or \verb'GxB_Vector_build_Scalar'.
%-------------------------------------------------------------------------------
\subsection{Iso matrices from other methods}
%-------------------------------------------------------------------------------
\label{iso_other}
\begin{itemize}
\item
For \verb'GrB_Matrix_dup' and \verb'GrB_Vector_dup', the output matrix/vector
has the same iso property as the input matrix/vector.
\item
\verb'GrB_*_setElement_*' preserves the iso property of the matrix/vector it
modifies, if the input scalar is equal to the iso value of the matrix/vector.
If the matrix or vector has no entries, the first call to \verb'setElement'
makes it iso. This allows a sequence of \verb'setElement' calls with the same
scalar value to create an entire iso matrix or vector, if starting from
an empty matrix or vector.
\item
\verb'GxB_Matrix_concat' constructs an iso matrix as its result if all input
tiles are either empty or iso.
\item
\verb'GxB_Matrix_split' constructs its output tiles as iso if its input
matrix is iso.
\item
\verb'GxB_Matrix_diag' and \verb'GrB_Matrix_diag' construct an iso matrix if
its input vector is iso.
\item
\verb'GxB_Vector_diag' constructs an iso vector if its input matrix is iso.
\item
\verb'GrB_*extract' constructs an iso matrix/vector if its input matrix/vector
is iso.
\item
\verb'GrB_transpose' constructs an iso matrix if its input is iso.
\item
The \verb'GxB_import/export/pack/unpack' methods preserve the iso property
of their matrices/vectors.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Iso matrices not exploited}
%-------------------------------------------------------------------------------
There are many cases where an matrix may have the iso property but it is not
detected by SuiteSparse:GraphBLAS. For example, if \verb'A' is non-iso,
\verb'C=A(I,J)' from \verb'GrB_extract' may be iso, if all entries in the
extracted submatrix have the same value. Future versions of
SuiteSparse:GraphBLAS may extend the rules described in this section to detect
these cases.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Performance} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{perf}
Getting the best performance out of an algorithm that relies on GraphBLAS can
depend on many factors. This section describes some of the possible
performance pitfalls you can hit when using SuiteSparse:GraphBLAS, and how to
avoid them (or at least know when you've encountered them).
%-------------------------------------------------------------------------------
\subsection{The burble is your friend}
%-------------------------------------------------------------------------------
Turn on the burble with \verb'GxB_set (GxB_BURBLE, true)'. You will get a
single line of output from each (significant) call to GraphBLAS.
The burble output can help you detect when you are likely using sub-optimal
methods, as described in the next sections.
%-------------------------------------------------------------------------------
\subsection{Data types and typecasting}
%-------------------------------------------------------------------------------
Avoid mixing data types and relying on typecasting as much as possible.
SuiteSparse:GraphBLAS has a set of highly-tuned kernels for each data type,
and many operators and semirings, but there are too many combinations to
generate ahead of time. If typecasting is required, or if
SuiteSparse:GraphBLAS does not have a kernel for the specific operator or
semiring, the word \verb'generic' will appear in the burble. The generic
methods rely on function pointers for each operation on every scalar, so they
are slow. A future JIT will avoid this problem.
The only time that typecasting is fast is when computing \verb'C=A' via
\verb'GrB_assign' or \verb'GrB_apply', where the data types of \verb'C' and
\verb'A' can differ. In this case, one of $13^2 = 169$ kernels are called,
each of which performs the specific typecasting requested, without relying on
function pointers.
%-------------------------------------------------------------------------------
\subsection{Matrix data structures: sparse, hypersparse, bitmap, or full}
%-------------------------------------------------------------------------------
SuiteSparse:GraphBLAS tries to automatically determine the best data structure
for your matrices and vectors, selecting between sparse, hypersparse, bitmap,
and full formats. By default, all 4 formats can be used. A matrix typically
starts out hypersparse when it is created by \verb'GrB_Matrix_new', and then
changes during its lifetime, possibly taking on all four different formats
at different times. This can be modified via \verb'GxB_set'. For example,
this line of code:
{\scriptsize
\begin{verbatim}
GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_BITMAP) ; \end{verbatim}}
\noindent
tells SuiteSparse that the matrix \verb'A' can be held in either sparse or
bitmap format (at its discretion), but not hypersparse or full. The bitmap
format will be used if the matrix has enough entries, or sparse otherwise.
Sometimes this selection is best controlled by the user algorithm, so a single
format can be requested:
{\scriptsize
\begin{verbatim}
GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE) ; \end{verbatim}}
This ensures that SuiteSparse will primarily use the sparse format. This is
still just a hint, however. The data structure is opaque and SuiteSparse is
free to choose otherwise. In particular, if you insist on using only the
\verb'GxB_FULL' format, then that format is used when all entries are present.
However, if the matrix is not actually full with all entries present, then the
bitmap format is used instead. The full format does not preserve the sparsity
structure in this case. Any GraphBLAS library must preserve the proper
structure, per the C Specification. This is critical in a graph algorithm,
since an edge $(i,j)$ of weight zero, say, is not the same as no edge $(i,j)$
at all.
%-------------------------------------------------------------------------------
\subsection{Matrix formats: by row or by column, or using the transpose of
a matrix}
%-------------------------------------------------------------------------------
By default, SuiteSparse uses a simple rule:
all matrices are held by row, unless the consist of a single
column, in which case they are held by column. All vectors are treated as if
they are $n$-by-1 matrices with a single column. Changing formats from
row-oriented to column-oriented can have significant performance implications,
so SuiteSparse never tries to outguess the application. It just uses this
simple rule.
However, there are cases where changing the format can greatly improve
performance. There are two ways to handle this, which in the end are
equivalent in the SuiteSparse internals. You can change the format (row to
column oriented, or visa versa), or work with the explicit transpose of a
matrix in the same storage orientation.
There are cases where SuiteSparse must explicitly transpose an input matrix, or
the output matrix, in order to perform a computation. For example, if all
matrices are held in row-oriented fashion, SuiteSparse does not have a method
for computing \verb"C=A'*B", where \verb'A' is transposed. Thus, SuiteSparse
either computes a temporary transpose of its input matrix \verb'AT=A' and then
\verb'C=AT*B', or it swaps the computations, performing \verb"C=(B'*A)'", which
requires an explicit transpose of \verb'BT=B', and a transpose of the final
result to obtain \verb'C'.
These temporary transposes are costly to compute, taking time and memory. They
are not kept, but are discarded when the method returns to the user
application. If you see the term \verb'transpose' in the burble output, and if
you need to perform this computation many times, try constructing your own
explicit transpose, say \verb"AT=A'", via \verb'GrB_transpose', or create a
copy of \verb'A' but held in another orientation via \verb'GxB_set'. For
example, assuming the default matrix format is by-row, and that \verb'A' is
\verb'm'-by-\verb'n' of type \verb'GrB_FP32':
{\scriptsize
\begin{verbatim}
// method 1: AT = A'
GrB_Matrix_new (AT, GrB_FP32, n, m) ;
GrB_transpose (AT, NULL, NULL, A, NULL) ;
// method 2: A2 = A but held by column instead of by row
// note: doing the set before the assign is faster than the reverse
GrB_Matrix_new (A2, GrB_FP32, m, n) ;
GxB_set (A2, GxB_FORMAT, GxB_BY_COL) ;
GrB_assign (A2, NULL, NULL, A, GrB_ALL, m, GrB_ALL, n, NULL) ; \end{verbatim}}
Internally, the data structure for \verb'AT' and \verb'A2' are nearly identical
(that is, the tranpose of \verb'A' held in row format is the same as \verb'A'
held in column format). Using either of them in subsequent calls to GraphBLAS
will allow SuiteSparse to avoid computing an explicit transpose. The two
matrices \verb'AT' and \verb'A2' do differ in one very significant way: their
dimensions are different, and they behave differement mathematically.
Computing \verb"C=A'*B" using these matrices would differ:
{\scriptsize
\begin{verbatim}
// method 1: C=A'*B using AT
GrB_mxm (C, NULL, NULL, semiring, AT, B, NULL) ;
// method 2: C=A'*B using A2
GrB_mxm (C, NULL, NULL, semiring, A2, B, GrB_DESC_T0) ; \end{verbatim}}
The first method computes \verb'C=AT*B'. The second method computes
\verb"C=A2'*B", but the result of both computations is the same, and internally
the same kernels will be used.
%-------------------------------------------------------------------------------
\subsection{Push/pull optimization}
%-------------------------------------------------------------------------------
Closely related to the discussion above on when to use a matrix or its
transpose is the exploitation of ``push/pull'' direction optimization. In
linear algebraic terms, this is simply deciding whether to multiply by the
matrix or its transpose. Examples can be see in the BFS and
Betweeness-Centrality methods of LAGraph. Here is the BFS kernel:
{\scriptsize
\begin{verbatim}
int sparsity = do_push ? GxB_SPARSE : GxB_BITMAP ;
GxB_set (q, GxB_SPARSITY_CONTROL, sparsity) ;
if (do_push)
{
// q'{!pi} = q'*A
GrB_vxm (q, pi, NULL, semiring, q, A, GrB_DESC_RSC) ;
}
else
{
// q{!pi} = AT*q
GrB_mxv (q, pi, NULL, semiring, AT, q, GrB_DESC_RSC) ;
}\end{verbatim}}
The call to \verb'GxB_set' is optional, since SuiteSparse will likely already
determine that a bitmap format will work best when the frontier \verb'q' has
many entries, which is also when the pull step is fastest. The push step
relies on a sparse vector times sparse matrix method originally due to
Gustavson. The output is computed as a set union of all rows \verb'A(i,:)'
where \verb'q(i)' is present on input. This set union is very fast when
\verb'q' is very sparse. The pull step relies on a sequence of dot product
computations, one per possible entry in the output \verb'q', and it uses the
matrix \verb"AT" which is a row-oriented copy of the explicit transpose of the
adjacency matrix \verb'A'.
Mathematically, the results of the two methods are identical, but internally,
the data format of the input matrices is very different (using \verb'A' held
by row, or \verb'AT' held by row which is the same as a copy of \verb'A' that
is held by column), and the algorithms used are very different.
%-------------------------------------------------------------------------------
\subsection{Computing with full matrices and vectors}
%-------------------------------------------------------------------------------
Sometimes the best approach to getting the highest performance is to use dense
vectors, and occassionaly dense matrices are tall-and-thin or short-and-fat.
Packages such as Julia, Octave, or MATLAB, when dealing with the conventional
plus-times semirings, assume that multiplying a sparse matrix \verb'A' times a
dense vector \verb'x', \verb'y=A*x', will result in a dense vector \verb'y'.
This is not always the case, however. GraphBLAS must always return a result
that respects the sparsity structure of the output matrix or vector. If the
$i$th row of \verb'A' has no entries then \verb'y(i)' must not appear as an
entry in the vector \verb'y', so it cannot be held as a full vector. As a
result, the following computation can be slower than it could be:
{\scriptsize
\begin{verbatim}
GrB_mxv (y, NULL, NULL, semiring, A, x, NULL) ; \end{verbatim}}
SuiteSparse must do extra work to compute the sparsity of this vector \verb'y',
but if this is not needed, and \verb'y' can be padded with zeros (or
the identity value of the monoid, to be precise), a faster method can be used,
by relying on the accumulator. Instead of computing \verb'y=A*x', set all
entries of \verb'y' to zero first, and then compute \verb'y+=A*x' where the
accumulator operator and type matches the monoid of the semiring. SuiteSparse
has special kernels for this case; you can see them in the burble as
\verb'F+=S*F' for example.
{\scriptsize
\begin{verbatim}
// y = 0
GrB_assign (y, NULL, NULL, 0, GrB_ALL, n, NULL) ;
// y += A*x
GrB_mxv (y, NULL, GrB_PLUS_FP32, GrB_PLUS_TIMES_SEMIRING_FP32, A, x, NULL) ; \end{verbatim}}
You can see this computation in the LAGraph PageRank method, where all
entries of \verb'r' are set to the \verb'teleport' scalar first.
