File: GraphBLAS_UserGuide.tex

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (16250 lines) | stat: -rw-r--r-- 748,660 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
\documentclass[12pt]{article}
\batchmode
\usepackage{url}
\urlstyle{sf}
\usepackage[svgnames]{xcolor}
\usepackage[colorlinks,linkcolor=Blue,citecolor=Blue,urlcolor=Blue]{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{framed}
\usepackage{mdframed}
% \usepackage{geometry}
% \usepackage{pdflscape}
\newmdenv[backgroundcolor=yellow]{alert}
\newmdenv[backgroundcolor=red]{note}
\hyphenation{Suite-Sparse}
\hyphenation{Graph-BLAS}
\hyphenation{Suite-Sparse-Graph-BLAS}

\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\csch}{csch}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arcCot}
\DeclareMathOperator{\arccsc}{arcCsc}
\DeclareMathOperator{\arccosh}{arcCosh}
\DeclareMathOperator{\arcsinh}{arcsinh}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsech}{arcsech}
\DeclareMathOperator{\arccsch}{arcCsch}
\DeclareMathOperator{\arccoth}{arcCoth}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\erfc}{erfc}

\newenvironment{packed_itemize}{
\begin{itemize}
  \setlength{\itemsep}{1pt}
  \setlength{\parskip}{0pt}
  \setlength{\parsep}{0pt}
}{\end{itemize}}

\title{User Guide for SuiteSparse:GraphBLAS}

\author{Timothy A. Davis \\
\small
davis@tamu.edu, Texas A\&M University. \\
\small
\url{http://suitesparse.com} \\
\small
\url{https://people.engr.tamu.edu/davis} \\
\small
\url{https://twitter.com/DocSparse}
}

% version and date are set by cmake
\input{GraphBLAS_version.tex}

%-------------------------------------------------------------------------------
\begin{document}
%-------------------------------------------------------------------------------
\maketitle

\begin{abstract}
SuiteSparse:GraphBLAS is a full implementation of the GraphBLAS standard,
which defines a set of sparse matrix operations on an extended algebra of
semirings using an almost unlimited variety of operators and types.  When
applied to sparse adjacency matrices, these algebraic operations are equivalent
to computations on graphs.  GraphBLAS provides a powerful and expressive
framework for creating high-performance graph algorithms based on the elegant
mathematics of sparse matrix operations on a semiring.

When compared with MATLAB R2021a, some methods in GraphBLAS are up to
a million times faster than MATLAB, even when using the same syntax.
Typical speedups are in the range 2x to 30x.
The statement \verb'C(M)=A' when using MATLAB sparse matrices takes
$O(e^2)$ time where $e$ is the number of entries in \verb'C'.  GraphBLAS
can perform the same computation with the exact same syntax, but
in $O(e \log e)$ time (or $O(e)$ in some cases), and in practice that
means GraphBLAS can compute \verb'C(M)=A' for a large problem in under
a second, while MATLAB takes about 4 to 5 days.

SuiteSparse:GraphBLAS is under the Apache-2.0 license.

\end{abstract}

\newpage
{\small
\tableofcontents
}

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{intro}

The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings.  The operations are useful for creating a wide
range of graph algorithms.

For example, consider the matrix-matrix multiplication, ${\bf C=AB}$.  Suppose
${\bf A}$ and ${\bf B}$ are sparse $n$-by-$n$ Boolean adjacency matrices of two
undirected graphs.  If the matrix multiplication is redefined to use logical
AND instead of scalar multiply, and if it uses the logical OR instead of add,
then the matrix ${\bf C}$ is the sparse Boolean adjacency matrix of a graph
that has an edge $(i,j)$ if node $i$ in ${\bf A}$ and node $j$ in ${\bf B}$
share any neighbor in common.  The OR-AND pair forms an algebraic semiring, and
many graph operations like this one can be succinctly represented by matrix
operations with different semirings and different numerical types.  GraphBLAS
provides a wide range of built-in types and operators, and allows the user
application to create new types and operators without needing to recompile the
GraphBLAS library.

For more details on SuiteSparse:GraphBLAS, and its use in LAGraph, see
\cite{Davis19,Davis22,Davis18b,DavisAznavehKolodziej19,Davis20,Mattson19}.

A full and precise definition of the GraphBLAS specification is provided in
{\em The GraphBLAS C API Specification} by {Ayd\i n Bulu\c{c}, Timothy Mattson,
Scott McMillan, Jos\'e Moreira, Carl Yang, and Benjamin Brock}
\cite{BulucMattsonMcMillanMoreiraYang17,spec,spec2}, based on {\em GraphBLAS
Mathematics} by Jeremy Kepner \cite{Kepner2017}.  The GraphBLAS C API
Specification is available at \url{http://graphblas.org}.
This version of SuiteSparse:GraphBLAS conforms to Version
\input{GraphBLAS_API_version.tex} of {\em The GraphBLAS C API specification}.

In this User Guide, aspects of the GraphBLAS specification that would be true
for any GraphBLAS implementation are simply called ``GraphBLAS.'' Details
unique to this particular implementation are referred to as
SuiteSparse:GraphBLAS.

All functions, objects, and macros with a name of the form \verb'GxB_*' are
SuiteSparse-specific extensions to the specification.

\begin{alert}
{\bf SPEC:} Non-obvious deviations or additions to the GraphBLAS C API
Specification are highlighted in a box like this one, except for \verb'GxB*'
methods.  They are not highlighted since their name makes it clear that they
are extensions to the GraphBLAS C API.
\end{alert}


\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Basic Concepts} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{basic}

Since the {\em GraphBLAS C API Specification} provides a precise definition of
GraphBLAS, not every detail of every function is provided here.  For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the {\em GraphBLAS C API Specification}.
However, including them here is not essential and the additional information on
the page might detract from a clearer view of the essential features of the
GraphBLAS functions.

This User Guide also assumes the reader is familiar with MATLAB/Octave.
MATLAB supports only the conventional plus-times semiring on sparse
double and complex matrices, but a MATLAB-like notation easily extends to the
arbitrary semirings used in GraphBLAS.  The matrix multiplication in the
example in the Introduction can be written in MATLAB notation as
\verb'C=A*B', if the Boolean \verb'OR-AND' semiring is understood.  Relying on
a MATLAB-like notation allows the description in this User Guide to be
expressive, easy to understand, and terse at the same time.  {\em The GraphBLAS
C API Specification} also makes use of some MATLAB-like language, such
as the colon notation.

MATLAB notation will always appear here in fixed-width font, such as
\verb'C=A*B(:,j)'.  In standard mathematical notation it would be written as
the matrix-vector multiplication ${\bf C = A b}_j$ where ${\bf b}_j$ is the
$j$th column of the matrix ${\bf B}$.  The GraphBLAS standard is a C API and
SuiteSparse:GraphBLAS is written in C, and so a great deal of C syntax appears
here as well, also in fixed-width font.  This User Guide alternates between all
three styles as needed.

%===============================================================================
\subsection{Graphs and sparse matrices} %=======================================
%===============================================================================
\label{sparse}

Graphs can be huge, with many nodes and edges.  A dense adjacency matrix ${\bf
A}$ for a graph of $n$ nodes takes $O(n^2)$ memory, which is impossible if $n$
is, say, a million.  Let $|{\bf A}|$ denote the number of entries in a matrix.
Most graphs arising in practice are sparse, however, with only $|{\bf A}|=O(n)$
edges, where $|{\bf A}|$ denotes the number of edges in the graph, or the
number of explicit entries present in the data structure for the matrix ${\bf
A}$.  Sparse graphs with millions of nodes and edges can easily be created by
representing them as sparse matrices, where only explicit values need to be
stored.  Some graphs are {\em hypersparse}, with ${|\bf A}| << n$.
SuiteSparse:GraphBLAS supports three kinds of sparse matrix formats: a regular
sparse format, taking $O(n+|{\bf A}|)$ space, a hypersparse format taking only
$O(|{\bf A}|)$ space, and a bitmap form, taking $O(n^2)$ space.  Full matrices
are also represented in $O(n^2)$ space.  Using its hypersparse format, creating
a sparse matrix of size $n$-by-$n$ where $n=2^{60}$ (about $10^{18}$) can be
done on quite easily on a commodity laptop, limited only by $|{\bf A}|$.
To the GraphBLAS user application, all matrices look alike, since these formats
are opaque, and SuiteSparse:GraphBLAS switches between them at will.

A sparse matrix data structure only stores a subset of the possible $n^2$
entries, and it assumes the values of entries not stored have some implicit
value.  In conventional linear algebra, this implicit value is zero, but it
differs with different semirings.  Explicit values are called {\em entries} and
they appear in the data structure.  The {\em pattern} (also called the
{\em structure}) of a matrix  defines where its explicit entries appear.  It
will be referenced in one of two equivalent ways.  It can be viewed as a set of
indices $(i,j)$, where $(i,j)$ is in the pattern of a matrix ${\bf A}$ if ${\bf
A}(i,j)$ is an explicit value.  It can also be viewed as a Boolean matrix ${\bf
S}$ where ${\bf S}(i,j)$ is true if $(i,j)$ is an explicit entry and false
otherwise.  In MATLAB notation, \verb'S=spones(A)' or \verb'S=(A~=0)', if the
implicit value is zero.  The \verb'(i,j)' pairs, and their values, can also be
extracted from the matrix via the MATLAB expression \verb'[I,J,X]=find(A)',
where the \verb'k'th tuple \verb'(I(k),J(k),X(k))' represents the explicit
entry \verb'A(I(k),J(k))', with numerical value \verb'X(k)' equal to $a_{ij}$,
with row index $i$=\verb'I(k)' and column index $j$=\verb'J(k)'.

The entries in the pattern of ${\bf A}$ can take on any value, including the
implicit value, whatever it happens to be.  This differs slightly from MATLAB,
which always drops all explicit zeros from its sparse matrices.  This is a
minor difference but GraphBLAS cannot drop explicit zeros.  For example, in the
max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning.  Here, the MATLAB notation used will assume that no
explicit entries are ever dropped because their explicit value happens to match
the implicit value.

{\em Graph Algorithms in the Language on Linear Algebra}, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations \cite{KepnerGilbert2011}.  For additional
background on sparse matrix algorithms, see also \cite{Davis06book} and
\cite{DavisRajamanickamSidLakhdar16}.

%===============================================================================
\subsection{Overview of GraphBLAS methods and operations} %=====================
%===============================================================================
\label{overview}

GraphBLAS provides a collection of {\em methods} to create, query, and free its
of objects: sparse matrices, sparse vectors, scalars, types, operators,
monoids, semirings, and a descriptor object used for parameter settings.
Details are given in Section~\ref{objects}.  Once these objects are created
they can be used in mathematical {\em operations} (not to be confused with the
how the term {\em operator} is used in GraphBLAS).  A short summary of these
operations and their nearest MATLAB/Octave analog is given in the table below.

% \vspace{0.1in}
\begin{tabular}{ll}
operation                           & approximate MATLAB/Octave analog \\
\hline
matrix multiplication               & \verb'C=A*B' \\
element-wise operations             & \verb'C=A+B' and \verb'C=A.*B' \\
reduction to a vector or scalar     & \verb's=sum(A)' \\
apply unary operator                & \verb'C=-A' \\
transpose                           & \verb"C=A'" \\
submatrix extraction                & \verb'C=A(I,J)' \\
submatrix assignment                & \verb'C(I,J)=A' \\
select                              & \verb'C=tril(A)' \\
\hline
\end{tabular}
\vspace{0.1in}

GraphBLAS can do far more than what MATLAB/Octave can do in these rough
analogs, but the list provides a first step in describing what GraphBLAS can
do.  Details of each GraphBLAS operation are given in Section~\ref{operations}.
With this brief overview, the full scope of GraphBLAS extensions of these
operations can now be described.

SuiteSparse:GraphBLAS has 13 built-in scalar types: Boolean, single and double
precision floating-point (real and complex), and 8, 16, 32, and 64-bit signed
and unsigned integers.  In addition, user-defined scalar types can be created
from nearly any C \verb'typedef', as long as the entire type fits in a
fixed-size contiguous block of memory (of arbitrary size).  All of these types
can be used to create GraphBLAS sparse matrices, vectors, or scalars.