{\scriptsize
\begin{verbatim}
for (iters = 0 ; iters < itermax && rdiff > tol ; iters++)
{
// swap t and r ; now t is the old score
GrB_Vector temp = t ; t = r ; r = temp ;
// w = t ./ d
GrB_eWiseMult (w, NULL, NULL, GrB_DIV_FP32, t, d, NULL) ;
// r = teleport
GrB_assign (r, NULL, NULL, teleport, GrB_ALL, n, NULL) ;
// r += A'*w
GrB_mxv (r, NULL, GrB_PLUS_FP32, LAGraph_plus_second_fp32, AT, w, NULL) ;
// t -= r
GrB_assign (t, NULL, GrB_MINUS_FP32, r, GrB_ALL, n, NULL) ;
// t = abs (t)
GrB_apply (t, NULL, NULL, GrB_ABS_FP32, t, NULL) ;
// rdiff = sum (t)
GrB_reduce (&rdiff, NULL, GrB_PLUS_MONOID_FP32, t, NULL) ;
} \end{verbatim}}
SuiteSparse exploits the iso-valued property of the scalar-to-vector assignment
of \verb'y=0', or \verb'r=teleport', and performs these assignments in O(1)
time and space. Because the \verb'r' vector start out as full on input to
\verb'GrB_mxv', and because there is an accumulatr with no mask, no entries in
the input/output vector \verb'r' will be deleted, even if \verb'A' has empty
rows. The call to \verb'GrB_mxv' exploits this, and is able to use a fast
kernel for this computation. SuiteSparse does not need to compute the sparsity
pattern of the vector \verb'r'.
%-------------------------------------------------------------------------------
\subsection{Iso-valued matrices and vectors}
%-------------------------------------------------------------------------------
Using iso-valued matrices and vectors is always faster than using matrices and
vectors whose entries can have different values. Iso-valued matrices are very
important in graph algorithms. For example, an unweighted graph is best
represented as an iso-valued sparse matrix, and unweighted graphs are very
common. The burble output, or the \verb'GxB_print', \verb'GxB_Matrix_iso', or
\verb'GxB_Vector_iso' can all be used to report whether or not your matrix or
vector is iso-valued.
Sometimes a matrix or vector may have values that are all the same, but
SuiteSparse hasn't detected this. If this occurs, you can force a matrix
or vector to be iso-valued by assigning a single scalar to all its entries.
{\scriptsize
\begin{verbatim}
// C<s(C)> = 3.14159
GrB_assign (C, C, NULL, 3.14159, GrB_ALL, m, GrB_ALL, n, GrB_DESC_S) ; \end{verbatim}}
The matrix \verb'C' is used as its own mask. The descriptor is essential here,
telling the mask to be used in a structural sense, without regard to the values
of the entries in the mask. This assignment sets all entries that already
exist in \verb'C' to be equal to a single value, 3.14159. The sparsity
structure of \verb'C' does not change. Of course, any scalar can be used; the
value 1 is common for unweighted graphs. SuiteSparse:GraphBLAS performs the
above assignment in O(1) time and space, independent of the dimension of
\verb'C' or the number of entries in contains.
%-------------------------------------------------------------------------------
\subsection{User-defined types and operators}
%-------------------------------------------------------------------------------
These are currently slow. Once SuiteSparse:GraphBLAS employs a JIT
accelerator, these data types and operators will be just as fast as built-in
types and operators. This work is in progress for the GPU, in CUDA, in
collaboration with Joe Eaton and Corey Nolet.
%-------------------------------------------------------------------------------
\subsection{About NUMA systems}
%-------------------------------------------------------------------------------
I have tested this package extensively on multicore single-socket systems, but
have not yet optimized it for multi-socket systems with a NUMA architecture.
That will be done in a future release. If you publish benchmarks
with this package, please state the SuiteSparse:GraphBLAS version, and a caveat
if appropriate. If you see significant performance issues when going from a
single-socket to multi-socket system, I would like to hear from you so I can
look into it.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Examples} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{examples}
Several examples of how to use GraphBLAS are listed below. They all
appear in the \verb'Demo' folder of SuiteSparse:GraphBLAS. Programs in
the \verb'Demo' folder are meant as simple examples; for the fastest methods,
see LAgraph (Section~\ref{lagraph}).
\begin{enumerate}
\item creating a random matrix
\item creating a finite-element matrix
\item reading a matrix from a file
\item complex numbers as a user-defined type
\item matrix import/export
\end{enumerate}
Additional examples appear in the newly created LAGraph project, currently in
progress.
%-------------------------------------------------------------------------------
\subsection{LAGraph}
%-------------------------------------------------------------------------------
\label{lagraph}
The LAGraph project is a community-wide effort to create graph algorithms based
on GraphBLAS (any implementation of the API, not just SuiteSparse: GraphBLAS).
Some of the algorithms and utilities in LAGraph are listed in the table below.
Many additional algorithms are planned. Refer to
\url{https://github.com/GraphBLAS/LAGraph} for a current list of algorithms. All
functions in the \verb'Demo/' folder in SuiteSparse:GraphBLAS will eventually
be translated into algorithms or utilities for LAGraph, and then removed
from \verb'GraphBLAS/Demo'.
To use LAGraph with SuiteSparse:GraphBLAS, place the two folders \verb'LAGraph'
and \verb'GraphBLAS' in the same parent directory. This allows the
\verb'cmake' script in LAGraph to find the copy of GraphBLAS. Alternatively,
the GraphBLAS source could be placed anywhere, as long as
\verb'sudo make install' is performed.
%-------------------------------------------------------------------------------
\subsection{Creating a random matrix}
%-------------------------------------------------------------------------------
\label{random}
The \verb'random_matrix' function in the \verb'Demo' folder generates a random
matrix with a specified dimension and number of entries, either symmetric or
unsymmetric, and with or without self-edges (diagonal entries in the matrix).
It relies on \verb'simple_rand*' functions in the \verb'Demo' folder to provide
a portable random number generator that creates the same sequence on any
computer and operating system.
\verb'random_matrix' can use one of two methods: \verb'GrB_Matrix_setElement'
and \verb'GrB_Matrix_build'. The former method is very simple to use:
{\footnotesize
\begin{verbatim}
GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;
for (int64_t k = 0 ; k < ntuples ; k++)
{
GrB_Index i = simple_rand_i ( ) % nrows ;
GrB_Index j = simple_rand_i ( ) % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x ( ) ;
// A (i,j) = x
GrB_Matrix_setElement (A, x, i, j) ;
if (make_symmetric)
{
// A (j,i) = x
GrB_Matrix_setElement (A, x, j, i) ;
}
} \end{verbatim}}
The above code can generate a million-by-million sparse \verb'double' matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random \verb'i', \verb'j', and \verb'x'), including the time
to finish all pending computations. The user application does not need to
create a list of all the tuples, nor does it need to know how many entries will
appear in the matrix. It just starts from an empty matrix and adds them one at
a time in arbitrary order. GraphBLAS handles the rest. This method is not
feasible in MATLAB.
The next method uses \verb'GrB_Matrix_build'. It is more complex to use than
\verb'setElement' since it requires the user application to allocate and fill
the tuple lists, and it requires knowledge of how many entries will appear in
the matrix, or at least a good upper bound, before the matrix is constructed.
It is slightly faster, creating the same matrix in 60 seconds, 51 seconds
of which is spent in \verb'GrB_Matrix_build'.
{\footnotesize
\begin{verbatim}
GrB_Index *I, *J ;
double *X ;
int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;
I = malloc (s * sizeof (GrB_Index)) ;
J = malloc (s * sizeof (GrB_Index)) ;
X = malloc (s * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{
// out of memory
if (I != NULL) free (I) ;
if (J != NULL) free (J) ;
if (X != NULL) free (X) ;
return (GrB_OUT_OF_MEMORY) ;
}
int64_t ntuples = 0 ;
for (int64_t k = 0 ; k < nedges ; k++)
{
GrB_Index i = simple_rand_i ( ) % nrows ;
GrB_Index j = simple_rand_i ( ) % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x ( ) ;
// A (i,j) = x
I [ntuples] = i ;
J [ntuples] = j ;
X [ntuples] = x ;
ntuples++ ;
if (make_symmetric)
{
// A (j,i) = x
I [ntuples] = j ;
J [ntuples] = i ;
X [ntuples] = x ;
ntuples++ ;
}
}
GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ; \end{verbatim}}
The equivalent \verb'sprandsym' function in MATLAB takes 150 seconds, but
\verb'sprandsym' uses a much higher-quality random number generator to create
the tuples \verb'[I,J,X]'. Considering just the time for
\verb'sparse(I,J,X,n,n)' in \verb'sprandsym' (equivalent to
\verb'GrB_Matrix_build'), the time is 70 seconds. That is, each of these three
methods, \verb'setElement' and \verb'build' in SuiteSparse:GraphBLAS, and
\verb'sparse' in MATLAB, are equally fast.
%-------------------------------------------------------------------------------
\subsection{Creating a finite-element matrix}
%-------------------------------------------------------------------------------
\label{fem}
Suppose a finite-element matrix is being constructed, with \verb'k=40,000'
finite-element matrices, each of size \verb'8'-by-\verb'8'. The following
operations (in pseudo-MATLAB notation) are very efficient in
SuiteSparse:GraphBLAS.
{\footnotesize
\begin{verbatim}
A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix
for i = 1:k
construct a 8-by-8 sparse or dense finite-element F
I and J define where the matrix F is to be added:
I = a list of 8 row indices
J = a list of 8 column indices
% using GrB_assign, with the 'plus' accum operator:
A (I,J) = A (I,J) + F
end \end{verbatim}}
If this were done in MATLAB or in GraphBLAS with blocking mode enabled, the
computations would be extremely slow. A far better approach is to construct a
list of tuples \verb'[I,J,X]' and to use \verb'sparse(I,J,X,n,n)'. This is
identical to creating the same list of tuples in GraphBLAS and using the
\verb'GrB_Matrix_build', which is equally fast.
In SuiteSparse:GraphBLAS, the performance of both methods is essentially
identical, and roughly as fast as \verb'sparse' in MATLAB. Inside
SuiteSparse:GraphBLAS, \verb'GrB_assign' is doing the same thing. When
performing \verb'A(I,J)=A(I,J)+F', if it finds that it cannot quickly insert an
update into the \verb'A' matrix, it creates a list of pending tuples to be
assembled later on. When the matrix is ready for use in a subsequent
GraphBLAS operation (one that normally cannot use a matrix with pending
computations), the tuples are assembled all at once via
\verb'GrB_Matrix_build'.
GraphBLAS operations on other matrices have no effect on when the pending
updates of a matrix are completed. Thus, any GraphBLAS method or operation can
be used to construct the \verb'F' matrix in the example above, without
affecting when the pending updates to \verb'A' are completed.
The MATLAB \verb'wathen.m' script is part of Higham's \verb'gallery' of
matrices \cite{Higham}. It creates a finite-element matrix with random
coefficients for a 2D mesh of size \verb'nx'-by-\verb'ny', a matrix formulation
by Wathen \cite{Wathen}. The pattern of the matrix is fixed; just the values
are randomized. The GraphBLAS equivalent can use either
\verb'GrB_Matrix_build', or \verb'GrB_assign'. Both methods have good
performance. The \verb'GrB_Matrix_build' version below is about 15\% to 20\%
faster than the MATLAB \verb'wathen.m' function, regardless of the problem
size. It uses the identical algorithm as \verb'wathen.m'.