The scalar addition of conventional matrix multiplication is replaced with a
{\em monoid}.  A monoid is an associative and commutative binary operator
\verb'z=f(x,y)' where all three domains are the same (the types of \verb'x',
\verb'y', and \verb'z'), and where the operator has an identity value \verb'id'
such that \verb'f(x,id)=f(id,x)=x'.  Performing matrix multiplication with a
semiring uses a monoid in place of the ``add'' operator, scalar addition being
just one of many possible monoids.  The identity value of addition is zero,
since $x+0=0+x=x$.   GraphBLAS includes many built-in operators suitable for
use as a monoid: min (with an identity value of positive infinity), max (whose
identity is negative infinity), add (identity is zero), multiply (with an
identity of one), four logical operators: AND, OR, exclusive-OR, and
Boolean equality (XNOR), four bitwise operators (AND, OR, XOR, and XNOR),
and the ANY operator
See Section~\ref{any_pair} for more details on the unusual ANY operator.
User-created monoids can be defined with any associative and
commutative operator that has an identity value.

Finally, a semiring can use any built-in or user-defined binary operator
\verb'z=f(x,y)' as its ``multiply'' operator, as long as the type of its
output, \verb'z' matches the type of the semiring's monoid.
The user application can create any semiring based on any types, monoids,
and multiply operators, as long these few rules are followed.

Just considering built-in types and operators, GraphBLAS can perform
\verb'C=A*B' in thousands of unique semirings.  With typecasting, any of these
semirings can be applied to matrices \verb'C', \verb'A', and \verb'B' of 13
predefined types, in any combination.  This results in millions of possible
kinds of sparse matrix multiplication supported by GraphBLAS, and this is
counting just built-in types and operators.  By contrast, MATLAB provides just
two semirings for its sparse matrix multiplication \verb'C=A*B':
plus-times-double and plus-times-complex, not counting the typecasting that
MATLAB does when multiplying a real matrix times a complex matrix.

A monoid can also be used in a reduction operation, like \verb's=sum(A)' in
MATLAB.  MATLAB provides the plus, times, min, and max reductions of a real or
complex sparse matrix as \verb's=sum(A)',  \verb's=prod(A)', \verb's=min(A)',
and \verb's=max(A)', respectively.  In GraphBLAS, any monoid can be used (min,
max, plus, times, AND, OR, exclusive-OR, equality, bitwise operators,
or any user-defined monoid on any user-defined type).

Element-wise operations are also expanded from what can be done in MATLAB.
Consider matrix addition, \verb'C=A+B' in MATLAB.  The pattern of the result is
the set union of the pattern of \verb'A' and \verb'B'.  In GraphBLAS, any
binary operator can be used in this set-union ``addition.''  The operator is
applied to entries in the intersection.  Entries in \verb'A' but not \verb'B',
or visa-versa, are copied directly into \verb'C', without any application of
the binary operator.  The accumulator operation for ${\bf Z = C \odot T}$
described in Section~\ref{accummask} is one example of this set-union
application of an arbitrary binary operator.

Consider element-wise multiplication, \verb'C=A.*B' in MATLAB.  The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of \verb'C' just this set intersection.  Entries in \verb'A' but not
\verb'B', or visa-versa, do not appear in \verb'C'.  In GraphBLAS, any binary
operator can be used in this manner, not just scalar multiplication.  The
difference between element-wise ``add'' and ``multiply'' is not the operators,
but whether or not the pattern of the result is the set union or the set
intersection.  In both cases, the operator is only applied to the set
intersection.

Finally, GraphBLAS includes a {\em non-blocking} mode where operations can be
left pending, and saved for later.  This is very useful for submatrix
assignment (\verb'C(I,J)=A' where \verb'I' and \verb'J' are integer vectors),
or scalar assignment (\verb'C(i,j)=x' where \verb'i' and \verb'j' are scalar
integers).  Because of how MATLAB stores its matrices, adding and deleting
individual entries is very costly.  For example, this is very slow in MATLAB,
taking $O(nz^2)$ time:

    \begin{mdframed}
    {\footnotesize
    \begin{verbatim}
    A = sparse (m,n) ;   % an empty sparse matrix
    for k = 1:nz
        compute a value x, row index i, and column index j
        A (i,j) = x ;
    end\end{verbatim}}\end{mdframed}

The above code is very easy read and simple to write, but exceedingly slow.  In
MATLAB, the method below is preferred and is far faster, taking at most
$O(|{\bf A}| \log |{\bf A}| +n)$ time.  It can easily be a million times faster
than the method above.  Unfortunately the second method below is a little
harder to read and a little less natural to write:

    \begin{mdframed}
    {\footnotesize
    \begin{verbatim}
    I = zeros (nz,1) ;
    J = zeros (nz,1) ;
    X = zeros (nz,1) ;
    for k = 1:nz
        compute a value x, row index i, and column index j
        I (k) = i ;
        J (k) = j ;
        X (k) = x ;
    end
    A = sparse (I,J,X,m,n) ;   \end{verbatim}} \end{mdframed}

GraphBLAS can do both methods.  SuiteSparse:GraphBLAS stores its matrices in a
format that allows for pending computations, which are done later in bulk, and
as a result it can do both methods above equally as fast as the MATLAB
\verb'sparse' function, allowing the user to write simpler code.

%===============================================================================
\subsection{The accumulator and the mask} %=====================================
%===============================================================================
\label{accummask}

Most GraphBLAS operations can be modified via transposing input matrices, using
an accumulator operator, applying a mask or its complement, and by clearing all
entries the matrix \verb'C' after using it in the accumulator operator but
before the final results are written back into it.  All of these steps are
optional, and are controlled by a descriptor object that holds parameter
settings (see Section~\ref{descriptor}) that control the following options:

\begin{itemize}
\item the input matrices \verb'A' and/or \verb'B' can be transposed first.

\item an accumulator operator can be used, like the plus in the statement
    \verb'C=C+A*B'.  The accumulator operator can be any binary operator, and
    an element-wise ``add'' (set union) is performed using the operator.

\item an optional {\em mask} can be used to selectively write the results to
    the output.  The mask is a sparse Boolean matrix \verb'Mask' whose size is
    the same size as the result.  If \verb'Mask(i,j)' is true, then the
    corresponding entry in the output can be modified by the computation.  If
    \verb'Mask(i,j)' is false, then the corresponding in the output is
    protected and cannot be modified by the computation.  The \verb'Mask'
    matrix acts exactly like logical matrix indexing in MATLAB, with one
    minor difference: in GraphBLAS notation, the mask operation is $\bf C
    \langle M \rangle = Z$, where the mask $\bf M$ appears only on the
    left-hand side.  In MATLAB, it would appear on both sides as
    \verb'C(Mask)=Z(Mask)'.  If no mask is provided, the \verb'Mask' matrix is
    implicitly all true.  This is indicated by passing the value
    \verb'GrB_NULL' in place of the \verb'Mask' argument in GraphBLAS
    operations.

\end{itemize}

\noindent
This process can be described in mathematical notation as:
    \vspace{-0.2in}
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> ${\bf A = A}^{\sf T}$, if requested via descriptor (first input option) \\
    \> ${\bf B = B}^{\sf T}$, if requested via descriptor (second input option) \\
    \> ${\bf T}$ is computed according to the specific operation  \\
    \> ${\bf C \langle M \rangle = C \odot T}$,
        accumulating and writing the results back via the mask
    \end{tabbing} }
\noindent
The application of the mask and the accumulator operator is written as
${\bf C \langle M \rangle = C \odot T}$ where ${\bf Z = C \odot T}$ denotes the
application of the accumulator operator, and
${\bf C \langle M \rangle = Z}$
denotes the mask operator via the Boolean matrix ${\bf M}$.  The Accumulator
Phase, ${\bf Z = C \odot T}$, is performed as follows:

    % \vspace{-0.2in}
    % accum: Z = C odot T
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> {\bf Accumulator Phase}: compute ${\bf Z = C \odot T}$: \\
    \> \> if \verb'accum' is \verb'NULL' \\
    \> \>\>    ${\bf Z = T}$ \\
    \> \> else \\
    \> \>\>    ${\bf Z = C \odot T}$
    \end{tabbing}}
The accumulator operator is $\odot$ in GraphBLAS notation, or \verb'accum'
in the code.  The pattern of ${\bf C \odot T}$ is the set union of the
patterns of ${\bf C}$ and ${\bf T}$, and the operator is applied only on the
set intersection of ${\bf C}$ and ${\bf T}$.  Entries in neither the pattern
of ${\bf C}$ nor ${\bf T}$ do not appear in the pattern of ${\bf Z}$.  That is:
    % \newpage
    \vspace{-0.2in}
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> for all entries $(i,j)$ in ${\bf C \cap T}$
    (that is, entries in both ${\bf C}$ and ${\bf T}$) \\
    \> \> $z_{ij} = c_{ij} \odot t_{ij}$ \\
    \> for all entries $(i,j)$ in ${\bf C \setminus T}$
    (that is, entries in ${\bf C}$ but not ${\bf T}$) \\
    \> \> $z_{ij} = c_{ij}$ \\
    \> for all entries $(i,j)$ in ${\bf T \setminus C}$
    (that is, entries in ${\bf T}$ but not ${\bf C}$) \\
    \> \> $z_{ij} = t_{ij}$
    \end{tabbing} }
The Accumulator Phase is followed by the Mask/Replace Phase,
${\bf C \langle M \rangle = Z}$
as controlled by the \verb'GrB_REPLACE' and \verb'GrB_COMP' descriptor options:
    \vspace{-0.2in}
    % mask/replace/scmp: C<M> = Z
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \>{\bf Mask/Replace Phase}: compute ${\bf C \langle M \rangle = Z}$: \\
    \> \> if (\verb'GrB_REPLACE') delete all entries in ${\bf C}$ \\
    \> \> if \verb'Mask' is \verb'NULL' \\
    \> \>\>    if (\verb'GrB_COMP') \\
    \> \>\>\>      ${\bf C}$ is not modified \\
    \> \>\>    else \\
    \> \>\>\>      ${\bf C = Z}$ \\
    \> \> else \\
    \> \>\>    if (\verb'GrB_COMP') \\
    \> \>\>\>      ${\bf C \langle \neg M \rangle  = Z}$ \\
    \> \>\>    else \\
    \> \>\>\>      ${\bf C \langle M \rangle  = Z}$
    \end{tabbing} }
Both phases of the accum/mask process are illustrated in MATLAB notation in
Figure~\ref{fig_accummask}.

\begin{figure}
\begin{mdframed}[leftmargin=-0.4in,userdefinedwidth=5.8in]
{\footnotesize
\begin{verbatim}
function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)
[m n] = size (C.matrix) ;
Z.matrix  = zeros (m, n) ;
Z.pattern = false (m, n) ;

if (isempty (accum))
   Z = T ;     % no accum operator
else
   % Z = accum (C,T), like Z=C+T but with an binary operator, accum
   p =  C.pattern &  T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));
   p =  C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;
   p = ~C.pattern &  T.pattern ; Z.matrix (p) = T.matrix (p) ;
   Z.pattern = C.pattern | T.pattern ;
end

% apply the mask to the values and pattern
C.matrix  = mask (C.matrix,  Mask, Z.matrix,  C_replace, Mask_complement) ;
C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;
end

function C = mask (C, Mask, Z, C_replace, Mask_complement)
% replace C if requested
if (C_replace)
   C (:,:) = 0 ;
end
if (isempty (Mask))             % if empty, Mask is implicit ones(m,n)
   % implicitly, Mask = ones (size (C))
   if (~Mask_complement)
      C = Z ;                   % this is the default
   else
      C = C ;                   % Z need never have been computed
   end
else
   % apply the mask
   if (~Mask_complement)
      C (Mask) = Z (Mask) ;
   else
      C (~Mask) = Z (~Mask) ;
   end
end
end \end{verbatim} }
\end{mdframed}
\caption{Applying the mask and accumulator, ${\bf C \langle M \rangle = C \odot T}$\label{fig_accummask}}
\end{figure}

A GraphBLAS operation starts with its primary
computation, producing a result \verb'T'; for matrix multiply, \verb'T=A*B', or
if \verb'A' is transposed first, \verb"T=A'*B", for example.  Applying the
accumulator, mask (or its complement) to obtain the final result matrix
\verb'C' can be expressed in the MATLAB \verb'accum_mask' function shown in the
figure.  This function is an exact, fully functional, and nearly-complete
description of the GraphBLAS accumulator/mask operation.  The only aspects it
does not consider are typecasting (see Section~\ref{typecasting}), and the
value of the implicit identity (for those, see another version in the
\verb'Test' folder).