{\footnotesize
\begin{verbatim}
int64_t ntriplets = nx*ny*64 ;
I = malloc (ntriplets * sizeof (int64_t)) ;
J = malloc (ntriplets * sizeof (int64_t)) ;
X = malloc (ntriplets * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
ntriplets = 0 ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
I [ntriplets] = nn [krow] ;
J [ntriplets] = nn [kcol] ;
X [ntriplets] = em (krow,kcol) ;
ntriplets++ ;
}
}
}
}
// A = sparse (I,J,X,n,n) ;
GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ; \end{verbatim}}
The \verb'GrB_assign' version has the advantage of not requiring the
user application to construct the tuple list, and is almost as fast as using
\verb'GrB_Matrix_build'. The code is more elegant than either the MATLAB
\verb'wathen.m' function or its GraphBLAS equivalent above. Its performance is
comparable with the other two methods, but slightly slower, being about 5\%
slower than the MATLAB \verb'wathen', and 20\% slower than the GraphBLAS
method above.
{\footnotesize
\begin{verbatim}
GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// F (krow,kcol) = em (krow, kcol)
GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;
}
}
// A (nn,nn) += F
GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;
}
} \end{verbatim}}
Since there is no \verb'Mask', and since \verb'GrB_REPLACE' is not used, the call
to \verb'GrB_assign' in the example above is identical to \verb'GxB_subassign'.
Either one can be used, and their performance would be identical.
Refer to the \verb'wathen.c' function in the \verb'Demo' folder, which
uses GraphBLAS to implement the two methods above, and two additional ones.
%-------------------------------------------------------------------------------
\subsection{Reading a matrix from a file}
%-------------------------------------------------------------------------------
\label{read}
See also \verb'LAGraph_mmread' and \verb'LAGraph_mmwrite', which
can read and write any matrix in Matrix Market format, and
\verb'LAGraph_binread' and \verb'LAGraph_binwrite', which read/write a matrix
from a binary file. The binary file I/O functions are much faster than
the \verb'read_matrix' function described here, and also much faster than
\verb'LAGraph_mmread' and \verb'LAGraph_mmwrite'.
The \verb'read_matrix' function in the \verb'Demo' reads in a triplet matrix
from a file, one line per entry, and then uses \verb'GrB_Matrix_build' to
create the matrix. It creates a second copy with \verb'GrB_Matrix_setElement',
just to test that method and compare the run times.
Section~\ref{random} has already compared
\verb'build' versus \verb'setElement'.
The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
\verb'read_matrix' computes \verb"A=(A+A')/2" if \verb'A' is square (turning
all directed edges into undirected ones). If \verb'A' is rectangular, it
creates a bipartite graph, which is the same as the augmented matrix,
\verb"A = [0 A ; A' 0]".
If \verb'C' is an \verb'n'-by-\verb'n' matrix, then \verb"C=(C+C')/2" can be
computed as follows in GraphBLAS, (the \verb'scale2' function divides an entry
by 2):
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
GrB_Descriptor_new (&dt2) ;
GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;
GrB_Matrix_new (&A, GrB_FP64, n, n) ;
GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C'
GrB_free (&C) ;
GrB_Matrix_new (&C, GrB_FP64, n, n) ;
GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;
GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2
GrB_free (&A) ;
GrB_free (&scale2_op) ; \end{verbatim}}
This is of course not nearly as elegant as \verb"A=(A+A')/2" in MATLAB, but
with minor changes it can work on any type and use any built-in operators
instead of \verb'PLUS', or it can use any user-defined operators and types.
The above code in SuiteSparse:GraphBLAS takes 0.60 seconds for the
\verb'Freescale2' matrix, slightly slower than MATLAB (0.55 seconds).
Constructing the augmented system is more complicated using the GraphBLAS C API
Specification since it does not yet have a simple way of specifying a range of
row and column indices, as in \verb'A(10:20,30:50)' in MATLAB (\verb'GxB_RANGE'
is a SuiteSparse:GraphBLAS extension that is not in the Specification). Using
the C API in the Specification, the application must instead build a list of
indices first, \verb'I=[10, 11' \verb'...' \verb'20]'.
Thus, to compute the MATLAB equivalent of \verb"A = [0 A ; A' 0]", index lists
\verb'I' and \verb'J' must first be constructed:
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
int64_t n = nrows + ncols ;
I = malloc (nrows * sizeof (int64_t)) ;
J = malloc (ncols * sizeof (int64_t)) ;
// I = 0:nrows-1
// J = nrows:n-1
if (I == NULL || J == NULL)
{
if (I != NULL) free (I) ;
if (J != NULL) free (J) ;
return (GrB_OUT_OF_MEMORY) ;
}
for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;
for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ; \end{verbatim}}
Once the index lists are generated, however, the resulting GraphBLAS operations
are fairly straightforward, computing \verb"A=[0 C ; C' 0]".
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
GrB_Descriptor_new (&dt1) ;
GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN) ;
GrB_Matrix_new (&A, GrB_FP64, n, n) ;
// A (nrows:n-1, 0:nrows-1) = C'
GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;
// A (0:nrows-1, nrows:n-1) = C
GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ; \end{verbatim}}
This takes 1.38 seconds for the \verb'Freescale2' matrix, almost as fast as \newline
\verb"A=[sparse(m,m) C ; C' sparse(n,n)]" in MATLAB (1.25 seconds).
The \verb'GxB_Matrix_concat' function would be faster still (this example
was written prior to \verb'GxB_Matrix_concat' was added to SuiteSparse:GraphBLAS).
Both calls to \verb'GrB_assign' use no accumulator, so the second one
causes the partial matrix \verb"A=[0 0 ; C' 0]" to be built first, followed by
the final build of \verb"A=[0 C ; C' 0]". A better method, but not an obvious
one, is to use the \verb'GrB_FIRST_FP64' accumulator for both assignments. An
accumulator enables SuiteSparse:GraphBLAS to determine that that entries
created by the first assignment cannot be deleted by the second, and thus it
need not force completion of the pending updates prior to the second
assignment.
SuiteSparse:GraphBLAS also adds a \verb'GxB_RANGE' mechanism that mimics
the MATLAB colon notation. This speeds up the method and simplifies the
code the user needs to write to compute \verb"A=[0 C ; C' 0]":
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
int64_t n = nrows + ncols ;
GrB_Matrix_new (&A, xtype, n, n) ;
GrB_Index I_range [3], J_range [3] ;
I_range [GxB_BEGIN] = 0 ;
I_range [GxB_END ] = nrows-1 ;
J_range [GxB_BEGIN] = nrows ;
J_range [GxB_END ] = ncols+nrows-1 ;
// A (nrows:n-1, 0:nrows-1) += C'
GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1) ;
// A (0:nrows-1, nrows:n-1) += C
GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ; \end{verbatim}}
Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an \verb'accum' operator is used, only the final matrix is built, and the
time in GraphBLAS drops slightly to 1.25 seconds. This is a very small
improvement because in this particular case, SuiteSparse:GraphBLAS is able to
detect that no sorting is required for the first build, and the second one is a
simple concatenation. In general, however, allowing GraphBLAS to postpone
pending updates can lead to significant reductions in run time.
%-------------------------------------------------------------------------------
\subsection{User-defined types and operators}
%-------------------------------------------------------------------------------
\label{user}
The \verb'Demo' folder contains two working examples of user-defined types,
first discussed in Section~\ref{type_new}: \verb'double complex', and a
user-defined \verb'typedef' called \verb'wildtype' with a \verb'struct'
containing a string and a 4-by-4 \verb'float' matrix.
{\bf Double Complex:}
Prior to v3.3, GraphBLAS did not have a native complex type. It now appears as
the \verb'GxB_FC64' predefined type, but a complex type can also easily added
as a user-defined type. The \verb'Complex_init' function in the
\verb'usercomplex.c' file in the \verb'Demo' folder creates the \verb'Complex'
type based on the ANSI C11 \verb'double complex' type.
It creates a full suite of operators that correspond to every
built-in GraphBLAS operator, both binary and unary. In addition, it
creates the operators listed in the following table, where $D$ is
\verb'double' and $C$ is \verb'Complex'.
\vspace{0.1in}
{\footnotesize
\begin{tabular}{llll}
\hline
name & types & MATLAB/Octave & description \\
& & equivalent & \\
\hline
\verb'Complex_complex' & $D \times D \rightarrow C$ & \verb'z=complex(x,y)' & complex from real and imag. \\
\hline
\verb'Complex_conj' & $C \rightarrow C$ & \verb'z=conj(x)' & complex conjugate \\
\verb'Complex_real' & $C \rightarrow D$ & \verb'z=real(x)' & real part \\
\verb'Complex_imag' & $C \rightarrow D$ & \verb'z=imag(x)' & imaginary part \\
\verb'Complex_angle' & $C \rightarrow D$ & \verb'z=angle(x)' & phase angle \\
\verb'Complex_complex_real' & $D \rightarrow C$ & \verb'z=complex(x,0)' & real to complex real \\
\verb'Complex_complex_imag' & $D \rightarrow C$ & \verb'z=complex(0,x)' & real to complex imag. \\
\hline
\end{tabular}
}
The \verb'Complex_init' function creates two monoids (\verb'Complex_add_monoid'
and \verb'Complex_times_monoid') and a semiring \verb'Complex_plus_times' that
corresponds to the conventional linear algebra for complex matrices. The
include file \verb'usercomplex.h' in the \verb'Demo' folder is available so
that this user-defined \verb'Complex' type can easily be imported into any
other user application. When the user application is done, the
\verb'Complex_finalize' function frees the \verb'Complex' type and its
operators, monoids, and semiring.
NOTE: the \verb'Complex' type is not supported in this Demo in Microsoft
Visual Studio.
{\bf Struct-based:}
In addition, the \verb'wildtype.c' program creates a user-defined
\verb'typedef' of a \verb'struct' containing a dense 4-by-4 \verb'float'
matrix, and a 64-character string. It constructs an additive monoid that adds
two 4-by-4 dense matrices, and a multiplier operator that multiplies two 4-by-4
matrices. Each of these 4-by-4 matrices is treated by GraphBLAS as a
``scalar'' value, and they can be manipulated in the same way any other
GraphBLAS type can be manipulated. The purpose of this type is illustrate the
endless possibilities of user-defined types and their use in GraphBLAS.
%-------------------------------------------------------------------------------
\subsection{User applications using OpenMP or other threading models}
%-------------------------------------------------------------------------------
\label{threads}
An example demo program (\verb'openmp_demo') is included that illustrates how a
multi-threaded user application can use GraphBLAS.
The results from the \verb'openmp_demo' program may appear out of order. This
is by design, simply to show that the user application is running in parallel.
The output of each thread should be the same. In particular, each thread
generates an intentional error, and later on prints it with \verb'GrB_error'.
It will print its own error, not an error from another thread. When all the
threads finish, the leader thread prints out each matrix generated by each
thread.
GraphBLAS can also be combined with user applications that rely on MPI, the
Intel TBB threading library, POSIX pthreads, Microsoft Windows threads, or any
other threading library. If GraphBLAS itself is compiled with OpenMP,
it will be thread safe when combined with other libraries.
See Section~\ref{omp_parallelism} for thread-safety issues that can occur
if GraphBLAS is compiled without OpenMP.
\newpage
%-------------------------------------------------------------------------------
\section{Compiling and Installing SuiteSparse:GraphBLAS}
%-------------------------------------------------------------------------------
\label{sec:install}
%----------------------------------------
\subsection{On Linux and Mac}
%----------------------------------------
GraphBLAS makes extensive use of features in the ANSI C11 standard, and thus a
C compiler supporting this version of the C standard is required to use
all features of GraphBLAS.
{\bf Any version of the Intel \verb'icx' compiler is highly recommended.} In
most cases, the Intel \verb'icx' and the Intel OpenMP library (\verb'libiomp')
result in the best performance. The \verb'gcc' and the GNU OpenMP library
(\verb'libgomp') generally gives good performance: typically on par with icx
but in a few special cases significantly slower. The Intel \verb'icc' compiler
is not recommended; it results in poor performance for
\verb'#pragma omp atomic'.
On the Mac (OS X), \verb'clang' 8.0.0 in \verb'Xcode' version 8.2.1 is
sufficient, although earlier versions of \verb'Xcode' may work as well. For
the GNU \verb'gcc' compiler, version 4.9 or later is required, but best
performance is obtained in 9.3 or later. Version 3.13 or later of \verb'cmake'
is required; version 3.17 is preferred.