One aspect of GraphBLAS cannot be as easily expressed in a MATLAB sparse
matrix: namely, what is the implicit value of entries not in the pattern?  To
accommodate this difference in the \verb'accum_mask' MATLAB function, each
sparse matrix \verb'A' is represented with its values \verb'A.matrix' and its
pattern, \verb'A.pattern'.  The latter could be expressed as the sparse matrix
\verb'A.pattern=spones(A)' or \verb'A.pattern=(A~=0)' in MATLAB, if the
implicit value is zero.  With different semirings, entries not in the pattern
can be \verb'1', \verb'+Inf', \verb'-Inf', or whatever is the identity value of
the monoid.  As a result, Figure~\ref{fig_accummask} performs its computations
on two MATLAB matrices: the values in \verb'A.matrix' and the pattern in the
logical matrix \verb'A.pattern'.  Implicit values are untouched.

The final computation in Figure~\ref{fig_accummask}  with a complemented
\verb'Mask' is easily expressed in MATLAB as \verb'C(~Mask)=Z(~Mask)' but this
is costly if \verb'Mask' is very sparse (the typical case).  It can be computed
much faster in MATLAB without complementing the sparse \verb'Mask' via:

        {\footnotesize
        \begin{verbatim}
        R = Z ; R (Mask) = C (Mask) ; C = R ; \end{verbatim} }

A set of MATLAB functions that precisely compute the ${\bf C \langle M \rangle
= C \odot T}$ operation according to the full GraphBLAS specification is
provided in SuiteSparse:GraphBLAS as \verb'GB_spec_accum.m', which computes
${\bf Z=C\odot T}$, and \verb'GB_spec_mask.m', which computes ${\bf C \langle M
\rangle = Z}$.  SuiteSparse:GraphBLAS includes a complete list of
\verb'GB_spec_*' functions that illustrate every GraphBLAS operation.

The methods in Figure~\ref{fig_accummask} rely heavily on MATLAB's logical
matrix indexing.  For those unfamiliar with logical indexing in MATLAB, here is
short summary.  Logical matrix indexing in MATLAB is written as \verb'A(Mask)'
where \verb'A' is any matrix and \verb'Mask' is a logical matrix the same size
as \verb'A'.  The expression \verb'x=A(Mask)' produces a column vector \verb'x'
consisting of the entries of \verb'A' where \verb'Mask' is true.  On the
left-hand side, logical submatrix assignment \verb'A(Mask)=x' does the
opposite, copying the components of the vector \verb'x' into the places in
\verb'A' where \verb'Mask' is true.  For example, to negate all values greater
than 10 using logical indexing in MATLAB:

    \begin{mdframed}
    {\footnotesize
    \begin{verbatim}
    >> A = magic (4)
    A =
        16     2     3    13
         5    11    10     8
         9     7     6    12
         4    14    15     1
    >> A (A>10) = - A (A>10)
    A =
       -16     2     3   -13
         5   -11    10     8
         9     7     6   -12
         4   -14   -15     1 \end{verbatim} } \end{mdframed}

In MATLAB, logical indexing with a sparse matrix \verb'A' and sparse logical
matrix \verb'Mask' is a built-in method.  The Mask operator in GraphBLAS works
identically as sparse logical indexing in MATLAB, but is typically far faster
in SuiteSparse:GraphBLAS than the same operation using MATLAB sparse matrices.

%===============================================================================
\subsection{Typecasting} %======================================================
%===============================================================================
\label{typecasting}

If an operator \verb'z=f(x)' or \verb'z=f(x,y)' is used with inputs that do not
match its inputs \verb'x' or \verb'y', or if its result \verb'z' does not match
the type of the matrix it is being stored into, then the values are typecasted.
Typecasting in GraphBLAS extends beyond just operators.  Almost all GraphBLAS
methods and operations are able to typecast their results, as needed.

If one type can be typecasted into the other, they are said to be {\em
compatible}.  All built-in types are compatible with each other.  GraphBLAS
cannot typecast user-defined types thus any user-defined type is only
compatible with itself.  When GraphBLAS requires inputs of a specific type, or
when one type cannot be typecast to another, the GraphBLAS function returns an
error code, \verb'GrB_DOMAIN_MISMATCH' (refer to Section~\ref{error} for a
complete list of error codes).  Typecasting can only be done between built-in
types, and it follows the rules of the ANSI C language (not MATLAB) wherever
the rules of ANSI C are well-defined.

However, unlike MATLAB, the ANSI C11 language specification states that the
results of typecasting a \verb'float' or \verb'double' to an integer type is
not always defined.  In SuiteSparse:GraphBLAS, whenever C leaves the result
undefined the rules used in MATLAB are followed.  In particular \verb'+Inf'
converts to the largest integer value, \verb'-Inf' converts to the smallest
(zero for unsigned integers), and \verb'NaN' converts to zero.  Positive values
outside the range of the integer are converted to the largest positive integer,
and negative values less than the most negative integer are converted to that
most negative integer.  Other than these special cases, SuiteSparse:GraphBLAS
trusts the C compiler for the rest of its typecasting.

Typecasting to \verb'bool' is fully defined in the C language specification,
even for \verb'NaN'.  The result is \verb'false' if the value compares equal to
zero, and true otherwise.  Thus \verb'NaN' converts to \verb'true'.  This is
unlike MATLAB, which does not allow a typecast of a \verb'NaN' to the MATLAB
logical type.

\begin{alert}
{\bf SPEC:} the GraphBLAS API C Specification states that typecasting follows
the rules of ANSI C.  Yet C leaves some typecasting undefined.  All typecasting
between built-in types in SuiteSparse:GraphBLAS is precisely defined, as an
extension to the specification.
\end{alert}

\begin{alert}
{\bf SPEC:} Some functions do not make use of all of their inputs; in
particular the binary operators \verb'FIRST', \verb'SECOND', and \verb'ONEB',
and many of the index unary operators.  The Specification requires that the
inputs to these operators must be compatible with (that is, can be typecasted
to) the inputs to the operators, even if those inputs are not used and no
typecasting would ever occur.  As an extension to the specification,
SuiteSparse:GraphBLAS does not perform this error check on unused inputs of
built-in operators.  For example, the \verb'GrB_FIRST_INT64' operator can be
used in \verb'GrB_eWiseAdd(C,..,A,B,...)' on a matrix \verb'B' of any type,
including user-defined types.  For this case, the matrix \verb'A' must be
compatible with \verb'GrB_INT64'.
\end{alert}

%===============================================================================
\subsection{Notation and list of GraphBLAS operations} %========================
%===============================================================================
\label{list}

As a summary of what GraphBLAS can do, the following table lists all GraphBLAS
operations.  Upper case letters denote a matrix, lower case letters are
vectors, and ${\bf AB}$ denote the multiplication of two matrices over a
semiring.

Each operation takes an optional \verb'GrB_Descriptor' argument that modifies
the operation.  The input matrices ${\bf A}$ and ${\bf B}$ can be optionally
transposed, the mask ${\bf M}$ can be complemented, and ${\bf C}$ can be
cleared of its entries after it is used in ${\bf Z = C \odot T}$ but before
the ${\bf C \langle M \rangle = Z}$ assignment.
Vectors are never transposed via the descriptor.

Let ${\bf A \oplus B}$ denote the element-wise operator that produces a set
union pattern (like \verb'A+B' in MATLAB).  Any binary operator can be used
this way in GraphBLAS, not just plus.  Let ${\bf A \otimes B}$ denote the
element-wise operator that produces a set intersection pattern (like
\verb'A.*B' in MATLAB); any binary operator can be used this way, not just
times.

Reduction of a matrix ${\bf A}$ to a vector reduces the $i$th row of ${\bf A}$
to a scalar $w_i$.  This is like \verb"w=sum(A')" since by default, MATLAB
reduces down the columns, not across the rows.

\vspace{0.05in}
{\footnotesize
\begin{tabular}{lll}
\hline
\verb'GrB_mxm'       & matrix-matrix multiply  & ${\bf C \langle M \rangle = C \odot AB}$ \\
\verb'GrB_vxm'       & vector-matrix multiply  & ${\bf w^{\sf T}\langle m^{\sf T}\rangle = w^{\sf T}\odot u^{\sf T}A}$ \\
\verb'GrB_mxv'       & matrix-vector multiply  & ${\bf w \langle m \rangle = w \odot Au}$ \\
\hline
\verb'GrB_eWiseMult' & element-wise,           & ${\bf C \langle M \rangle = C \odot (A \otimes B)}$ \\
                     & set intersection        & ${\bf w \langle m \rangle = w \odot (u \otimes v)}$ \\
\hline
\verb'GrB_eWiseAdd'  & element-wise,           & ${\bf C \langle M \rangle = C \odot (A \oplus  B)}$ \\
                     & set union               & ${\bf w \langle m \rangle = w \odot (u \oplus  v)}$ \\
\hline
\verb'GxB_eWiseUnion'& element-wise,           & ${\bf C \langle M \rangle = C \odot (A \oplus  B)}$ \\
                     & set union               & ${\bf w \langle m \rangle = w \odot (u \oplus  v)}$ \\
\hline
\verb'GrB_extract'   & extract submatrix       & ${\bf C \langle M \rangle = C \odot A(I,J)}$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot u(i)}$ \\
\hline
\verb'GxB_subassign' & assign submatrix        & ${\bf C (I,J) \langle M \rangle = C(I,J) \odot A}$ \\
                     & (with submask for ${\bf C(I,J)}$)
                                               & ${\bf w (i)   \langle m \rangle = w(i)   \odot u}$ \\
\hline
\verb'GrB_assign'    & assign submatrix        & ${\bf C \langle M \rangle (I,J) = C(I,J) \odot A}$ \\
                     & (with mask for ${\bf C}$)
                                               & ${\bf w \langle m \rangle (i)   = w(i)   \odot u}$ \\
\hline
\verb'GrB_apply'     & apply unary operator    & ${\bf C \langle M \rangle = C \odot} f{\bf (A)}$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f{\bf (u)}$ \\
                     & apply binary operator   & ${\bf C \langle M \rangle = C \odot} f({\bf A},y)$ \\
                     &                         & ${\bf C \langle M \rangle = C \odot} f(x,{\bf A})$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f({\bf u},y)$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f(x,{\bf u})$ \\
                     & apply index-unary op    & ${\bf C \langle M \rangle = C \odot} f({\bf A},i,j,k)$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f({\bf u},i,0,k)$ \\
\hline
\verb'GrB_select'    & select entries          & ${\bf C \langle M \rangle = C \odot} \mbox{select}({\bf A},i,j,k)$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} \mbox{select}({\bf u},i,0,k)$ \\
\hline
\verb'GrB_reduce'    & reduce to vector        & ${\bf w \langle m \rangle = w \odot} [{\oplus}_j {\bf A}(:,j)]$ \\
                     & reduce to scalar        & $s = s \odot [{\oplus}_{ij}  {\bf A}(i,j)]$ \\
\hline
\verb'GrB_transpose' & transpose               & ${\bf C \langle M \rangle = C \odot A^{\sf T}}$ \\
\hline
\verb'GrB_kronecker' & Kronecker product       & ${\bf C \langle M \rangle = C \odot \mbox{kron}(A, B)}$ \\
\hline
\end{tabular}
}
\vspace{0.15in}

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Interfaces to MATLAB, Octave, Python, Julia, Java} %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The MATLAB/Octave interface to SuiteSparse:GraphBLAS is included with this
distribution, described in Section~\ref{octave}.
It is fully polished, and fully tested, but does have
some limitations that will be addressed in future releases.
Two Python interfaces are now available, as is a
Julia interface.  These are not part of the SuiteSparse:GraphBLAS distribution.
See the links below (see Sections \ref{python} and \ref{julia}).

%===============================================================================
\subsection{MATLAB/Octave Interface}
%===============================================================================
\label{octave}

An easy-to-use MATLAB/Octave interface for SuiteSparse:GraphBLAS is available;
see the documentation in the \verb'GraphBLAS/GraphBLAS' folder for details.
Start with the \verb'README.md' file in that directory.  An easy-to-read output
of the MATLAB demos can be found in \verb'GraphBLAS/GraphBLAS/demo/html'.

The MATLAB/Octave interface adds the \verb'@GrB' class, which is an opaque
MATLAB/Octave object that contains a GraphBLAS matrix, either double or single
precision (real or complex), boolean, or any of the built-in integer types.
MATLAB/Octave sparse and full matrices can be arbitrarily mixed with GraphBLAS
matrices.  The following overloaded operators and methods all work as you would
expect for any matrix.  The matrix multiplication \verb'A*B' uses the
conventional \verb'PLUS_TIMES' semiring.

{\footnotesize
\begin{verbatim}
    A+B    A-B   A*B    A.*B   A./B   A.\B   A.^b    A/b    C=A(I,J)
    -A     +A    ~A     A'     A.'    A&B    A|B     b\A    C(I,J)=A
    A~=B   A>B   A==B   A<=B   A>=B   A<B    [A,B]   [A;B]  A(1:end,1:end) \end{verbatim}}

For a list of overloaded operations and static methods, type
\verb'methods GrB' in MATLAB/Octave, or \verb'help GrB' for more details.

{\bf Limitations:}
Some features for MATLAB/Octave sparse matrices are not yet available for
GraphBLAS matrices.  Some of these may be added in future releases.

\begin{packed_itemize}
    \item \verb'GrB' matrices with dimension larger than \verb'2^53' do not
        display properly in the \verb'whos' command.  The size is displayed
        correctly with \verb'disp' or \verb'display'.
    \item Non-blocking mode is not exploited.
        % ; this would require
        % a MATLAB/Octave mexFunction to modify its inputs, which is
        % technically possible but not permitted by the MATLAB/Octave API.
        % This can have significant impact on performance, if an
        % m-file makes many repeated tiny changes to a matrix.  This 
        % can be done in the C API but not MATLAB/Octave.
    \item Linear indexing: \verb'A(:)' for a 2D matrix, and \verb'I=find(A)'.
    \item Singleton expansion.
    \item Dynamically growing arrays, where \verb'C(i)=x' can increase
        the size of \verb'C'.
    \item Saturating element-wise binary and unary operators for integers.
        For \verb'C=A+B' with MATLAB \verb'uint8' matrices, results
        saturate if they exceed 255.  This is not compatible with
        a monoid for \verb'C=A*B', and thus MATLAB does not support
        matrix-matrix multiplication with \verb'uint8' matrices.
        In GraphBLAS, \verb'uint8' addition acts in a modulo fashion.
    \item Solvers, so that \verb'x=A\b' could return a GF(2) solution,
        for example.
    \item Sparse matrices with dimension higher than 2.
\end{packed_itemize}

%===============================================================================
\subsection{Python Interface}
%===============================================================================
\label{python}

See Michel Pelletier's Python interface at
\url{https://github.com/michelp/pygraphblas};
it also appears at
\url{https://anaconda.org/conda-forge/pygraphblas}.

See Jim Kitchen and Erik Welch's (both from Anaconda, Inc.) Python interface at
\url{https://github.com/python-graphblas/python-graphblas} (formerly known as grblas).
See also \\
\url{https://anaconda.org/conda-forge/graphblas}.

Both of them allow for pending work to be left pending in a \verb'GrB_Matrix'.

%===============================================================================
\subsection{Julia Interface}
%===============================================================================
\label{julia}

The Julia interface is at
\url{https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl}, developed by Will
Kimmerer, Abhinav Mehndiratta, Miha Zgubic, and Viral Shah.  
Unlike the MATLAB/Octave interface (and like the Python interfaces) the Julia 
interface can keep pending work (zombies, pending tuples, jumbled state) in
a \verb'GrB_Matrix'. This makes Python and Julia the best high-level interfaces
for SuiteSparse:GraphBLAS.  MATLAB is not as well suited, since it does not
allow inputs to a function or mexFunction to be modified, so any pending
work must be finished before a matrix can be used as input.

%===============================================================================
\subsection{Java Interface}
%===============================================================================
\label{java}

Fabian Murariu is working on a Java interface.
See \newline
\url{https://github.com/fabianmurariu/graphblas-java-native}.

%===============================================================================
\section{Performance of MATLAB versus GraphBLAS}
%===============================================================================
\label{matlab_performance}

MATLAB R2021a includes v3.3 of SuiteSparse:GraphBLAS as a built-in library, but
uses it only for \verb'C=A*B' when both \verb'A' and \verb'B' are sparse.  In
prior versions of MATLAB, \verb'C=A*B' relied on the \verb'SFMULT' and
\verb'SSMULT' packages in SuiteSparse, which are single-threaded (also written
by this author).  The GraphBLAS \verb'GrB_mxm' is up to 30x faster on a 20-core
Intel Xeon, compared with \verb'C=A*B' in MATLAB R2020b and earlier.  With
MATLAB R2021a and later, the performance of \verb'C=A*B' when using MATLAB
sparse matrices is identical to the performance for GraphBLAS matrices, since
the same code is being used by both (\verb'GrB_mxm').

Other methods in GraphBLAS are also faster, some {\em extremely} so, but are
not yet exploited as built-in operations MATLAB.  In particular, the statement
\verb'C(M)=A' (where \verb'M' is a logical matrix) takes under a second for a
large sparse problem when using GraphBLAS via its \verb'@GrB' interface.  By
stark contrast, MATLAB would take about 4 or 5 days, a speedup of about
500,000x.  For a smaller problem, GraphBLAS takes 0.4 seconds while MATLAB
takes 28 hours (a speedup of about 250,000x).  Both cases use the same
statement with the same syntax (\verb'C(M)=A') and compute exactly the same
result.  Below are the results for \verb'n'-by-\verb'n' matrices in GraphBLAS
v5.0.6 and MATLAB R2020a, on a Dell XPS13 laptop (16GB RAM, Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz with 4 hardware cores).  GraphBLAS is using 4 threads.

\vspace{0.10in}
{\scriptsize
\begin{tabular}{rrr|rrr}
\hline
\verb'n'    & \verb'nnz(C)' & \verb'nnz(M)' & GraphBLAS (sec) & MATLAB (sec) & speedup \\
\hline
2,048        & 20,432         & 2,048          & 0.005     & 0.024     & 4.7 \\
4,096        & 40,908         & 4,096          & 0.003     & 0.115     & 39 \\
8,192        & 81,876         & 8,191          & 0.009     & 0.594     & 68 \\
16,384       & 163,789        & 16,384         & 0.009     & 2.53      & 273 \\
32,768       & 327,633        & 32,767         & 0.014     & 12.4      & 864 \\
65,536       & 655,309        & 65,536         & 0.025     & 65.9      & 2,617 \\
131,072      & 1,310,677      & 131,070        & 0.055     & 276.2     & 4,986 \\
262,144      & 2,621,396      & 262,142        & 0.071     & 1,077     & 15,172 \\
524,288      & 5,242,830      & 524,288        & 0.114     & 5,855     & 51,274 \\
1,048,576    & 10,485,713     & 1,048,576      & 0.197     & 27,196    & 137,776 \\
2,097,152    & 20,971,475     & 2,097,152      & 0.406     & 100,799   & 248,200 \\
4,194,304    & 41,942,995     & 4,194,304      & 0.855  & 4 to 5 days? & 500,000?\\
\hline
\end{tabular}}
\vspace{0.10in}

The assignment \verb'C(I,J)=A' in MATLAB, when using \verb'@GrB' objects, is up
to 1000x faster than the same statement with the same syntax, when using MATLAB
sparse matrices instead.  Matrix concatenation \verb'C = [A B]' is about 17
times faster in GraphBLAS, on a 20-core Intel Xeon.  For more details, see the
\verb'GraphBLAS/GraphBLAS/demo' folder and its contents.

Below is a comparison of other methods in SuiteSparse:GraphBLAS, compared with
MATLAB 2021a.  SuiteSparse:GraphBLAS: v6.1.4 (Jan 12, 2022), was used, compiled
with gcc 11.2.0.  The system is an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
(20 hardware cores, 40 threads), Ubuntu 20.04, 256GB RAM.  Full details appear
in the \verb'GraphBLAS/GraphBLAS/demo/benchmark' folder.  For this matrix,
SuiteSparse:GraphBLAS is anywhere from 3x to 17x faster than the built-in
methods in MATLAB.  This matrix is not special, but is typical of the relative
performance of many large matrices.  Note that two of these (\verb'C=L*S' and
\verb'C=S*R') rely on an older version of SuiteSparse:GraphBLAS (v3.3.3) built
into MATLAB R2021a.

{\footnotesize
\begin{verbatim}
    Legend:
    S: large input sparse matrix (n-by-n), the GAP-twitter matrix
    x: dense vector (1-by-n or n-by-1)
    F: dense matrix (4-by-n or n-by-4)
    L: 8-by-n sparse matrix, about 1000 entries
    R: n-by-8 sparse matrix, about 1000 entries
    B: n-by-n sparse matrix, about nnz(S)/10 entries
    p,q: random permutation vectors

    GAP/GAP-twitter: n: 61.5784 million nnz: 1468.36 million
    (run time in seconds):
    y=S*x:   MATLAB:  22.8012 GrB:   2.4018 speedup:     9.49
    y=x*S:   MATLAB:  16.1618 GrB:   1.1610 speedup:    13.92
    C=S*F:   MATLAB:  30.6121 GrB:   9.7052 speedup:     3.15
    C=F*S:   MATLAB:  26.4044 GrB:   1.5245 speedup:    17.32
    C=L*S:   MATLAB:  19.1228 GrB:   2.4301 speedup:     7.87
    C=S*R:   MATLAB:   0.0087 GrB:   0.0020 speedup:     4.40
    C=S'     MATLAB: 224.7268 GrB:  22.6855 speedup:     9.91
    C=S+S:   MATLAB:  14.3368 GrB:   1.5539 speedup:     9.23
    C=S+B:   MATLAB:  15.5600 GrB:   1.5098 speedup:    10.31
    C=S(p,q) MATLAB:  95.6219 GrB:  15.9468 speedup:     6.00    \end{verbatim}
}

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Context and Sequence} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{context}

A user application that directly relies on GraphBLAS must include the
\verb'GraphBLAS.h' header file:

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
    #include "GraphBLAS.h"
\end{verbatim}
} \end{mdframed}

The \verb'GraphBLAS.h' file defines functions, types, and macros prefixed with
\verb'GrB_' and \verb'GxB_' that may be used in user applications.  The prefix
\verb'GrB_' denotes items that appear in the official {\em GraphBLAS C API
Specification}.  The prefix \verb'GxB_' refers to SuiteSparse-specific
extensions to the GraphBLAS API.

The \verb'GraphBLAS.h' file includes all the definitions required to use
GraphBLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.

There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the {\em GraphBLAS C API Specification} it
conforms to, and the version of the implementation itself.  These can
be used in the following manner in a user application:

{\footnotesize
\begin{verbatim}
    #if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)
    ... use features in GraphBLAS specification 2.0.3 ...
    #else
    ... only use features in early specifications
    #endif

    #if GxB_IMPLEMENTATION >= GxB_VERSION (5,2,0)
    ... use features from version 5.2.0 (or later)
    of a specific GraphBLAS implementation
    #endif \end{verbatim}}

SuiteSparse:GraphBLAS also defines the following strings with \verb'#define'.
Refer to the \verb'GraphBLAS.h' file for details.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
Macro                & purpose                                      \\
\hline
\verb'GxB_IMPLEMENTATION_ABOUT'
    & this particular implementation, copyright, and URL \\
\verb'GxB_IMPLEMENTATION_DATE'
    & the date of this implementation \\
\verb'GxB_SPEC_ABOUT'
    & the GraphBLAS specification for this implementation \\
\verb'GxB_SPEC_DATE'
    & the date of the GraphBLAS specification \\
\verb'GxB_IMPLEMENTATION_LICENSE'
    & the license for this particular implementation \\
\hline
\end{tabular}
}
\vspace{0.2in}

Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
\verb'GxB_SUITESPARSE_GRAPHBLAS' that the user application can use in
\verb'#ifdef' tests. This is helpful in case a particular implementation
provides non-standard features that extend the GraphBLAS specification, such as
additional predefined built-in operators, or if a GraphBLAS implementation does
not yet fully implement all of the GraphBLAS specification. 

For example, SuiteSparse:GraphBLAS predefines additional built-in operators not
in the specification.  If the user application wishes to use these in any
GraphBLAS implementation, an \verb'#ifdef' can control when they are used.
Refer to the examples in the \verb'GraphBLAS/Demo' folder.

As another example, the GraphBLAS API states that an
implementation need not define the order in which \verb'GrB_Matrix_build'
assembles duplicate tuples in its \verb'[I,J,X]' input arrays.  As a result, no
particular ordering should be relied upon in general.  However,
SuiteSparse:GraphBLAS does guarantee an ordering, and this guarantee will be
kept in future versions of SuiteSparse:GraphBLAS as well.  Since not all
implementations will ensure a particular ordering, the following can be used to
exploit the ordering returned by SuiteSparse:GraphBLAS.