If you are using a pre-C11 ANSI C compiler, such as Microsoft Visual Studio,
then the \verb'_Generic' keyword is not available. SuiteSparse:GraphBLAS
will still compile, but you will not have access to polymorphic functions
such as \verb'GrB_assign'. You will need to use the non-polymorphic functions
instead.
To compile SuiteSparse:GraphBLAS, simply type \verb'make' in the main GraphBLAS
folder, which compiles the library with your default system compiler. This
compile GraphBLAS using 8 threads, which will take a long time. To compile with
more threads (40, for this example), use:
{\small
\begin{verbatim}
make JOBS=40 \end{verbatim} }
To use a non-default compiler with 4 threads:
{\small
\begin{verbatim}
make CC=icx CXX=icpx JOBS=4 \end{verbatim} }
GraphBLAS v6.1.3 and later use the \verb'cpu_features' package by Google to
determine if the target architecture supports AVX2 and/or AVX512F (on Intel
x86\_64 architectures only). In case you have build issues with this package,
you can compile without it (and then AVX2 and AVX512F acceleration will not
be used):
{\small
\begin{verbatim}
make CMAKE_OPTIONS='-DGBNCPUFEAT=1' \end{verbatim} }
Without \verb'cpu_features', it is still possible to enable AVX2 and AVX512F.
Rather than relying on run-time tests, you can use these flags to enable
both AVX2 and AVX512F, without relying on \verb'cpu_features':
{\small
\begin{verbatim}
make CMAKE_OPTIONS='-DGBNCPUFEAT=1 -DGBAVX2=1 -DGBAVX512F=1' \end{verbatim} }
To use multiple options, separate them by a space. For example, to build
just the library but not \verb'cpu_features', and to enable
AVX2 but not AVX512F, and use 40 threads to compile:
{\small
\begin{verbatim}
make CMAKE_OPTIONS='-DGBNCPUFEAT=1 -DGBAVX2=1' JOBS=40 \end{verbatim} }
After compiling the library, you can compile the demos with
\verb'make all' and then \verb'make demos' while in the top-level
GraphBLAS folder.
If \verb'cmake' or \verb'make' fail, it might be that your default compiler
does not support ANSI C11. Try another compiler. For example, try one of
these options. Go into the \verb'build' directory and type one of these:
{\small
\begin{verbatim}
CC=gcc cmake ..
CC=gcc-11 cmake ..
CC=xlc cmake ..
CC=icx cmake .. \end{verbatim} }
You can also do the following in the top-level GraphBLAS folder instead:
{\small
\begin{verbatim}
CC=gcc make
CC=gcc-11 make
CC=xlc make
CC=icx make \end{verbatim} }
For faster compilation, you can specify a parallel make. For example,
to use 32 parallel jobs and the \verb'gcc' compiler, do the following:
{\small
\begin{verbatim}
JOBS=32 CC=gcc make \end{verbatim} }
If you do not have \verb'cmake', refer to Section~\ref{altmake}.
%----------------------------------------
\subsection{More details on the Mac}
%----------------------------------------
SuiteSparse:GraphBLAS requires OpenMP for its internal parallelism, but
OpenMP is not on the Mac by default.
If you have the Intel compiler and OpenMP library, then use the following
in the top-level \verb'GraphBLAS' folder. OpenMP will be found automatically:
{\small
\begin{verbatim}
make CC=icc CXX=icpc \end{verbatim} }
The following instructions work on MacOS Big Sur (v11.3)
and MacOS Monterey (12.1), using
cmake 3.13 or later:
First install Xcode (see \url{https://developer.apple.com/xcode}),
and then install the command line tools for Xcode:
{\small
\begin{verbatim}
cd /Applications/Utilities
xcode-select —install \end{verbatim} }
Next, install brew, at \url{https://brew.sh}.
If not used for the MATLAB mexFunction interface, a recent update of the Apple
Clang compiler now works with \verb'libomp' and the
\verb'GraphBLAS/CMakeLists.txt'. To use the MATLAB mexFunction, however, you
must use \verb'gcc' (\verb'gcc-11' is recommended). Using Clang will result in
a segfault when you attempt to use the \verb'@GrB' interface in MATLAB.
With MacOS Big Sur install \verb'gcc-11', \verb'cmake', and OpenMP, and then
compile GraphBLAS. cmake 3.13 or later is required. For the MATLAB
mexFunctions, you must use \verb'gcc-11'; the \verb'libomp' from \verb'brew'
will allow you to compile the mexFunctions but they will not work properly.
{\small
\begin{verbatim}
brew install cmake
brew install libomp
brew install gcc
cd GraphBLAS/GraphBLAS
make CC=gcc-11 CXX=g++-11 JOBS=8 \end{verbatim} }
The above instructions assume MATLAB, using
\verb'libgraphblas_matlab.dylib', since MATLAB includes its
own copy of SuiteSparse:GraphBLAS (\verb'libmwgraphblas.dylib') but at version
v3.3.3, not the latest version.
Next, compile the MATLAB mexFunctions. I had to edit this file first:
{\small
\begin{verbatim}
/Users/davis/Library/Application Support/MathWorks/MATLAB/R2021a/mex_C_maci64.xml \end{verbatim} }
where you would replace \verb'davis' with your MacOS user name.
Change lines 4 and 18, where both cases of \verb'MACOSX_DEPLOYMENT_TARGET=10.14'
must become \verb"MACOSX_DEPLOYMENT_TARGET=11.3". Otherwise, MATLAB
complains that the \verb'libgraphblas_matlab.dylib' was built for 11.3 but
linked for 10.14.
Next, type the following in the MATLAB Command Window:
{\small
\begin{verbatim}
cd GraphBLAS/GraphBLAS/@GrB/private
gbmake \end{verbatim} }
Then add the paths to your \verb'startup.m' file (usually in
\verb'~/Documents/MATLAB/startup.m'). For example, my path is:
{\small
\begin{verbatim}
addpath ('/Users/davis/GraphBLAS/GraphBLAS') ;
addpath ('/Users/davis/GraphBLAS/GraphBLAS/build') ; \end{verbatim} }
Finally, you can run the tests to see if your installation works:
{\small
\begin{verbatim}
cd ../../test
gbtest \end{verbatim} }
%----------------------------------------
\subsection{On the ARM64 architecture}
%----------------------------------------
You may encounter a compiler error on the ARM64 architecture when using the
\verb'gcc' compiler, versions 6.x and earlier. This error was encountered on
ARM64 Linux with gcc 6.x:
\begin{verbatim}
`In function GrB_Matrix_apply_BinaryOp1st_Scalar.part.1':
GrB_Matrix_apply.c:(.text+0x210): relocation truncated to
fit: R_AARCH64_CALL26 against `.text.unlikely'
\end{verbatim}
For the ARM64, this error is silenced with gcc v7.x and later, at least on
Linux.
%----------------------------------------
\subsection{On Microsoft Windows}
\label{sec:windows}
%----------------------------------------
SuiteSparse:GraphBLAS is now ported to Microsoft Visual Studio. However, that
compiler is not ANSI C11 compliant. As a result, GraphBLAS on Windows will have
a few minor limitations.
\begin{itemize}
\item The MS Visual Studio compiler does not support the \verb'_Generic'
keyword, required for the polymorphic GraphBLAS functions. So for example, you
will need to use \verb'GrB_Matrix_free' instead of just \verb'GrB_free'.
\item Variable-length arrays are not supported, so user-defined
types are limited to 128 bytes in size. This can be changed by editing
\verb'GB_VLA_MAXSIZE' in \verb'Source/GB_compiler.h', and recompiling
SuiteSparse:GraphBLAS.
\item AVX acceleration is not enabled.
\end{itemize}
If you use a recent \verb'gcc' or \verb'icx' compiler on Windows other than the
Microsoft Compiler (\verb'cl'), these limitations can be avoided.
The following instructions apply to Windows 10, CMake 3.16, and
Visual Studio 2019, but may work for earlier versions.
\begin{enumerate}
\item Install CMake 3.16 or later, if not already installed.
See \url{https://cmake.org/} for details.
\item Install Microsoft Visual Studio, if not already installed.
See \url{https://visualstudio.microsoft.com/} for details.
Version 2019 is preferred, but earlier versions may also work.
\item Open a terminal window and type this in the
\verb'SuiteSparse/GraphBLAS/build' folder:
\vspace{-0.1in}
{\small
\begin{verbatim}
cmake .. \end{verbatim} }
\vspace{-0.1in}
\item The \verb'cmake' command generates many files in
\verb'SuiteSparse/GraphBLAS/build', and the file \verb'graphblas.sln' in
particular. Open the generated \verb'graphblas.sln' file in Visual Studio.
\item Optionally: right-click \verb'graphblas' in the left panel (Solution
Explorer) and select properties; then navigate to \verb'Configuration'
\verb'Properties', \verb'C/C++', \verb'General' and change the parameter
\verb'Multiprocessor Compilation' to \verb'Yes (/MP)'. Click \verb'OK'.
This will significantly speed up the compilation of GraphBLAS.
\item Select the \verb'Build' menu item at the top of the window and
select \verb'Build Solution'. This should create a folder called
\verb'Release' and place the compiled \verb'graphblas.dll',
\verb'graphblas.lib', and \verb'graphblas.exp' files there. Please be
patient; some files may take a while to compile and sometimes may appear to
be stalled. Just wait.
% Alternatively, type this command in the terminal window:
% {\small
% \begin{verbatim}
% devenv graphblas.sln /build "release|x64" /project graphblas \end{verbatim}}
\item Add the \verb'GraphBLAS/build/Release' folder to the Windows System path:
\begin{itemize}
\item Open the \verb'Start Menu' and type \verb'Control Panel'.
\item Select the \verb'Control Panel' app.
\item When the app opens, select \verb'System and Security'.
\item Under \verb'System and Security', select \verb'System'.
\item From the top left side of the \verb'System' window, select
\verb'Advanced System Settings'. You may have to authenticate
at this step.
\item The \verb'Systems Properties' window should appear with the
\verb'Advanced' tab selected;
select \verb'Environment Variables'.
\item The \verb'Environment Variables' window displays 2 sections, one for
\verb'User' variables and the other for \verb'System' variables. Under
the \verb'Systems' variable section, scroll to and select \verb'Path',
then select \verb'Edit'. A editor window appears allowing to add,
modify, delete or re-order the parts of the \verb'Path'.
\item Add the full path of the \verb'GraphBLAS\build\Release' folder
(typically starting with \verb'C:\Users\you\'..., where \verb'you' is
your Windows username) to the \verb'Path'.
\item If the above steps do not work, you can instead copy the
\verb'graphblas.*' files from \verb'GraphBLAS\build\Release' into any
existing folder listed in your \verb'Path'.
\end{itemize}
\item The \verb'GraphBLAS/Include/GraphBLAS.h' file must be included in user
applications via \verb'#include "GraphBLAS.h"'. This is already done for
you in the MATLAB/Octave interface discussed in the next section.
\end{enumerate}
%----------------------------------------
\subsection{Compiling the MATLAB/Octave interface (for Octave)}
%----------------------------------------
\label{gbmake}
I'm working closely with John Eaton (the primary developer of Octave) to
enable SuiteSparse:GraphBLAS to work with Octave, and thus Octave 7 is
required. The latest version of Octave is 6.4.0, so you need to download and
install the development version of Octave 7 to use SuiteSparse:GraphBLAS within
Octave.
First, compile the SuiteSparse:GraphBLAS dynamic library
(\verb'libgraphblas.so' for Linux, \verb'libgraphblas.dylib' for Mac,
or \verb'graphblas.dll' for Windows), as described in the prior two
subsections.
On the Mac, SuiteSparse:GraphBLAS v6.1.4 and Octave 7 will work
Apple Silicon (thanks to G{\'{a}}bor Sz{\'{a}}rnyas). Here are his instructions
(replicated from
\url{https://github.com/DrTimothyAldenDavis/GraphBLAS/issues/90}); do
these in your Mac Terminal:
\begin{itemize}
\item Building Octave. Grab the brew formula:
{\scriptsize
\begin{verbatim}
wget https://raw.githubusercontent.com/Homebrew/homebrew-core/master/Formula/octave.rb
\end{verbatim} }
\item Edit \verb'octave.rb'.
Add \verb`"disable-docs"` to \verb`args` (or ensure that you have a working
texinfo installation).
Edit Mercurial (\verb`hg`) repository: switch from the \verb`default` branch
(containing code for Octave v8.0) to \verb`stable` (v7.0). Then do:
{\small
\begin{verbatim}
brew install --head ./octave.rb
\end{verbatim} }
\item Building the tests (\verb'gbmake').
Grab the OpenMP binaries as described at
\url{https://mac.r-project.org/openmp/}
{\scriptsize
\begin{verbatim}
curl -O https://mac.r-project.org/openmp/openmp-13.0.0-darwin21-Release.tar.gz
sudo tar fvxz openmp-13.0.0-darwin21-Release.tar.gz -C /
\end{verbatim} }
\item Do the following to edit \verb'gbmake.m':
{\scriptsize
\begin{verbatim}
sed -i.bkp 's/-fopenmp/-Xclang -fopenmp/g' @GrB/private/gbmake.m
\end{verbatim} }
\end{itemize}
Once Octave 7 and SuiteSparse:GraphBLAS are compiled and installed,
and \verb'gbmake.m' is modified if needed for Octave 7 on the Mac,
(or if using MATLAB) continue with the following instructions:
\begin{enumerate}
\item In the MATLAB/Octave command window:
{\small
\begin{verbatim}
cd GraphBLAS/GraphBLAS/@GrB/private
gbmake \end{verbatim} }
\item Follow the remaining instructions in the
\verb'GraphBLAS/GraphBLAS/README.md' file, to revise your
MATLAB/Octave path and \verb'startup.m' file.
\item As a quick test, try the command \verb'GrB(1)', which
creates and displays a 1-by-1 GraphBLAS matrix. For a longer test, do the
following:
{\small
\begin{verbatim}
cd GraphBLAS/GraphBLAS/test
gbtest \end{verbatim} }
\item In Windows, if the tests fail with an error stating that the
mex file is invalid because the module could not be found, it means
that MATLAB could not find the compiled \verb'graphblas.lib', \verb'*.dll'
or \verb'*.exp' files in the \verb'build/Release' folder. This can happen
if your Windows System path is not set properly, or if Windows is not
recognizing the \verb'GraphBLAS/build/Release' folder (see
Section~\ref{sec:windows}) Or, you might not have permission to change your
Windows System path. In this case, do the following in the MATLAB Command
\vspace{-0.1in}
Window:
\vspace{-0.1in}
{\small
\begin{verbatim}
cd GraphBLAS/build/Release
GrB(1) \end{verbatim} }
\vspace{-0.1in}
After this step, the GraphBLAS library will be loaded into MATLAB. You may
need to add the above lines in your \verb'Documents/MATLAB/startup.m' file,
so that they are done each time MATLAB starts. You will also need to do
this after \verb'clear all' or \verb'clear mex', since those MATLAB
commands remove all loaded libraries from MATLAB.
You might also get an error ``the specified procedure cannot be found.''
This can occur if you have upgraded your GraphBLAS library from a prior
version, and some of the compiled files \verb'@GrB/private/*.mex*'
are stale. Try the command \verb'gbmake all' in the MATLAB Command
Window, which forces all of the MATLAB interface to be recompiled.
Or, try deleting all \verb'@GrB/private/*.mex*' files and running
\verb'gbmake' again.
\item On Windows, the \verb'casin', \verb'casinf', \verb'casinh', and
\verb'casinhf' functions provided by Microsoft do not return the correct
imaginary part. As a result, \verb'GxB_ASIN_FC32', \verb'GxB_ASIN_FC64'
\verb'GxB_ASINH_FC32', and \verb'GxB_ASINH_FC64' do not work properly on
Windows. This affects the \verb'GrB/asin', \verb'GrB/acsc',
\verb'GrB/asinh', and \verb'GrB/acsch', functions in the MATLAB interface.
See the MATLAB tests bypassed in \verb'gbtest76.m' for details, in the
\newline
\verb'GraphBLAS/GraphBLAS/test' folder.
%% FUTURE: fix asin and acsc on Windows for the complex case.
\end{enumerate}
%----------------------------------------
\subsection{Compiling the MATLAB/Octave interface (for MATLAB)}
\label{R2021a}
%----------------------------------------
MATLAB R2021a includes its own copy of SuiteSparse:GraphBLAS v3.3.3, as the
file \verb'libmwgraphblas.so', which is used for the built-in \verb'C=A*B' when
both \verb'A' and \verb'B' are sparse (see the Release Notes of MATLAB R2021a,
which discusses the performance gained in MATLAB by using GraphBLAS).
That's great news for the impact of GraphBLAS on MATLAB itself, and the domain
of high performance computing in general, but it causes a linking problem when
using this MATLAB interface for GraphBLAS. The two use different versions of
the same library, and a segfault arises if the MATLAB interface for v4.x (or
later) tries to link with the older GraphBLAS v3.3.3 library. Likewise, the
built-in \verb'C=A*B' causes a segfault if it tries to use the newer GraphBLAS
v4.x (or later) libraries.
To resolve this issue, a second GraphBLAS library must be compiled,
\verb'libgraphblas_matlab', where the internal symbols are all renamed so they
do not conflict with the \verb'libmwgraphblas' library. Then both libraries
can co-exist in the same instance of MATLAB.
To do this, go to the \verb'GraphBLAS/GraphBLAS' folder, containing the
MATLAB interface. That folder contains a \verb'CMakeLists.txt' file to
compile the \verb'libgraphblas_matlab' library. See the instructions
for how to compile the C library \verb'libgraphblas', and repeat them but
using the folder \newline
\verb'SuiteSparse/GraphBLAS/GraphBLAS/build' instead of \newline
\verb'SuiteSparse/GraphBLAS/build'.
This will compile the renamed SuiteSparse:GraphBLAS dynamic library
(\verb'libgraphblas_matlab.so' for Linux, \verb'libgraphblas_matlab.dylib'
for Mac, or \verb'graphblas_matlab.dll' for Windows). These can be
placed in the same system-wide location as the standard \verb'libgraphblas'
libraries, such as \verb'/usr/local/lib' for Linux. The two pairs of
libraries share the identical \verb'GraphBLAS.h' include file.
If you do not have system privileges to install the GraphBLAS compiled
libraries via \verb'sudo make install', then augment your
\verb'LD_LIBRARY_PATH' (Linux) or \verb'DYLD_LIBRARY_PATH' (MacOS) to point to
your personal copy \verb'SuiteSparse/GraphBLAS/GraphBLAS/build' folder. See
\url{https://www.mathworks.com/help/matlab/matlab_external/building-on-unix-operating-systems.html}
for details.
Next, compile the MATLAB interface as described in Section~\ref{gbmake}. For
any instructions in that Section that refer to the \verb'GraphBLAS/build'
folder (Linux and Mac) or \verb'GraphBLAS/build/Release' (Windows), use \newline
\verb'GraphBLAS/GraphBLAS/build' (Linux and Mac) or \newline
\verb'GraphBLAS/GraphBLAS/build/Release' (Windows) instead.
The resulting functions for your \verb'@GrB' object will now work just fine;
no other changes are needed.
%----------------------------------------
\subsection{Setting the C flags and using CMake}
%----------------------------------------
Next, do \verb'make' in the \verb'build' directory. If this still fails, see
the \verb'CMakeLists.txt' file. You can edit that file to pass
compiler-specific options to your compiler. Locate this section in the
\verb'CMakeLists.txt' file. Use the \verb'set' command in \verb'cmake', as in
the example below, to set the compiler flags you need.
{\small
\begin{verbatim}
# check which compiler is being used. If you need to make
# compiler-specific modifications, here is the place to do it.
if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")
# cmake 2.8 workaround: gcc needs to be told to do ANSI C11.
# cmake 3.0 doesn't have this problem.
set ( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c11 -lm " )
...
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")
...
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")
...
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")
...
endif ( )
\end{verbatim} }
To compile SuiteSparse:GraphBLAS without running the demos, use \newline
\verb'make library' in the top-level directory, or \verb'make' in the
\verb'build' directory.
Several compile-time options can be selected by editing the \verb'Source/GB.h'
file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.
%----------------------------------------
\subsection{Using a plain makefile}
\label{altmake}
%----------------------------------------
The \verb'GraphBLAS/alternative' directory contains a simple \verb'Makefile'
that can be used to compile SuiteSparse:GraphBLAS. This is a useful option
if you do not have the required version of \verb'cmake'. This \verb'Makefile'
can even compile the entire library with a C++ compiler, which cannot be
done with \verb'CMake'.
This alternative \verb'Makefile' does not build the
\verb'libgraphblas_matlab.so' library required for MATLAB (see
Section~\ref{R2021a}). This can be done by revising the \verb'Makefile',
however: add the \verb'-DGBRENAME=1' flag, and changing the library name
from \verb'libgraphblas' to \verb'libgraphbas_matlab'.
%----------------------------------------
\subsection{Running the Demos}
%----------------------------------------
After \verb'make' in the top-level directory to compile the library, type
\verb'make demo' to run the demos (also in the top-level directory).
You can also run the demos after compiling with \verb'make all':
{\small
\begin{verbatim}
make all
cd Demo
./demo \end{verbatim} }
The \verb'./demo' command is a script that runs the demos with various input
matrices in the \verb'Demo/Matrix' folder. The output of the demos will be
compared with expected output files in \verb'Demo/Output'.
NOTE:
DO NOT publish benchmarks of these demos, and do not link against the
demo library in any user application. These codes are sometimes slow,
and are meant as simple illustrations only, not for performance. The fastest
methods are in LAGraph, not in SuiteSparse/GraphBLAS/Demo. Benchmark LAGraph
instead. Eventually, all GraphBLAS/Demos methods will be removed, and LAGraph
will serve all uses: for illustration, benchmarking, and production uses.
%----------------------------------------
\subsection{Installing SuiteSparse:GraphBLAS}
%----------------------------------------
To install the library (typically in \verb'/usr/local/lib' and
\verb'/usr/local/include' for Linux systems), go to the top-level GraphBLAS
folder and type:
{\small
\begin{verbatim}
sudo make install \end{verbatim} }
%----------------------------------------
\subsection{Linking issues after installation}
%----------------------------------------
My Linux distro (Ubuntu 18.04) includes a copy of \verb'libgraphblas.so.1',
which is SuiteSparse:GraphBLAS v1.1.2. After installing SuiteSparse:GraphBLAS
in \verb'/usr/local/lib' (with \verb'sudo make install'), compiling a simple
stand-alone program links against \verb'libgraphblas.so.1' instead of the
latest version, while at the same time accessing the latest version of the
include file as \verb'/usr/local/include/GraphBLAS.h'. This command fails:
{\small
\begin{verbatim}
gcc prog.c -lgraphblas \end{verbatim} }
Revising my \verb'LD_LIBRARY_PATH' to put \verb'/usr/local/lib' first in the
library directory order didn't help. If you encounter this problem, try one of
the following options (all four work for me, and link against the proper
version, \verb'/usr/local/lib/libgraphblas.so.6.1.4' for example):
{\small
\begin{verbatim}
gcc prog.c -l:libgraphblas.so.6
gcc prog.c -l:libgraphblas.so.6.1.4
gcc prog.c /usr/local/lib/libgraphblas.so
gcc prog.c -Wl,-v -L/usr/local/lib -lgraphblas \end{verbatim} }
This \verb'prog.c' test program is a trivial one, which works in v1.0 and
later:
{\small
\begin{verbatim}
#include <GraphBLAS.h>
int main (void)
{
GrB_init (GrB_NONBLOCKING) ;
GrB_finalize ( ) ;
} \end{verbatim} }
Compile the program above, then use this command to ensure
\verb'libgraphblas.so.6' appears:
{\small
\begin{verbatim}
ldd a.out \end{verbatim} }
%----------------------------------------
\subsection{Running the tests}
%----------------------------------------
To run a short test, type \verb'make demo' at the top-level \verb'GraphBLAS'
folder. This will run all the demos in \verb'GraphBLAS/Demos'. MATLAB is not
required.