    {\footnotesize
    \begin{verbatim}
    #ifdef GxB_SUITESPARSE_GRAPHBLAS
    // duplicates in I, J, X assembled in a specific order;
    // results are well-defined even if op is not associative.
    GrB_Matrix_build (C, I, J, X, nvals, op) ;
    #else
    // duplicates in I, J, X assembled in no particular order;
    // results are undefined if op is not associative.
    GrB_Matrix_build (C, I, J, X, nvals, op) ;
    #endif \end{verbatim}}

The remainder of this section describes GraphBLAS functions that start or finalize GraphBLAS,
error handling, and the GraphBLAS integer.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function/type   & purpose                                 & Section \\
\hline
\verb'GrB_Index'     & the GraphBLAS integer                        & \ref{grbindex} \\
\verb'GrB_init'      & start up GraphBLAS                           & \ref{init} \\
\verb'GrB_getVersion'& C API supported by the library               & \ref{getVersion} \\
\verb'GxB_init'      & start up GraphBLAS with different \verb'malloc' & \ref{xinit} \\
\verb'GrB_Info'      & status code returned by GraphBLAS functions  & \ref{info} \\
\verb'GrB_error'     & get more details on the last error           & \ref{error} \\
\verb'GrB_finalize'  & finish GraphBLAS                             & \ref{finalize} \\
\hline
\end{tabular}
}
\vspace{0.2in}

%===============================================================================
\subsection{{\sf GrB\_Index:} the GraphBLAS integer} %==========================
%===============================================================================
\label{grbindex}

Matrix and vector dimensions and indexing rely on a specific integer,
\verb'GrB_Index', which is defined in \verb'GraphBLAS.h' as

    {\footnotesize
    \begin{verbatim}
    typedef uint64_t GrB_Index ; \end{verbatim}}

Row and column indices of an \verb'nrows'-by-\verb'ncols' matrix range from
zero to the \verb'nrows-1' for the rows, and zero to \verb'ncols-1' for the
columns.  Indices are zero-based, like C, and not one-based, like
MATLAB/Octave.  In SuiteSparse:GraphBLAS, the largest permitted index value
is \verb'GrB_INDEX_MAX', defined as $2^{60}-1$.  The largest permitted
matrix or vector dimension is $2^{60}$ (that is, \verb'GrB_INDEX_MAX+1').
The largest \verb'GrB_Matrix' that
SuiteSparse: GraphBLAS can construct is thus $2^{60}$-by-$2^{60}$.  An
$n$-by-$n$ matrix $\bf A$ that size can easily be constructed in practice with
$O(|{\bf A}|)$ memory requirements, where $|{\bf A}|$ denotes the number of
entries that explicitly appear in the pattern of ${\bf A}$.  The time and
memory required to construct a matrix that large does not depend on $n$, since
SuiteSparse:GraphBLAS can represent ${\bf A}$ in hypersparse form (see
Section~\ref{hypersparse}).  The largest \verb'GrB_Vector' that can be
constructed is $2^{60}$-by-1.

%===============================================================================
\subsection{{\sf GrB\_init:} initialize GraphBLAS} %============================
%===============================================================================
\label{init}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
typedef enum
{
    GrB_NONBLOCKING = 0,    // methods may return with pending computations
    GrB_BLOCKING = 1        // no computations are ever left pending
}
GrB_Mode ;
\end{verbatim}
}\end{mdframed}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_init           // start up GraphBLAS
(
    GrB_Mode mode           // blocking or non-blocking mode
) ;
\end{verbatim}
}\end{mdframed}

\hypertarget{link:init}{\mbox{ }}%
\verb'GrB_init' must be called before any other GraphBLAS operation.  It
defines the mode that GraphBLAS will use:  blocking or non-blocking.  With
blocking mode, all operations finish before returning to the user application.
With non-blocking mode, operations can be left pending, and are computed only
when needed.  Non-blocking mode can be much faster than blocking mode, by many
orders of magnitude in extreme cases.  Blocking mode should be used only when
debugging a user application.  The mode cannot be changed once it is set by
\verb'GrB_init'.

GraphBLAS objects are opaque.  This allows GraphBLAS to
postpone operations and then do them later in a more efficient manner by
rearranging them and grouping them together.  In non-blocking mode, the
computations required to construct an opaque GraphBLAS object might not be
finished when the GraphBLAS method or operation returns to the user.  However,
user-provided arrays are not opaque, and GraphBLAS methods and operations that
read them (such as \verb'GrB_Matrix_build') or write to them (such as
\verb'GrB_Matrix_extractTuples') always finish reading them, or creating them,
when the method or operation returns to the user application.

All methods and operations that extract values from a GraphBLAS object and
return them into non-opaque user arrays always ensure that the user-visible
arrays are fully populated when they return: \verb'GrB_*_reduce' (to scalar),
\verb'GrB_*_nvals', \verb'GrB_*_extractElement', and
\verb'GrB_*_extractTuples'.  These functions do {\em not} guarantee that the
opaque objects they depend on are finalized.  To do that, use
\verb'GrB_wait' instead.

SuiteSparse:GraphBLAS is multithreaded internally, via OpenMP, and it is also
safe to use in a multithreaded user application.  See Section~\ref{sec:install}
for details.
User threads must not operate on the same matrices at the same time, with one
exception.  Multiple user threads can use the same matrices or vectors as
read-only inputs to GraphBLAS operations or methods, but only if they have no
pending operations (use \verb'GrB_wait'
first).  User threads cannot simultaneously modify a matrix or vector via any
GraphBLAS operation or method.

It is safe to use the internal parallelism in SuiteSparse:GraphBLAS on
matrices, vectors, and scalars that are not yet completed.  The library
handles this on its own.  The \verb'GrB_wait' function is only
needed when a user application makes multiple calls to GraphBLAS in parallel,
from multiple user threads.

With multiple user threads, exactly one user thread must call \verb'GrB_init'
before any user thread may call any \verb'GrB_*' or \verb'GxB_*' function.
When the user application is finished, exactly one user thread must call
\verb'GrB_finalize', after which no user thread may call any \verb'GrB_*' or
\verb'GxB_*' function.
The mode of a GraphBLAS session can be queried with \verb'GxB_get';
see Section~\ref{options} for details.

%===============================================================================
\subsection{{\sf GrB\_getVersion:} determine the C API Version} %===============
%===============================================================================
\label{getVersion}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_getVersion         // runtime access to C API version number
(
    unsigned int *version,      // returns GRB_VERSION
    unsigned int *subversion    // returns GRB_SUBVERSION
) ;
\end{verbatim}
}\end{mdframed}

GraphBLAS defines two compile-time constants that
define the version of the C API Specification
that is implemented by the library:
\verb'GRB_VERSION' and \verb'GRB_SUBVERSION'.
If the user program was compiled with one
version of the library but linked with a different one later on, the
compile-time version check with \verb'GRB_VERSION' would be stale.
\verb'GrB_getVersion' thus provides a runtime access of the version of the C
API Specification supported by the library.

\newpage
%===============================================================================
\subsection{{\sf GxB\_init:} initialize with alternate malloc} %================
%===============================================================================
\label{xinit}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_init           // start up GraphBLAS and also define malloc
(
    GrB_Mode mode,          // blocking or non-blocking mode
    // pointers to memory management functions.
    void * (* user_malloc_function  ) (size_t),
    void * (* user_calloc_function  ) (size_t, size_t),
    void * (* user_realloc_function ) (void *, size_t),
    void   (* user_free_function    ) (void *)
) ;
\end{verbatim}
}\end{mdframed}

\verb'GxB_init' is identical to \verb'GrB_init', except that it also redefines
the memory management functions that SuiteSparse:GraphBLAS will use.  Giving
the user application control over this is particularly important when using the
\verb'GxB_*pack',
\verb'GxB_*unpack', and \verb'GxB_*serialize' functions described in
Sections \ref{serialize_deserialize} and \ref{pack_unpack},
since they require the user application and
GraphBLAS to use the same memory manager.

\verb'user_calloc_function' and \verb'user_realloc_function' are optional, and
may be \verb'NULL'.  If \verb'NULL', then the \verb'user_malloc_function' is
relied on instead, for all memory allocations.

These functions can only be set once, when GraphBLAS starts.   Either
\verb'GrB_init' or \verb'GxB_init' must be called before any other GraphBLAS
operation, but not both.  The functions passed to \verb'GxB_init' must be
thread-safe.

The following usage is identical to \verb'GrB_init(mode)':

    {\footnotesize
    \begin{verbatim}
    GxB_init (mode, malloc, calloc, realloc, free) ; \end{verbatim}}

\newpage
%===============================================================================
\subsection{{\sf GrB\_Info:} status code returned by GraphBLAS} %===============
%===============================================================================
\label{info}

Each GraphBLAS method and operation returns its status to the caller as its
return value, an enumerated type (an \verb'enum') called \verb'GrB_Info'.  The
first two values in the following table denote a successful status, the rest
are error codes.

Not all GraphBLAS methods or operations can return all status codes.
In the discussions of each method and operation in this User Guide, most of the
obvious error code returns are not discussed.  For example, if a required input
is a \verb'NULL' pointer, then \verb'GrB_NULL_POINTER' is returned.  Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to {\em The GraphBLAS C API Specification} \cite{spec,spec2}.

\vspace{0.2in}
\noindent
{\small
\begin{tabular}{lrp{2.8in}}
\hline
Error                         & value & description \\
\hline
\verb'GrB_SUCCESS'              & 0   & the method or operation was successful \\
\verb'GrB_NO_VALUE'             & 1   & the method was successful, but the entry \\
                                &     & does not appear in the matrix or vector. \\
\verb'GxB_EXHAUSTED'            & 2   & the iterator is exhausted \\
\hline
\hline
\verb'GrB_UNINITIALIZED_OBJECT' & -1   & object has not been initialized \\
\verb'GrB_NULL_POINTER'         & -2   & input pointer is \verb'NULL' \\
\verb'GrB_INVALID_VALUE'        & -3   & generic error code; some value is bad \\
\verb'GrB_INVALID_INDEX'        & -4   & a row or column index is out of bounds \\
\verb'GrB_DOMAIN_MISMATCH'      & -5   & object domains are not compatible \\
\verb'GrB_DIMENSION_MISMATCH'   & -6   & matrix dimensions do not match \\
\verb'GrB_OUTPUT_NOT_EMPTY'     & -7   & output matrix already has values in it \\
\verb'GrB_NOT_IMPLEMENTED'      & -8   & not implemented in SS:GrB \\
\verb'GrB_PANIC'                & -101 & unrecoverable error \\
\verb'GrB_OUT_OF_MEMORY'        & -102 & out of memory \\
\verb'GrB_INSUFFICIENT_SPACE'   & -103 & output array not large enough \\
\verb'GrB_INVALID_OBJECT'       & -104 & object is corrupted \\
\verb'GrB_INDEX_OUT_OF_BOUNDS'  & -105 & a row or column index is out of bounds \\
\verb'GrB_EMPTY_OBJECT'         & -106 & a input scalar has no entry \\
\hline
\end{tabular}
\vspace{0.2in}
}

\newpage
%===============================================================================
\subsection{{\sf GrB\_error:} get more details on the last error} %=============
%===============================================================================
\label{error}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_error      // return a string describing the last error
( 
    const char **error, // error string
    <type> object       // a GrB_matrix, GrB_Vector, etc.
) ;
\end{verbatim}
}\end{mdframed}

Each GraphBLAS method and operation returns a \verb'GrB_Info' error code.  The
\verb'GrB_error' function returns additional information on the error for a
particular object in a null-terminated string.  The string returned by
\verb'GrB_error' is never a \verb'NULL' string, but it may have length zero
(with the first entry being the \verb"'\0'" string-termination value).  The
string must not be freed or modified.

    {\footnotesize
    \begin{verbatim}
    info = GrB_some_method_here (C, ...) ;
    if (! (info == GrB_SUCCESS || info == GrB_NO_VALUE))
    {
        char *err ;
        GrB_error (&err, C) ;
        printf ("info: %d error: %s\n", info, err) ;
    } \end{verbatim}}

If \verb'C' has no error status, or if the error is not recorded in
the string, an empty non-null string is returned.  In particular,
out-of-memory conditions result in an empty string from \verb'GrB_error'.

SuiteSparse:GraphBLAS reports many helpful details via \verb'GrB_error'.  For
example, if a row or column index is out of bounds, the report will state what
those bounds are.  If a matrix dimension is incorrect, the mismatching
dimensions will be provided.  \verb'GrB_BinaryOp_new', \verb'GrB_UnaryOp_new',
and \verb'GrB_IndexUnaryOp_new' record the name the function passed to them, and
\verb'GrB_Type_new' records the name of its type parameter, and these are
printed if the user-defined types and operators are used incorrectly.  Refer to
the output of the example programs in the \verb'Demo' and \verb'Test' folder,
which intentionally generate errors to illustrate the use of \verb'GrB_error'.