To perform the extensive tests in the \verb'Test' folder, and the statement
coverage tests in \verb'Tcov', MATLAB R2018a or later is required. See the
\verb'README.txt' files in those two folders for instructions on how to run the
tests. The tests in the \verb'Test' folder have been ported to MATLAB on
Linux, MacOS, and Windows. The \verb'Tcov' tests do not work on Windows. The
MATLAB interface test (\verb'gbtest') works on all platforms; see the
\verb'GraphBLAS/GraphBLAS' folder for more details.
%----------------------------------------
\subsection{Cleaning up}
%----------------------------------------
To remove all compiled files, type \verb'make' \verb'distclean' in the top-level
GraphBLAS folder.
%-------------------------------------------------------------------------------
\section{Release Notes}
%-------------------------------------------------------------------------------
\begin{itemize}
\item Version 7.4.0 (Dec 23, 2022)
\begin{itemize}
\item add non-\verb'va_arg' methods: \verb'va_arg'-based \verb'GxB_get/set'
methods are ANSI C11 but cause issues for cffi in Python. As a
temporary workaround, new methods have been added that do not use
\verb'va_arg'. The existing \verb'GxB_get/set' methods are not
changed. The new methods are not in the user guide, since all of the
\verb'GxB_get/set' methods will be superceded with \verb'GrB_get/set'
in the v2.1 C API. At that point, all \verb'GxB_get/set' methods will
become historical (kept, not deprecated, but removed from the user
guide).
\end{itemize}
\item Version 7.3.3 (Dec 9, 2022)
\begin{itemize}
\item \verb'stdatomic.h': using \verb'#include <stdatomic.h>' and
\verb'atomic_compare_exchange_weak'
instead of GCC/clang/icx \verb'__atomic_*' variants.
Added \verb'-latomic' if required.
\item chunk factor for C=A*B (saxpy3 method):
revised for non-builtin-semirings
\end{itemize}
\item Version 7.3.2 (Nov 12, 2022)
\begin{packed_itemize}
\item \verb'cmake_modules': minor revision to build system, to sync
with SuiteSparse v6.0.0
\item Added option \verb'-DNOPENMP=1' to disable OpenMP parallelism.
\end{packed_itemize}
\item Version 7.3.1 (Oct 21, 2022)
\begin{packed_itemize}
\item workaround for a bug in the Microsoft Visual Studio Compiler,
MSC 19.2x (in vs2019).
\end{packed_itemize}
\item Version 7.3.0 (Oct 14, 2022)
\begin{packed_itemize}
\item \verb'GrB_Matrix': changes to the internal data structure
\item minor internal changes: \verb'A->nvals' for sparse/hypersparse
\item more significant changes: added hyper-hash for
hypersparse case, speeds up many operations on hypersparse matrices.
Based on \cite{Green19}.
\item \verb'GxB_unpack_HyperHash' and \verb'GxB_pack_HyperHash':
to pack/unpack the hyper-hash
\item \verb'@GrB' MATLAB/Octave interface: changed license to Apache-2.0.
\item MATLAB library: renamed to \verb'libgraphblas_matlab.so'
\item performance: faster \verb'C=A*B' when using a single thread and
\verb'B' is a sparse vector with many entries.
\end{packed_itemize}
\item Version 7.2.0 (Aug 8, 2022)
\begin{packed_itemize}
\item added ZSTD as a compression option for serialize/deserialize:
Version 1.5.3 by Yann Collet,
\url{https://github.com/facebook/zstd.git}.
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
Included in SuiteSparse:GraphBLAS via its BSD-3-clause license.
The default method is now ZSTD, level 1.
\item \verb'GxB_Matrix_reshape*' added.
\item MATLAB interface: \verb'reshape', \verb'C(:)=A', \verb'C=A(:)' are
faster. Better error messages.
\end{packed_itemize}
\item Version 7.1.2 (July 8, 2022)
\begin{packed_itemize}
\item MATLAB interface: linear indexing added for C(:)=A, C=A(:), and
single-output I=find(C). Faster bandwidth, istriu, istril,
isbanded, isdiag. C(I,J)=A can now grow the size of A.
\end{packed_itemize}
\item Version 7.1.1 (June 3, 2022)
\begin{packed_itemize}
\item minor updates to documentation and error messages
\item MATLAB interface: minor revision of GrB.deserialize
\end{packed_itemize}
\item Version 7.1.0 (May 20, 2022)
\begin{packed_itemize}
\item added cube root: \verb'GxB_CBRT_FP32' and \verb'GxB_CBRT_FP64'
unary operators
\item added \verb'GxB_Matrix_isStoredElement'
and \verb'GxB_Vector_isStoredElement'
\end{packed_itemize}
\item Version 7.0.4 (Apr 25, 2022)
\begin{packed_itemize}
\item (46) bug fix: user-defined type size was incorrectly limited
to 128 bytes. Caught by Erik Welch.
\end{packed_itemize}
\item Version 7.0.3 (Apr 8, 2022)
\begin{packed_itemize}
\item faster transpose when using 2 threads
\end{packed_itemize}
\item Version 7.0.2 (Apr 5, 2022)
\begin{packed_itemize}
\item (45) bug fix: vector iterator was broken for iterating across a
vector in bitmap format. Caught by Erik Welch.
\end{packed_itemize}
\item Version 7.0.1 (Apr 3, 2022)
\begin{packed_itemize}
\item added revised ACM TOMS submission to the Doc folder
\end{packed_itemize}
\item Version 7.0.0 (Apr 2, 2022)
\begin{packed_itemize}
\item (44) spec bug: \verb'GrB_Matrix_diag'
was implemented in v5.2.x and v6.x with the wrong signature.
This fix requires the major release to change, from v6.x to v7.x.
\item (43) performance bug fix for \verb'GrB_mxm':
auto selection for saxpy method (Hash vs Gustavson) revised.
\item \verb'GrB_assign': better performance for \verb'C(i,j)=scalar' and
\verb'C(i,j)+=scalar' when \verb'i' and \verb'j' have length 1 (scalar
assigment with no scalar expansion).
\end{packed_itemize}
\item Version 6.2.5 (Mar 14, 2022)
\begin{packed_itemize}
\item For SuiteSparse v5.11.0.
\end{packed_itemize}
\item Version 6.2.4 (Mar 8, 2022)
\begin{packed_itemize}
\item (42) bug fix: \verb'GrB_mxm' with 0-by-0 iso full matrices.
Caught by Henry Amuasi in the Python
grblas interface, then triaged and isolated by Erik Welch.
\end{packed_itemize}
\item Version 6.2.3 (Mar 5, 2022)
\begin{packed_itemize}
\item minor update to documentation in \verb'GrB.build':
no change to any code
\end{packed_itemize}
\item Version 6.2.2 (Feb 28, 2022)
\begin{packed_itemize}
\item revised output of \verb'GxB_*_sort' to return newly created matrices
C and P as full or bitmap matrices, as appropriate, instead of
sparse/hypersparse, following their sparsity control settings.
\end{packed_itemize}
\item Version 6.2.1 (Feb 14, 2022)
\begin{packed_itemize}
\item (41) bug fix: \verb'GxB_Iterator_get' used \verb'(void *) + size'
arithmetic
\end{packed_itemize}
\item Version 6.2.0 (Feb 14, 2022)
\begin{packed_itemize}
\item added the \verb'GxB_Iterator' object and its methods. See
Section~\ref{iter}.
\item \verb'@GrB' interface: revised sparse-times-full rule for the
conventional semiring (the syntax \verb'C=A*B'), so that
sparse-times-full results in \verb'C' as full,
but hypersparse-times-sparse is not full
(typically sparse or hypersparse).
\end{packed_itemize}
\item Version 6.1.4 (Jan 12, 2022)
\begin{packed_itemize}
\item added Section~\ref{perf} to User Guide: how to get the best
performance out of algorithms based on GraphBLAS.
\item \verb'cpu_features': no longer built as a separate library,
but built directly into \verb'libgraphblas.so' and
\verb'libgraphblas.a'. Added compile-time flags to
optionally disable the use of \verb'cpu_features' completely.
\item Octave 7: port to Apple Silicon (thanks to
G{\'{a}}bor Sz{\'{a}}rnyas).
\item min/max monoids: real case (FP32 and FP64) no longer terminal
\item \verb'@GrB' interface: overloaded \verb'C=A*B' syntax where one
matrix is full always results in a full matrix \verb'C'.
\item Faster \verb'C=A*B' for sparse-times-full and full-times-sparse
for \verb'@GrB' interface.
\end{packed_itemize}
\item Version 6.1.3 (Jan 1, 2022)
\begin{packed_itemize}
\item performance: task creation for \verb'GrB_mxm'
had a minor flaw (results were correct but parallelism suffered).
Performance improvement of up to 10x when nnz(A)<<nnz(B).
\end{packed_itemize}
\item Version 6.1.2 (Dec 31, 2021)
\begin{packed_itemize}
\item performance: revised \verb'swap_rule' in \verb'GrB_mxm', which decides whether
to compute \verb"C=A*B" or \verb"C=(B'*A')'", and variants, resulting in up
to 3x performance gain over v6.1.1 for \verb'GrB_mxm' (observed;
could be higher in other cases).
\end{packed_itemize}
\item Version 6.1.1 (Dec 28, 2021)
\begin{packed_itemize}
\item minor revision to AVX2 and AVX512f selection
\item \verb'cpu_features/Makefile': remove test of \verb'list_cpu_features'
so that the package can be built when cross-compiling
\end{packed_itemize}
\item Versions 6.1.0 (Dec 26, 2021)
\begin{packed_itemize}
\item added \verb'GxB_get' options: compiler name and version.
\item added package: \url{https://github.com/google/cpu_features},
Nov 30, 2021 version.
\item performance: faster \verb'C+=A*B' when \verb'C' is full,
\verb'A' is bitmap/full, and \verb'B' is sparse/hyper. % saxpy5
Faster \verb"C+=A'*B" when
\verb'A' is sparse/hyper, and \verb'B' is bitmap/full. % dot4
\item (40) bug fix: deserialization of iso and empty matrices/vectors was
incorrect
\end{packed_itemize}
\item Versions 6.0.2 and 5.2.2 (Nov 30, 2021)
\begin{packed_itemize}
\item (39) bug fix: \verb'GrB_Matrix_export':
numerical values not properly exported
\end{packed_itemize}
\item Versions 6.0.1 and 5.2.1 (Nov 27, 2021)
\begin{packed_itemize}
\item v6.0.x and v5.2.x (for the same x):
differ only in \verb'GrB_wait', \verb'GrB_Info',
\verb'GrB_SCMP', and \verb'GxB_init'.
\item (38) bug fix: \verb"C+=A'*B" when the accum operator is the same as
the monoid and C is iso-full, and \verb'A' or \verb'B' are hypersparse.
(dot4 method).
\item performance: \verb'GrB_select' with user-defined
\verb'GrB_IndexUnaryOp' about 2x faster.
\item performance: faster \verb'(MIN,MAX)_(FIRSTJ,SECONDI)' semirings
\end{packed_itemize}
\item Version 6.0.0 (Nov 15, 2021)
\begin{packed_itemize}
\item this release contains only a few changes that cause a
break with backward compatibility. It is otherwise identical to v5.2.0.
\item v6.0.0 is fully compliant with the v2.0 C API Specification.