The only functions in GraphBLAS that return an error string are functions that
have a single input/output argument \verb'C', as a \verb'GrB_Matrix',
\verb'GrB_Vector', \verb'GrB_Scalar', or \verb'GrB_Descriptor'. Methods that
create these objects (such as \verb'GrB_Matrix_new') return a \verb'NULL'
object on failure, so these methods cannot also return an error string in
\verb'C'.

Any subsequent GraphBLAS method that modifies the object \verb'C' clears the
error string.

Note that \verb'GrB_NO_VALUE' is an not error, but an informational status.
\verb'GrB_*_extractElment(&x,A,i,j)', which does \verb'x=A(i,j)', returns this
value to indicate that \verb'A(i,j)' is not present in the matrix.  That
method does not have an input/output object so it cannot return an error
string.

% The \verb'GrB_error' function is a polymorphic function for the
% following variants:

% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Type_error         (const char **err, const GrB_Type type) ;
% GrB_Info GrB_UnaryOp_error      (const char **err, const GrB_UnaryOp op) ;
% GrB_Info GrB_BinaryOp_error     (const char **err, const GrB_BinaryOp op) ;
% GrB_Info GrB_IndexUnaryOp_error (const char **err, const GrB_IndexUnaryOp op) ;
% GrB_Info GrB_Monoid_error       (const char **err, const GrB_Monoid monoid) ;
% GrB_Info GrB_Semiring_error     (const char **err, const GrB_Semiring semiring) ;
% GrB_Info GrB_Scalar_error       (const char **err, const GrB_Scalar s) ;
% GrB_Info GrB_Vector_error       (const char **err, const GrB_Vector v) ;
% GrB_Info GrB_Matrix_error       (const char **err, const GrB_Vector A) ;
% GrB_Info GrB_Descriptor_error   (const char **err, const GrB_Descriptor d) ;
% \end{verbatim}
% }\end{mdframed}

% Currently, only \verb'GrB_Matrix_error', \verb'GrB_Vector_error',
% \verb'GrB_Scalar_error', and \verb'GrB_Descriptor_error' are able to return
% non-empty error strings.  The latter can return an error string only from
% \verb'GrB_Descriptor_set' and \verb'GxB_set(d,...)'.

% The only GraphBLAS methods (Section~\ref{objects}) that return an error string
% are \verb'*setElement', \verb'*removeElement',
% \verb'GxB_Matrix_Option_set(A,...)', \newline
% \verb'GxB_Vector_Option_set(v,...)', \verb'GrB_Descriptor_set', and
% \verb'GxB_Desc_set(d,...)'.  All GraphBLAS operations discussed in
% Section~\ref{operations} can return an error string in their input/output
% object, except for \verb'GrB_reduce' when reducing to a scalar.

\newpage
%===============================================================================
\subsection{{\sf GrB\_finalize:} finish GraphBLAS} %============================
%===============================================================================
\label{finalize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_finalize ( ) ;     // finish GraphBLAS
\end{verbatim}
}\end{mdframed}

\verb'GrB_finalize' must be called as the last GraphBLAS operation, even after
all calls to \verb'GrB_free'.  All GraphBLAS objects created by the user
application should be freed first, before calling \verb'GrB_finalize' since
\verb'GrB_finalize' will not free those objects.  In non-blocking mode,
GraphBLAS may leave some computations as pending.  These computations can be
safely abandoned if the user application frees all GraphBLAS objects it has
created and then calls \verb'GrB_finalize'.  When the user application is
finished, exactly one user thread must call \verb'GrB_finalize'.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Objects and their Methods} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{objects}

GraphBLAS defines ten different objects to represent matrices, vectors,
scalars, data types, operators (binary, unary, and index-unary), monoids,
semirings, and a {\em descriptor} object used to specify optional parameters
that modify the behavior of a GraphBLAS operation.

The GraphBLAS API makes a distinction between {\em methods} and {\em
operations}.  A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents.  An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.

\vspace{0.1in}
\noindent
{\small
\begin{tabular}{ll}
\hline
\verb'GrB_Type'      & a scalar data type \\
\verb'GrB_UnaryOp'   & a unary operator $z=f(x)$, where $z$ and $x$ are scalars\\
\verb'GrB_BinaryOp'  & a binary operator $z=f(x,y)$, where $z$, $x$, and $y$ are scalars\\
\verb'GrB_IndexUnaryOp'  & an index-unary operator \\
\verb'GrB_Monoid'    & an associative and commutative binary operator  \\
                     & and its identity value \\
\verb'GrB_Semiring'  & a monoid that defines the ``plus'' and a binary operator\\
                     & that defines the ``multiply'' for an algebraic semiring \\
\verb'GrB_Matrix'    & a 2D sparse matrix of any type \\
\verb'GrB_Vector'    & a 1D sparse column vector of any type \\
\verb'GrB_Scalar'    & a scalar of any type \\
\verb'GrB_Descriptor'& a collection of parameters that modify an operation \\
\hline
\end{tabular}
}
\vspace{0.1in}

Each of these objects is implemented in C as an opaque handle, which is a
pointer to a data structure held by GraphBLAS.  User applications may not
examine the content of the object directly; instead, they can pass the handle
back to GraphBLAS which will do the work.  Assigning one handle to another
is valid but it does not make a copy of the underlying object.

\newpage
%===============================================================================
\subsection{The GraphBLAS type: {\sf GrB\_Type}} %==============================
%===============================================================================
\label{type}

A GraphBLAS \verb'GrB_Type' defines the type of scalar values that a matrix or
vector contains, and the type of scalar operands for a unary or binary
operator.  There are 13 built-in types, and a user application can define
any types of its own as well.  The built-in types correspond to built-in types
in C (in the \verb'#include' files \verb'stdbool.h', \verb'stdint.h', and
\verb'complex.h') as listed in the following table.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{llll}
\hline
GraphBLAS         & C type           & description              & range \\
type              &                  &                          & \\
\hline
\verb'GrB_BOOL'   & \verb'bool'      & Boolean                  & true (1), false (0) \\
\hline
\verb'GrB_INT8'   & \verb'int8_t'    & 8-bit signed integer     & -128 to 127 \\
\verb'GrB_INT16'  & \verb'int16_t'   & 16-bit integer           & $-2^{15}$ to $2^{15}-1$ \\
\verb'GrB_INT32'  & \verb'int32_t'   & 32-bit integer           & $-2^{31}$ to $2^{31}-1$ \\
\verb'GrB_INT64'  & \verb'int64_t'   & 64-bit integer           & $-2^{63}$ to $2^{63}-1$ \\
\hline
\verb'GrB_UINT8'  & \verb'uint8_t'   & 8-bit unsigned integer   & 0 to 255 \\
\verb'GrB_UINT16' & \verb'uint16_t'  & 16-bit unsigned integer  & 0 to $2^{16}-1$ \\
\verb'GrB_UINT32' & \verb'uint32_t'  & 32-bit unsigned integer  & 0 to $2^{32}-1$ \\
\verb'GrB_UINT64' & \verb'uint64_t'  & 64-bit unsigned integer  & 0 to $2^{64}-1$ \\
\hline
\verb'GrB_FP32'   & \verb'float'     & 32-bit IEEE 754          & \verb'-Inf' to \verb'+Inf'\\
\verb'GrB_FP64'   & \verb'double'    & 64-bit IEEE 754          & \verb'-Inf' to \verb'+Inf'\\
\hline
\verb'GxB_FC32'   & \verb'float complex'  & 32-bit complex & \verb'-Inf' to \verb'+Inf'\\
\verb'GxB_FC64'   & \verb'double complex' & 64-bit complex & \verb'-Inf' to \verb'+Inf'\\
\hline
\end{tabular}
}
\vspace{0.2in}

The ANSI C11 definitions of \verb'float complex' and \verb'double complex'
are not always available.  The \verb'GraphBLAS.h' header defines them as
\verb'GxB_FC32_t' and \verb'GxB_FC64_t', respectively.

The user application can also define new types based on any \verb'typedef' in
the C language whose values are held in a contiguous region of memory of fixed
size.  For example, a user-defined \verb'GrB_Type' could be created to hold any
C \verb'struct' whose content is self-contained.  A C \verb'struct' containing
pointers might be problematic because GraphBLAS would not know to dereference
the pointers to traverse the entire ``scalar'' entry, but this can be done if
the objects referenced by these pointers are not moved.  A user-defined complex
type with real and imaginary types can be defined, or even a ``scalar'' type
containing a fixed-sized dense matrix (see Section~\ref{type_new}).  The
possibilities are endless.  GraphBLAS can create and operate on sparse matrices
and vectors in any of these types, including any user-defined ones.  For
user-defined types, GraphBLAS simply moves the data around itself (via
\verb'memcpy'), and then passes the values back to user-defined functions when
it needs to do any computations on the type.  The next sections describe the
methods for the \verb'GrB_Type' object:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function       & purpose                          & Section \\
\hline
\verb'GrB_Type_new'      & create a user-defined type       & \ref{type_new} \\
\verb'GxB_Type_new'      & create a user-defined type,
                            with name and definition        & \ref{type_new_named} \\
\verb'GrB_Type_wait'     & wait for a user-defined type     & \ref{type_wait} \\
\verb'GxB_Type_size'     & return the size of a type        & \ref{type_size} \\
\verb'GxB_Type_name'     & return the name of a type        & \ref{type_name} \\
\verb'GxB_Type_from_name'& return the type from its name    & \ref{type_from_name} \\
\verb'GrB_Type_free'     & free a user-defined type         & \ref{type_free} \\
\hline
\end{tabular}
}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_new:} create a user-defined type}
%-------------------------------------------------------------------------------
\label{type_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Type_new           // create a new GraphBLAS type
(
    GrB_Type *type,             // handle of user type to create
    size_t sizeof_ctype         // size = sizeof (ctype) of the C type
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_Type_new' creates a new user-defined type.  The \verb'type' is a
handle, or a pointer to an opaque object.  The handle itself must not be
\verb'NULL' on input, but the content of the handle can be undefined.  On
output, the handle contains a pointer to a newly created type.
The \verb'ctype' is the type in C that will be used to construct the new
GraphBLAS type.  It can be either a built-in C type, or defined by a
\verb'typedef'.
The second parameter should be passed as \verb'sizeof(ctype)'.  The only
requirement on the C type is that \verb'sizeof(ctype)' is valid in C, and
that the type reside in a contiguous block of memory so that it can be moved
with \verb'memcpy'.  For example, to create a user-defined type called
\verb'Complex' for double-precision complex values using the ANSI C11
\verb'double complex' type, the following can be used.  A complete example can
be found in the \verb'usercomplex.c' and \verb'usercomplex.h' files in the
\verb'Demo' folder.

    {\footnotesize
    \begin{verbatim}
    #include <math.h>
    #include <complex.h>
    GrB_Type Complex ;
    GrB_Type_new (&Complex, sizeof (double complex)) ;    \end{verbatim} }

To demonstrate the flexibility of the \verb'GrB_Type', consider a ``scalar''
consisting of 4-by-4 floating-point matrix and a string.  This type might be
useful for the 4-by-4 translation/rotation/scaling matrices that arise in
computer graphics, along with a string containing a description or even a
regular expression that can be parsed and executed in a user-defined operator.
All that is required is a fixed-size type, where \verb'sizeof(ctype)' is
a constant.

    {\footnotesize
    \begin{verbatim}
    typedef struct
    {
        float stuff [4][4] ;
        char whatstuff [64] ;
    }
    wildtype ;
    GrB_Type WildType ;
    GrB_Type_new (&WildType, sizeof (wildtype)) ; \end{verbatim} }

With this type a sparse matrix can be created in which each entry consists of a
4-by-4 dense matrix \verb'stuff' and a 64-character string \verb'whatstuff'.
GraphBLAS treats this 4-by-4 as a ``scalar.'' Any GraphBLAS method or operation
that simply moves data can be used with this type without any further
information from the user application.  For example, entries of this type can
be assigned to and extracted from a matrix or vector, and matrices containing
this type can be transposed.  A working example (\verb'wildtype.c'
in the \verb'Demo' folder) creates matrices and multiplies them with
a user-defined semiring with this type.