Three changes from the v2.0 C API Spec are not backward compatible
(\verb'GrB_*wait', \verb'GrB_Info', \verb'GrB_SCMP').
\verb'GxB_init' has also changed.
\begin{packed_itemize}
\item \verb'GrB_wait (object, mode)': was \verb'GrB_wait (&object)'.
\item \verb'GrB_Info': changed enum values
\item \verb'GrB_SCMP': removed
\item \verb'GxB_init (mode, malloc, calloc, realloc, free, is_thread_safe)':
the last parameter, \verb'is_thread_safe', is deleted.
The malloc, calloc, realloc, and free functions must be thread-safe.
\end{packed_itemize}
\end{packed_itemize}
\item Version 5.2.0 (Nov 15, 2021)
\begin{packed_itemize}
\item Added for the v2.0 C API Specification: only features that are
backward compatible with SuiteSparse:GraphBLAS v5.x have been
added to v5.2.0:
\begin{packed_itemize}
\item \verb'GrB_Scalar': replaces \verb'GxB_Scalar', \verb'GxB_Scalar_*'
functions renamed GrB
\item \verb'GrB_IndexUnaryOp': new, free, fprint, wait
\item \verb'GrB_select': selection via \verb'GrB_IndexUnaryOp'
\item \verb'GrB_apply': with \verb'GrB_IndexUnaryOp'
\item \verb'GrB_reduce': reduce matrix or vector to \verb'GrB_Scalar'
\item \verb'GrB_assign', \verb'GrB_subassion': with \verb'GrB_Scalar'
input
\item \verb'GrB_*_extractElement_Scalar': get \verb'GrB_Scalar'
from a matrix or vector
\item \verb'GrB*build': when \verb'dup' is \verb'NULL',
duplicates result in an error.
\item \verb'GrB import/export': import/export from/to user-provided
arrays
\item \verb'GrB_EMPTY_OBJECT', \verb'GrB_NOT_IMPLEMENTED': error codes
added
\item \verb'GrB_*_setElement_Scalar': set an entry in a matrix or
vector, from a \verb'GrB_Scalar'
\item \verb'GrB_Matrix_diag': same as
\verb'GxB_Matrix_diag (C,v,k,NULL)'
\item \verb'GrB_*_serialize/deserialize': with compression
\item \verb'GrB_ONEB_T': binary operator, $f(x,y)=1$, the same as
\verb'GxB_PAIR_T'.
\end{packed_itemize}
\item \verb'GxB*import*' and \verb'GxB*export*': now historical; use
\verb'GxB*pack/unpack*'
\item \verb'GxB_select': is now historical; use \verb'GrB_select' instead.
\item \verb'GxB_IGNORE_DUP': special operator for build methods only; if dup
is this operator, then duplicates are ignored (not an error)
\item \verb'GxB_IndexUnaryOp_new': create a named index-unary operator
\item \verb'GxB_BinaryOp_new': create a named binary operator
\item \verb'GxB_UnaryOp_new': create a named unary operator
\item \verb'GxB_Type_new': to create a named type
\item \verb'GxB_Type_name': to query the name of a type
\item added \verb'GxB_*type_name' methods
to query the name of a type as a string.
\item \verb'GxB' methods that query an object return a \verb'GrB_type' such
as \verb'GxB_Matrix_type' are declared historical; will be kept but not
recommended (use \verb'GxB_*type_name' methods).
\item \verb'GxB_Matrix_serialize/deserialize': with compression;
optional descriptor.
\item \verb'GxB_Matrix_sort', \verb'GxB_Vector_sort':
sort a matrix or vector
\item \verb'GxB_eWiseUnion': like \verb'GrB_eWiseAdd' except for how
entries in $\bf A\setminus B$ and $\bf B \setminus A$ are computed.
\item added LZ4/LZ4HC: compression library, \url{http://www.lz4.org} (BSD
2), v1.9.3, Copyright (c) 2011-2016, Yann Collet.
\item MIS and pagerank demos: removed; MIS added to LAGraph/experimental
\item disabled free memory pool if OpenMP not available
\item (37) bug fix: ewise \verb'C=A+B' when all matrices are full,
\verb'GBCOMPACT' not used, but \verb'GB_control.h' disabled the
operator or type. Caught by Roi Lipman, Redis.
\item (36) bug fix: \verb'C<M>=Z' not returning \verb'C'
as iso if \verb'Z 'iso and \verb'C' initially
empty. Caught by Erik Welch, Anaconda.
\item performance improvements: \verb'C=A*B': sparse/hyper times
bitmap/full, and visa versa, including \verb'C += A*B' when \verb'C' is
full.
\end{packed_itemize}
\item Version 5.1.10 (Oct 27, 2021)
\begin{packed_itemize}
\item (35) bug fix: \verb'GB_selector'; \verb'A->plen' and \verb'C->plen'
not updated correctly. Caught by Jeffry Lovitz, Redis.
\end{packed_itemize}
\item Version 5.1.9 (Oct 26, 2021)
\begin{packed_itemize}
\item (34) bug fix: in-place test incorrect for \verb"C+=A'*B" using dot4
\item (33) bug fix: disable free pool if OpenMP not available
\end{packed_itemize}
\item Version 5.1.8 (Oct 5, 2021)
\begin{packed_itemize}
\item (32) bug fix: C=A*B when A is sparse and B is iso and bitmap.
Caught by Mark Blanco, CMU.
\end{packed_itemize}
\item Version 5.1.7 (Aug 23, 2021)
\begin{packed_itemize}
\item (31) bug fix: \verb'GrB_apply', when done in-place and matrix starts
non-iso and becomes iso, gave the wrong iso result.
Caught by Fabian Murariu.
\end{packed_itemize}
\item Version 5.1.6 (Aug 16, 2021)
\begin{packed_itemize}
\item one-line change to \verb'C=A*B': faster symbolic analysis when a
vector \verb'C(:,j)' is dense (for CSC) or \verb'C(i,:)' for CSR.
\end{packed_itemize}
\item Version 5.1.5 (July 15, 2021)
\begin{packed_itemize}
\item submission to ACM Transactions on Mathematical Software as
a Collected Algorithm of the ACM.
\end{packed_itemize}
\item Version 5.1.4 (July 6, 2021)
\begin{packed_itemize}
\item faster Octave interface. Octave v7 or later is required.
\item (30) bug fix: 1-based printing not enabled for pending tuples.
Caught by Will Kimmerer, while working on the Julia interface.
\end{packed_itemize}
\item Version 5.1.3 (July 3, 2021)
\begin{packed_itemize}
\item added \verb'GxB_Matrix_iso' and \verb'GxB_Vector_iso':
to query if a matrix or vector is held as iso-valued
\item (29) bug fix: \verb'Matrix_pack_*R' into a matrix previously held by
column, or \verb'Matrix_pack*C' into a matrix by row, would flip the
dimensions.
Caught by Erik Welch, Anaconda.
\item (28) bug fix: \verb'kron(A,B)' with iso input matrices
\verb'A' and \verb'B' fixed.
Caught by Michel Pelletier, Graphegon.
\item (27) bug fix: v5.1.0 had a wrong version of a file; posted by mistake.
Caught by Michel Pelletier, Graphegon.
\end{packed_itemize}
\item Version 5.1.2 (June 30, 2021)
\begin{packed_itemize}
\item iso matrices added: these are matrices and vectors whose
values in the sparsity pattern are all the same. This is an internal
change to the opaque data structures of the \verb'GrB_Matrix' and
\verb'GrB_Vector' with very little change to the API.
\item added \verb'GxB_Matrix_build_Scalar'
and \verb'GxB_Vector_build_Scalar',
which always build iso matrices and vectors.
\item import/export methods can now import/export iso matrices and vectors.
\item added \verb'GrB.argmin/argmax' to MATLAB/Octave interface
\item added \verb'GxB_*_pack/unpack' methods as alternatives to
import/export.
\item added \verb'GxB_PRINT_1BASED' to the global settings.
\item added \verb'GxB_*_memoryUsage'
\item port to Octave: \verb'gbmake' and \verb'gbtest'
work in Octave7 to build and test
the \verb'@GrB' interface to GraphBLAS. Octave 7.0.0 is required.
\end{packed_itemize}
\item Version 5.0.6 (May 24, 2021)
\begin{packed_itemize}
\item BFS and triangle counting demos removed from GraphBLAS/Demo:
see LAGraph for these algorithms. Eventually, all of GraphBLAS/Demo
will be deleted, once LAGraph includes all the methods included there.
\end{packed_itemize}
\item Version 5.0.5 (May 17, 2021)
\begin{packed_itemize}
\item (26) performance bug fix: reduce-to-vector where \verb'A' is
hypersparse CSR with a transposed descriptor (or CSC with no
transpose), and some cases for \verb'GrB_mxm/mxv/vxm' when computing
\verb'C=A*B' with A hypersparse CSC and \verb'B' bitmap/full (or
\verb'A' bitmap/full and \verb'B' hypersparse CSR), the wrong internal
method was being selected via the auto-selection strategy, resulting in
a significant slowdown in some cases.
\end{packed_itemize}
\item Version 5.0.4 (May 13, 2021)
\begin{packed_itemize}
\item \verb'@GrB' MATLAB/Octave interface: changed license
to GNU General Public License v3.0 or later.
It was licensed under Apache-2.0 in Version 5.0.3 and earlier.
Changed back to Apache-2.0 for Version 7.3.0; see above.
\end{packed_itemize}
\item Version 5.0.3 (May 12, 2021)
\begin{packed_itemize}
\item (25) bug fix: disabling \verb'ANY_PAIR' semirings by editing
\verb'Source/GB_control.h' would cause a segfault if those disabled
semirings were used.
\item demos are no longer built by default
\item (24) bug fix: new functions in v5.0.2 not declared as \verb'extern'
in \verb'GraphBLAS.h'.
\item \verb'GrB_Matrix_reduce_BinaryOp' reinstated from v4.0.3;
same limit on built-in ops that correspond to known monoids.
\end{packed_itemize}
\item Version 5.0.2 (May 5, 2021)
\begin{packed_itemize}
\item (23) bug fix: \verb'GrB_Matrix_apply_BinaryOp1st' and \verb'2nd'
were using the
wrong descriptors for \verb'GrB_INP0' and \verb'GrB_INP1'.
Caught by Erik Welch, Anaconda.
\item memory pool added for faster allocation/free of small blocks
\item \verb'@GrB' interface ported to MATLAB R2021a.
\item \verb'GxB_PRINTF' and \verb'GxB_FLUSH' global options added.
\item \verb'GxB_Matrix_diag': construct a diagonal matrix from a vector
\item \verb'GxB_Vector_diag': extract a diagonal from a matrix
\item \verb'concat/split': methods to concatenate and split matrices.
\item \verb'import/export':
size of arrays now in bytes, not entries. This change
is required for better internal memory management, and it is not
backward compatible with the \verb'GxB*import/export' functions in v4.0.
A new parameter, \verb'is_uniform', has been added to all import/export
methods, which indicates that the matrix values are all the same.
\item (22) bug fix: SIMD vectorization was missing
\verb'reduction(+,task_cnvals)' in
\verb'GB_dense_subassign_06d_template.c'. Caught by Jeff Huang, Texas
A\&M, with his software package for race-condition detection.
\item \verb'GrB_Matrix_reduce_BinaryOp': removed. Use a monoid instead,
with \verb'GrB_reduce' or \verb'GrB_Matrix_reduce_Monoid'.
\end{packed_itemize}
\item Version 4.0.3 (Jan 19, 2021)
\begin{packed_itemize}
\item faster min/max monoids
\item \verb'G=GrB(G)' converts \verb'G' from v3 object to v4
\end{packed_itemize}
\item Version 4.0.2 (Jan 13, 2021)
\begin{packed_itemize}
\item ability to load \verb'*.mat' files saved with the v3 \verb'GrB'
\end{packed_itemize}
\item Version 4.0.1 (Jan 4, 2021)
\begin{packed_itemize}
\item significant performance improvements: compared with v3.3.3,
up to 5x faster in breadth-first-search (using
\verb'LAGraph_bfs_parent2'), and 2x faster in
Betweenness-Centrality (using \verb'LAGraph_bc_batch5').