Performing arithmetic on matrices and vectors with user-defined types requires
operators to be defined.  Refer to Section~\ref{user} for more details on these
example user-defined types.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_new:} create a user-defined type (with name and definition)}
%-------------------------------------------------------------------------------
\label{type_new_named}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_new           // create a new named GraphBLAS type
(
    GrB_Type *type,             // handle of user type to create
    size_t sizeof_ctype,        // size = sizeof (ctype) of the C type
    const char *type_name,      // name of the type (max 128 characters)
    const char *type_defn       // typedef for the type (no max length)
) ;
\end{verbatim}
}\end{mdframed}

\verb'GxB_Type_new' creates a type with a name and definition that are known to
GraphBLAS, as strings.  The \verb'type_name' is any valid string (max length of 128
characters, including the required null-terminating character) that may
appear as the name of a C type created by a C \verb'typedef' statement.  It must
not contain any white-space characters.  For example, to create a type of size
16*4+1 = 65 bytes, with a 4-by-4 dense float array and a 32-bit integer:

    {\footnotesize
    \begin{verbatim}
    typedef struct { float x [4][4] ; int color ; } myquaternion ;
    GrB_Type MyQtype ;
    GxB_Type_new (&MyQtype, sizeof (myquaternion), "myquaternion",
        "typedef struct { float x [4][4] ; int color ; } myquaternion ;") ; \end{verbatim}}

The \verb'type_name' and \verb'type_defn' are both null-terminated strings.
Currently, \verb'type_defn' is unused, but it will be required for best
performance when a JIT is implemented in SuiteSparse:GraphBLAS (both on the CPU
and GPU).  User defined types created by \verb'GrB_Type_new' will not work with
a JIT.

At most \verb'GxB_MAX_NAME_LEN' characters are accessed in \verb'type_name';
characters beyond that limit are silently ignored.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_wait:} wait for a type}
%-------------------------------------------------------------------------------
\label{type_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined type
(
    GrB_Type type,              // type to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined type, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation.  Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that \verb'type' is valid.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_size:} return the size of a type}
%-------------------------------------------------------------------------------
\label{type_size}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_size          // determine the size of the type
(
    size_t *size,               // the sizeof the type
    GrB_Type type               // type to determine the sizeof
) ;
\end{verbatim}
}\end{mdframed}

This function acts just like \verb'sizeof(type)' in the C language.  For
example \verb'GxB_Type_size (&s, GrB_INT32)' sets \verb's' to 4, the same as
\verb'sizeof(int32_t)'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_name:} return the name of a type}
%-------------------------------------------------------------------------------
\label{type_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_name      // return the name of a GraphBLAS type
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Type type
) ;
\end{verbatim}
}\end{mdframed}

Returns the name of a type, as a string.  For built-in types, the name is
the same as the C type.  For example, \verb'GxB_Type_name(type_name,GrB_FP32)'
returns the name as \verb'"float"'.  The following table lists the
names of the 13 built-in types.

\vspace{0.2in}
{\small
\begin{tabular}{ll}
\hline
Type name & GraphBLAS type \\
\hline
    \verb'"bool"'           & \verb'GrB_BOOL' \\
    \verb'"int8_t"'         & \verb'GrB_INT8' \\
    \verb'"int16_t"'        & \verb'GrB_INT16' \\
    \verb'"int32_t"'        & \verb'GrB_INT32' \\
    \verb'"int64_t"'        & \verb'GrB_INT64' \\
    \verb'"uint8_t"'        & \verb'GrB_UINT8' \\
    \verb'"uint16_t"'       & \verb'GrB_UINT16' \\
    \verb'"uint32_t"'       & \verb'GrB_UINT32' \\
    \verb'"uint64_t"'       & \verb'GrB_UINT64' \\
    \verb'"float"'          & \verb'GrB_FP32' \\
    \verb'"double"'         & \verb'GrB_FP64' \\
    \verb'"float complex"'  & \verb'GxB_FC32' \\
    \verb'"double complex"' & \verb'GxB_FC64' \\
\hline
\end{tabular}}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_from\_name:} return the type from its name}
%-------------------------------------------------------------------------------
\label{type_from_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_from_name     // return the built-in GrB_Type from a name
(
    GrB_Type *type,             // built-in type, or NULL if user-defined
    const char *type_name       // array of size at least GxB_MAX_NAME_LEN
) ;
\end{verbatim}
}\end{mdframed}

Returns the built-in type from the corresponding name of the type.  For
example, \verb'GxB_Type_from_name (&type, "bool")' returns \verb'GrB_BOOL'.  If
the name is from a user-defined type, the \verb'type' is returned as
\verb'NULL'.  This is not an error condition.  The user application must itself
do this translation since GraphBLAS does not keep a registry of all
user-defined types.

With this function, a user application can manage the translation for
both built-in types and its own user-defined types, as in the following
example.

{\footnotesize
\begin{verbatim}
    typedef struct { double x ; char stuff [16] ; } myfirsttype ;
    typedef struct { float z [4][4] ; int color ; } myquaternion ;
    GrB_Type MyType1, MyQType ;
    GxB_Type_new (&MyType1, sizeof (myfirsttype), "myfirsttype",
        "typedef struct { double x ; char stuff [16] ; } myfirsttype ;") ;
    GxB_Type_new (&MyQType, sizeof (myquaternion), "myquaternion",
        "typedef struct { float z [4][4] ; int color ; } myquaternion ;") ;

    GrB_Matrix A ;
    // ... create a matrix A of some built-in or user-defined type

    // later on, to query the type of A:
    size_t typesize ;
    GxB_Type_size (&typesize, type) ;       // works for any type
    GrB_Type atype ;
    char atype_name [GxB_MAX_NAME_LEN] ;
    GxB_Matrix_type_name (atype_name, A) ;
    GxB_Type_from_name (&atype, atype_name) ;
    if (atype == NULL)
    {
        // This is not yet an error.  It means that A has a user-defined type.
        if ((strcmp (atype_name, "myfirsttype")) == 0) atype = MyType1 ;
        else if ((strcmp (atype_name, "myquaternion")) == 0) atype = MyQType ;
        else { ... this is now an error ... the type of A is unknown.  }
    }\end{verbatim} }

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_free:} free a user-defined type}
%-------------------------------------------------------------------------------
\label{type_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free               // free a user-defined type
(
    GrB_Type *type              // handle of user-defined type to free
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_Type_free' frees a user-defined type.
Either usage:

    {\small
    \begin{verbatim}
    GrB_Type_free (&type) ;
    GrB_free (&type) ; \end{verbatim}}

\noindent
frees the user-defined \verb'type' and
sets \verb'type' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'type == NULL' on input.

It is safe to attempt to free a built-in type.  SuiteSparse:GraphBLAS silently
ignores the request and returns \verb'GrB_SUCCESS'.  A user-defined type should
not be freed until all operations using the type are completed.
SuiteSparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt.  This is hazardous and not recommended.
Operations on such objects whose type has been freed leads to undefined
behavior.

It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used.  The only safe thing that can
be done with such a matrix is to free it.

The function signature of \verb'GrB_Type_free' uses the generic name
\verb'GrB_free', which can free any GraphBLAS object. See Section~\ref{free}
details.  GraphBLAS includes many such generic functions.  When describing a
specific variation, a function is described with its specific name in this User
Guide (such as \verb'GrB_Type_free').  When discussing features applicable to
all specific forms, the generic name is used instead (such as \verb'GrB_free').

\newpage
%===============================================================================
\subsection{GraphBLAS unary operators: {\sf GrB\_UnaryOp}, $z=f(x)$} %==========
%===============================================================================
\label{unaryop}

A unary operator is a scalar function of the form $z=f(x)$.  The domain (type)
of $z$ and $x$ need not be the same.

In the notation in the tables
below, $T$ is any of the 13 built-in types and is a place-holder for
\verb'BOOL', \verb'INT8', \verb'UINT8', ... 
\verb'FP32', \verb'FP64', \verb'FC32', or \verb'FC64'.
For example, \verb'GrB_AINV_INT32' is a unary operator that computes
\verb'z=-x' for two values \verb'x' and \verb'z' of type \verb'GrB_INT32'.

The notation $R$ refers to any real type (all but \verb'FC32' and \verb'FC64'),
$I$ refers to any integer type (\verb'INT*' and \verb'UINT*'),
$F$ refers to any real or complex floating point type
(\verb'FP32', \verb'FP64', \verb'FC32', or \verb'FC64'),
$Z$ refers to any complex floating point type
(\verb'FC32' or \verb'FC64'),
and $N$ refers to \verb'INT32' or \verb'INT64'.

The logical negation operator \verb'GrB_LNOT' only works on Boolean types.  The
\verb'GxB_LNOT_'$R$ functions operate on inputs of type $R$, implicitly
typecasting their input to Boolean and returning result of type $R$, with a
value 1 for true and 0 for false.  The operators \verb'GxB_LNOT_BOOL' and
\verb'GrB_LNOT' are identical.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for all types} \\
\hline
GraphBLAS name          & types (domains)   & $z=f(x)$      & description \\
\hline
\verb'GxB_ONE_'$T$      & $T \rightarrow T$ & $z = 1$       & one \\
\verb'GrB_IDENTITY_'$T$ & $T \rightarrow T$ & $z = x$       & identity \\
\verb'GrB_AINV_'$T$     & $T \rightarrow T$ & $z = -x$      & additive inverse \\
\verb'GrB_MINV_'$T$     & $T \rightarrow T$ & $z = 1/x$     & multiplicative inverse \\
\hline
\end{tabular}

\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for real and integer types} \\
\hline
GraphBLAS name          & types (domains)   & $z=f(x)$      & description \\
\hline
\verb'GrB_ABS_'$T$      & $R \rightarrow R$ & $z = |x|$     & absolute value \\
\verb'GrB_LNOT'         & \verb'bool'
                          $\rightarrow$
                          \verb'bool'       & $z = \lnot x$ & logical negation \\
\verb'GxB_LNOT_'$R$     & $R \rightarrow R$ & $z = \lnot (x \ne 0)$ & logical negation \\
\verb'GrB_BNOT_'$I$     & $I \rightarrow I$ & $z = \lnot x$ & bitwise negation \\
\hline
\end{tabular}

\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Positional unary operators for any type (including user-defined)} \\
\hline
GraphBLAS name            & types (domains)   & $z=f(a_{ij})$      & description \\
\hline
\verb'GxB_POSITIONI_'$N$  & $ \rightarrow N$  & $z = i$       & row index (0-based) \\
\verb'GxB_POSITIONI1_'$N$ & $ \rightarrow N$  & $z = i+1$     & row index (1-based) \\
\verb'GxB_POSITIONJ_'$N$  & $ \rightarrow N$  & $z = j$       & column index (0-based) \\
\verb'GxB_POSITIONJ1_'$N$ & $ \rightarrow N$  & $z = j+1$     & column index (1-based) \\
\hline
\end{tabular}
\vspace{0.2in}