\item \verb'GrB_wait(void)', with no inputs: removed
\item \verb'GrB_wait(&object)': polymorphic function added
\item \verb'GrB_*_nvals': no longer guarantees completion;
use \verb'GrB_wait(&object)'
or non-polymorphic \verb'GrB_*_wait (&object)' instead
\item \verb'GrB_error': now has two parameters: a string
(\verb'char **') and an object.
\item \verb'GrB_Matrix_reduce_BinaryOp' limited to built-in operators that
correspond to known monoids.
\item \verb'GrB_*_extractTuples': may return indices out of order
\item removed internal features: GBI iterator, slice and hyperslice matrices
\item bitmap/full matrices and vectors added
\item positional operators and semirings:
\verb'GxB_FIRSTI_INT32' and related ops
\item jumbled matrices: sort left pending, like zombies and pending tuples
\item \verb'GxB_get/set': added \verb'GxB_SPARSITY_*'
(hyper, sparse, bitmap, or full) and \verb'GxB_BITMAP_SWITCH'.
\item \verb'GxB_HYPER': enum renamed to \verb'GxB_HYPER_SWITCH'
\item \verb'GxB*import/export': API modified
\item \verb'GxB_SelectOp': \verb'nrows' and \verb'ncols' removed
from function signature.
\item OpenMP tasking removed from mergesort and replaced with parallel
for loops. Just as fast on Linux/Mac; now the performance ports to
Windows.
\item \verb'GxB_BURBLE' added as a supported feature. This was an
undocumented feature of prior versions.
\item bug fix: \verb'A({lo,hi})=scalar'
\verb'A(lo:hi)=scalar' was OK
\end{packed_itemize}
\item Version 3.3.3 (July 14, 2020).
Bug fix: \verb'w<m>=A*u' with mask non-empty and u empty.
\item Version 3.3.2 (July 3, 2020). Minor changes to build system.
\item Version 3.3.1 (June 30, 2020). Bug fix to \verb'GrB_assign' and
\verb'GxB_subassign' when the assignment is simple (\verb'C=A') but
with typecasting.
\item Version 3.3.0 (June 26, 2020). Compliant with V1.3 of the C API
(except that the polymorphic \verb'GrB_wait(&object)' doesn't appear yet;
it will appear in V4.0).
Added complex types (\verb'GxB_FC32' and \verb'GxB_FC64'), many unary
operators, binary operators, monoids, and semirings. Added bitwise
operators, and their monoids and semirings. Added the predefined monoids
and semirings from the v1.3 specification. \verb'@GrB' interface: added complex
matrices and operators, and changed behavior of integer operations to more
closely match the behavior on built-in integer matrices. The rules for
typecasting large floating point values to integers has changed. The
specific object-based \verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', etc,
functions have been added. The no-argument \verb'GrB_wait()' is
deprecated. Added \verb'GrB_getVersion', \verb'GrB_Matrix_resize',
\verb'GrB_Vector_resize', \verb'GrB_kronecker', \verb'GrB_*_wait', scalar
binding with binary operators for \verb'GrB_apply', \newline
\verb'GrB_Matrix_removeElement', and \verb'GrB_Vector_removeElement'.
\item Version 3.2.0 (Feb 20, 2020). Faster \verb'GrB_mxm', \verb'GrB_mxv', and
\verb'GrB_vxm', and faster operations on dense matrices/vectors. Removed
compile-time user objects (\verb'GxB_*_define'), since these were not
compatible with the faster matrix operations. Added the \verb'ANY' and
\verb'PAIR' operators. Added the predefined descriptors,
\verb'GrB_DESC_*'. Added the structural mask option. Changed default
chunk size to 65,536. \verb'@GrB' interface modified: \verb'GrB.init' is
now optional.
\item Version 3.1.2 (Dec, 2019). Changes to allow SuiteSparse:GraphBLAS
to be compiled with the Microsoft Visual Studio compiler. This compiler
does not support the \verb'_Generic' keyword, so the polymorphic functions
are not available. Use the equivalent non-polymorphic functions instead,
when compiling GraphBLAS with MS Visual Studio. In addition,
variable-length arrays are not supported, so user-defined types are limited
to 128 bytes in size. These changes have no effect if you have an ANSI C11
compliant compiler.
\verb'@GrB' interface modified: \verb'GrB.init' is now required.
\item Version 3.1.0 (Oct 1, 2019). \verb'@GrB' interface added. See the
\newline \verb'GraphBLAS/GraphBLAS' folder for details and documentation,
and Section~\ref{octave}.
\item Version 3.0 (July 26, 2019), with OpenMP parallelism.
The version number is increased to 3.0, since
this version is not backward compatible with V2.x. The \verb'GxB_select'
operation changes; the \verb'Thunk' parameter was formerly a
\verb'const void *' pointer, and is now a \verb'GxB_Scalar'. A new parameter
is added to \verb'GxB_SelectOp_new', to define the expected type of
\verb'Thunk'. A new parameter is added to \verb'GxB_init', to specify whether
or not the user-provided memory management functions are thread safe.
The remaining changes add new features, and are upward compatible with V2.x.
The major change is the addition of OpenMP parallelism. This addition has no
effect on the API, except that round-off errors can differ with the number of
threads used, for floating-point types. \verb'GxB_set' can optionally define
the number of threads to use (the default is \verb'omp_get_max_threads'). The
number of threads can also defined globally, and/or in the
\verb'GrB_Descriptor'. The \verb'RDIV' and \verb'RMINUS' operators are added,
which are defined as $f(x,y)=y/x$ and $f(x,y)=y-x$, respectively. Additional
options are added to \verb'GxB_get'.
\item Version 2.3.3 (May 2019): Collected Algorithm of the ACM.
No changes from V2.3.2 other than the documentation.
\item Version 2.3 (Feb 2019) improves the performance of many GraphBLAS
operations, including an early-exit for monoids. These changes have a
significant impact on breadth-first-search (a performance bug was also fixed in
the two BFS \verb'Demo' codes). The matrix and vector import/export functions
were added (Section~\ref{pack_unpack}), in support of the new LAGraph project
(\url{https://github.com/GraphBLAS/LAGraph}, see also Section~\ref{lagraph}).
LAGraph includes a push-pull BFS in GraphBLAS that is faster than two versions
in the \verb'Demo' folder. \verb'GxB_init' was added to allow the memory
manager functions (\verb'malloc', etc) to be specified.
\item
Version 2.2 (Nov 2018)
adds user-defined objects at compile-time, via user \verb'*.m4' files placed in
\verb'GraphBLAS/User', which use the \verb'GxB_*_define' macros
(NOTE: feature removed in v3.2).
The default matrix format is now \verb'GxB_BY_ROW'.
Also added are the \verb'GxB_*print' methods for printing the contents of each
GraphBLAS object (Section~\ref{fprint}). PageRank demos have been added to
the \verb'Demos' folder.
\item
Version 2.1 (Oct 2018) was
a major update with support for new matrix formats
(by row or column, and hypersparse matrices), and colon notation
(\verb'I=begin:end' or \verb'I=begin:inc:end'). Some graph algorithms are more
naturally expressed with matrices stored by row, and this version includes the
new \verb'GxB_BY_ROW' format. The default format in Version 2.1 and
prior versions is by column.
New extensions to GraphBLAS in this version include \verb'GxB_get',
\verb'GxB_set', and \verb'GxB_AxB_METHOD', \verb'GxB_RANGE', \verb'GxB_STRIDE',
and \verb'GxB_BACKWARDS', and their related definitions, described in
Sections~\ref{descriptor},~\ref{options},~and~\ref{colon}.
\item
Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added \verb'GxB_kron' and \verb'GxB_resize'.
\item
Version 1.1 (Dec 2017) primarily improved the performance.
\item
Version 1.0 was released on Nov 25, 2017.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Regarding historical and deprecated functions and symbols}
%-------------------------------------------------------------------------------
When a \verb'GxB*' function or symbol is added to the C API Specification with
a \verb'GrB*' name, the new \verb'GrB*' name should be used instead, if
possible. However, the old \verb'GxB*' name will be kept as long as possible
for historical reasons. Historical functions and symbols will not always be
documented here in the SuiteSparse:GraphBLAS User Guide, but they will be kept
in \verb'GraphbBLAS.h' and kept in good working order in the library.
Historical functions and symbols would only be removed in the very unlikely
case that they cause a serious conflict with future methods.
The only methods that have been fully deprecated and removed are the older
versions of \verb'GrB_wait' and \verb'GrB_error' methods, which are
incompatible with the latest versions.
% \newpage
%-------------------------------------------------------------------------------
\section{Acknowledgments}
%-------------------------------------------------------------------------------
I would like to thank Jeremy Kepner (MIT Lincoln Laboratory Supercomputing
Center), and the GraphBLAS API Committee: Ayd\i n Bulu\c{c} (Lawrence Berkeley
National Laboratory), Timothy G. Mattson (Intel Corporation) Scott McMillan
(Software Engineering Institute at Carnegie Mellon University), Jos\'e Moreira
(IBM Corporation), Carl Yang (UC Davis), and Benjamin Brock (UC Berkeley), for
creating the GraphBLAS specification and for patiently answering my many
questions while I was implementing it.
I would like to thank Tim Mattson and Henry Gabb, Intel, Inc., for their
collaboration and for the support of Intel.
I would like to thank Joe Eaton and Corey Nolet for their collaboration on the
CUDA kernels (still in progress), and for the support of NVIDIA.
I would like to thank Pat Quillen for his
collaboration and for the support of MathWorks.
I would like to thank John Eaton for his collaboration on the integration
with Octave 7.
I would like to thank Michel Pelletier for his collaboration and work on the
pygraphblas interface, and Jim Kitchen and Erik Welch for their work on
Anaconda's python interface.
I would like to thank Will Kimmerer for his collaboration and work on the
Julia interface.
I would like to thank John Gilbert (UC Santa Barbara) for our many discussions
on GraphBLAS, and for our decades-long conversation and collaboration on sparse
matrix computations.
I would like to thank S\'ebastien Villemot (Debian Developer,
\url{http://sebastien.villemot.name}) for helping me with various build issues
and other code issues with GraphBLAS (and all of SuiteSparse) for its packaging
in Debian Linux.
I would like to thank G{\'{a}}bor Sz{\'{a}}rnyas for porting the \verb'@GrB'
interface to Octave 7 on Apple Silicon.
I would like to thank Roi Lipman, Redis (\url{https://redislabs.com}), for
our many discussions on GraphBLAS and for enabling its use in RedisGraph
(\url{https://redislabs.com/redis-enterprise/technology/redisgraph/}), a graph
database module for Redis. Based on SuiteSparse:GraphBLAS, RedisGraph is up
600x faster than the fastest graph databases ({\footnotesize
\url{https://youtu.be/9h3Qco_x0QE} \newline
\url{https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/}}).
SuiteSparse:GraphBLAS was developed with support from
NVIDIA, Intel, MIT Lincoln Lab, MathWorks, Redis, IBM,
the National Science Foundation (1514406, 1835499), and Julia Computing.
%-------------------------------------------------------------------------------
\section{Additional Resources}
%-------------------------------------------------------------------------------
See \url{http://graphblas.org} for the GraphBLAS community page. See
\url{https://github.com/GraphBLAS/GraphBLAS-Pointers} for an up-to-date list of
additional resources on GraphBLAS, maintained by G{\'{a}}bor Sz{\'{a}}rnyas.
%-------------------------------------------------------------------------------
% References
%-------------------------------------------------------------------------------
{\footnotesize
\addcontentsline{toc}{section}{References}
\bibliographystyle{annotate}
\bibliography{GraphBLAS_UserGuide.bib}
}
\end{document}
|