\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for floating-point types (real and complex)} \\
\hline
GraphBLAS name          & types (domains)   & $z=f(x)$      & description \\
\hline
\verb'GxB_SQRT_'$F$     & $F \rightarrow F$ & $z = \sqrt(x)$       & square root \\
\verb'GxB_LOG_'$F$      & $F \rightarrow F$ & $z = \log_e(x)$      & natural logarithm \\
\verb'GxB_EXP_'$F$      & $F \rightarrow F$ & $z = e^x$            & natural exponent \\
\hline
\verb'GxB_LOG10_'$F$    & $F \rightarrow F$ & $z = \log_{10}(x)$   & base-10 logarithm \\
\verb'GxB_LOG2_'$F$     & $F \rightarrow F$ & $z = \log_2(x)$      & base-2 logarithm \\
\verb'GxB_EXP2_'$F$     & $F \rightarrow F$ & $z = 2^x$            & base-2 exponent \\
\hline
\verb'GxB_EXPM1_'$F$    & $F \rightarrow F$ & $z = e^x - 1$        & natural exponent - 1 \\
\verb'GxB_LOG1P_'$F$    & $F \rightarrow F$ & $z = \log(x+1)$      & natural log of $x+1$ \\
\hline
\verb'GxB_SIN_'$F$      & $F \rightarrow F$ & $z = \sin(x)$        & sine \\
\verb'GxB_COS_'$F$      & $F \rightarrow F$ & $z = \cos(x)$        & cosine \\
\verb'GxB_TAN_'$F$      & $F \rightarrow F$ & $z = \tan(x)$        & tangent \\
\hline
\verb'GxB_ASIN_'$F$     & $F \rightarrow F$ & $z = \sin^{-1}(x)$        & inverse sine \\
\verb'GxB_ACOS_'$F$     & $F \rightarrow F$ & $z = \cos^{-1}(x)$        & inverse cosine \\
\verb'GxB_ATAN_'$F$     & $F \rightarrow F$ & $z = \tan^{-1}(x)$        & inverse tangent \\
\hline
\verb'GxB_SINH_'$F$     & $F \rightarrow F$ & $z = \sinh(x)$        & hyperbolic sine \\
\verb'GxB_COSH_'$F$     & $F \rightarrow F$ & $z = \cosh(x)$        & hyperbolic cosine \\
\verb'GxB_TANH_'$F$     & $F \rightarrow F$ & $z = \tanh(x)$        & hyperbolic tangent \\
\hline
\verb'GxB_ASINH_'$F$    & $F \rightarrow F$ & $z = \sinh^{-1}(x)$        & inverse hyperbolic sine \\
\verb'GxB_ACOSH_'$F$    & $F \rightarrow F$ & $z = \cosh^{-1}(x)$        & inverse hyperbolic cosine \\
\verb'GxB_ATANH_'$F$    & $F \rightarrow F$ & $z = \tanh^{-1}(x)$        & inverse hyperbolic tangent \\
\hline
\verb'GxB_SIGNUM_'$F$   & $F \rightarrow F$ & $z = \sgn(x)$                 & sign, or signum function \\
\verb'GxB_CEIL_'$F$     & $F \rightarrow F$ & $z = \lceil x \rceil $       & ceiling function \\
\verb'GxB_FLOOR_'$F$    & $F \rightarrow F$ & $z = \lfloor x \rfloor $     & floor function \\
\verb'GxB_ROUND_'$F$    & $F \rightarrow F$ & $z = \mbox{round}(x)$        & round to nearest \\
\verb'GxB_TRUNC_'$F$    & $F \rightarrow F$ & $z = \mbox{trunc}(x)$        & round towards zero \\
\hline
\verb'GxB_ISINF_'$F$    & $F \rightarrow $ \verb'bool' & $z = \mbox{isinf}(x)$ & true if $\pm \infty$ \\
\verb'GxB_ISNAN_'$F$    & $F \rightarrow $ \verb'bool' & $z = \mbox{isnan}(x)$ & true if \verb'NaN' \\
\verb'GxB_ISFINITE_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isfinite}(x)$ & true if finite \\
\hline
\end{tabular}
\vspace{0.2in}

\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for floating-point types (real only)} \\
\hline
GraphBLAS name          & types (domains)   & $z=f(x)$      & description \\
\hline
\verb'GxB_LGAMMA_'$R$   & $R \rightarrow R$ & $z = \log(|\Gamma (x)|)$  & log of gamma function \\
\verb'GxB_TGAMMA_'$R$   & $R \rightarrow R$ & $z = \Gamma(x)$        & gamma function \\
\verb'GxB_ERF_'$R$      & $R \rightarrow R$ & $z = \erf(x)$          & error function \\
\verb'GxB_ERFC_'$R$     & $R \rightarrow R$ & $z = \erfc(x)$         & complimentary error function \\
\verb'GxB_CBRT_'$R$     & $R \rightarrow R$ & $z = x^{1/3}$          & cube root \\
\hline
\verb'GxB_FREXPX_'$R$   & $R \rightarrow R$ & $z = \mbox{frexpx}(x)$  & normalized fraction \\
\verb'GxB_FREXPE_'$R$   & $R \rightarrow R$ & $z = \mbox{frexpe}(x)$  & normalized exponent \\
\hline
\end{tabular}
\vspace{0.2in}

\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for complex types} \\
\hline
GraphBLAS name          & types (domains)   & $z=f(x)$      & description \\
\hline
\verb'GxB_CONJ_'$Z$    & $Z \rightarrow Z$ & $z = \overline{x}$     & complex conjugate \\
\verb'GxB_ABS_'$Z$     & $Z \rightarrow F$ & $z = |x|$              & absolute value \\
\verb'GxB_CREAL_'$Z$   & $Z \rightarrow F$ & $z = \mbox{real}(x)$   & real part \\
\verb'GxB_CIMAG_'$Z$   & $Z \rightarrow F$ & $z = \mbox{imag}(x)$   & imaginary part \\
\verb'GxB_CARG_'$Z$    & $Z \rightarrow F$ & $z = \mbox{carg}(x)$   & angle \\
\hline
\end{tabular}
}
\vspace{0.2in}

A positional unary operator return the row or column index of an entry.  For a
matrix $z=f(a_{ij})$ returns $z = i$ or $z = j$, or +1 for 1-based indices.
The latter is useful in the MATLAB/Octave interface, where row and column indices are
1-based.  When applied to a vector, $j$ is always zero, and $i$ is the index in
the vector.  Positional unary operators come in two types: \verb'INT32' and
\verb'INT64', which is the type of the output, $z$.  The functions are agnostic
to the type of their inputs; they only depend on the position of the entries,
not their values.
User-defined positional operators cannot be defined by \verb'GrB_UnaryOp_new'.

\verb'GxB_FREXPX' and \verb'GxB_FREXPE' return the mantissa and exponent,
respectively, from the ANSI C11 \verb'frexp' function.  The exponent is
returned as a floating-point value, not an integer.

The operators \verb'GxB_EXPM1_FC*' and \verb'GxB_LOG1P_FC*' for complex
types are currently not accurate.  They will be revised in a future version.

The functions \verb'casin', \verb'casinf', \verb'casinh', and \verb'casinhf'
provided by Microsoft Visual Studio for computing $\sin^{-1}(x)$ and
$\sinh^{-1}(x)$ when $x$ is complex do not compute the correct result.  Thus,
the unary operators \verb'GxB_ASIN_FC32', \verb'GxB_ASIN_FC64'
\verb'GxB_ASINH_FC32', and \verb'GxB_ASINH_FC64' do not work properly if the MS
Visual Studio compiler is used.  These functions work properly if the gcc, icc,
or clang compilers are used on Linux or MacOS.

Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS.  For details, see the binary
\verb'GrB_DIV_'$T$ operators.

\begin{alert}
{\bf SPEC:} The definition of integer division by zero is an extension to the
specification.
\end{alert}

The next sections define the following methods for the \verb'GrB_UnaryOp'
object:

\vspace{0.1in}
{\footnotesize
\noindent
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_UnaryOp_new'   & create a user-defined unary operator         & \ref{unaryop_new} \\
\verb'GxB_UnaryOp_new'   & create a named user-defined unary operator   & \ref{unaryop_new_named} \\
\verb'GrB_UnaryOp_wait'  & wait for a user-defined unary operator       & \ref{unaryop_wait} \\
\verb'GxB_UnaryOp_ztype_name' & return the name of the type of the output $z$ for $z=f(x)$   & \ref{unaryop_ztype_name} \\
\verb'GxB_UnaryOp_xtype_name' & return the name of the type of the input $x$ for $z=f(x)$    & \ref{unaryop_xtype_name} \\
\verb'GrB_UnaryOp_free'  & free a user-defined unary operator   & \ref{unaryop_free} \\
\hline
\end{tabular}
}
\vspace{0.1in}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_new:} create a user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_UnaryOp_new            // create a new user-defined unary operator
(
    GrB_UnaryOp *unaryop,           // handle for the new unary operator
    void *function,                 // pointer to the unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype                  // type of input x
) ;
\end{verbatim} }\end{mdframed}

\verb'GrB_UnaryOp_new' creates a new unary operator.  The new operator is
returned in the \verb'unaryop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new unary operator.

The two types \verb'xtype' and \verb'ztype' are the GraphBLAS types of the
input $x$ and output $z$ of the user-defined function $z=f(x)$.  These types
may be built-in types or user-defined types, in any combination.  The two types
need not be the same, but they must be previously defined before passing them
to \verb'GrB_UnaryOp_new'.

The \verb'function' argument to \verb'GrB_UnaryOp_new' is a pointer to a
user-defined function with the following signature:

    {\footnotesize
    \begin{verbatim}
    void (*f) (void *z, const void *x) ; \end{verbatim} }

When the function \verb'f' is called, the arguments \verb'z' and \verb'x' are
passed as \verb'(void *)' pointers, but they will be pointers to values of the
correct type, defined by \verb'ztype' and \verb'xtype', respectively, when the
operator was created.

{\bf NOTE:}
The pointers passed to a user-defined operator may not be unique.  That is, the
user function may be called with multiple pointers that point to the same
space, such as when \verb'z=f(z,y)' is to be computed by a binary operator, or
\verb'z=f(z)' for a unary operator.  Any parameters passed to the user-callable
function may be aliased to each other.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_new:} create a named user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_new_named}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_new            // create a new user-defined unary operator
(
    GrB_UnaryOp *unaryop,           // handle for the new unary operator
    GxB_unary_function function,    // pointer to the unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    const char *unop_name,          // name of the user function
    const char *unop_defn           // definition of the user function
) ;
\end{verbatim} }\end{mdframed}

Creates a named \verb'GrB_UnaryOp'.  Only the first 127 characters of
\verb'unop_name' are used.  The \verb'unop_defn' is a string containing the
entire function itself.  For example:

    {\footnotesize
    \begin{verbatim}
    void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;
    ...
    GrB_Type Square ;
    GxB_UnaryOp_new (&Square, square, GrB_FP64, GrB_FP64, "square",
        "void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;") ;
    \end{verbatim}}

Currently, only the \verb'unop_name' is used, but future versions will
rely on the \verb'unop_defn' when employing a JIT for better performance.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_wait:} wait for a unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined unary operator
(
    GrB_UnaryOp unaryop,        // unary operator to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined unary operator, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation.  Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the
\verb'unaryop' is valid.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_ztype\_name:} return the name of the type of $z$}
%-------------------------------------------------------------------------------
\label{unaryop_ztype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_ztype_name     // return the type_name of z
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_UnaryOp unaryop       // unary operator
) ;
\end{verbatim}
}\end{mdframed}

\verb'GxB_UnaryOp_ztype_name' returns the name of the \verb'ztype' of the unary
operator, which is the type of $z$ in the function $z=f(x)$.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_xtype\_name:} return the name of the type of $x$}
%-------------------------------------------------------------------------------
\label{unaryop_xtype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_xtype_name     // return the type_name of x
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_UnaryOp unaryop       // unary operator
) ;
\end{verbatim}
}\end{mdframed}

\verb'GxB_UnaryOp_xtype_name' returns the name of the \verb'xtype' of the unary
operator, which is the type of $x$ in the function $z=f(x)$.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_free:} free a user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free                   // free a user-created unary operator
(
    GrB_UnaryOp *unaryop            // handle of unary operator to free
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_UnaryOp_free' frees a user-defined unary operator.
Either usage:

    {\small
    \begin{verbatim}
    GrB_UnaryOp_free (&unaryop) ;
    GrB_free (&unaryop) ; \end{verbatim}}

\noindent
frees the \verb'unaryop' and sets \verb'unaryop' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'unaryop == NULL' on input.
It does nothing at all if passed a built-in unary operator.

\newpage
%===============================================================================
\subsection{GraphBLAS binary operators: {\sf GrB\_BinaryOp}, $z=f(x,y)$} %======
%===============================================================================
\label{binaryop}

A binary operator is a scalar function of the form $z=f(x,y)$.  The types of
$z$, $x$, and $y$ need not be the same.  The built-in binary operators are
listed in the tables below.  The notation $T$ refers to any of the 13
built-in types, but two of those types are SuiteSparse extensions
(\verb'GxB_FC32' and \verb'GxB_FC64').  For those types, the operator name
always starts with \verb'GxB', not \verb'GrB').
The notation $R$ refers to any real type (all but \verb'FC32' and \verb'FC64').

The six \verb'GxB_IS*' comparators and the \verb'GxB_*' logical
operators all return a result one for true and zero for false, in the same
domain $T$ or $R$ as their inputs.  These six comparators are useful
as ``multiply'' operators for creating semirings with non-Boolean monoids.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for all 13 types} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
% numeric TxT->T
\verb'GrB_FIRST_'$T$  & $T \times T \rightarrow T$ & $z = x$         & first argument \\
\verb'GrB_SECOND_'$T$ & $T \times T \rightarrow T$ & $z = y$         & second argument \\
\verb'GxB_ANY_'$T$    & $T \times T \rightarrow T$ & $z = x$ or $y$  & pick $x$ or $y$ arbitrarily \\
\verb'GrB_ONEB_'$T$   & $T \times T \rightarrow T$ & $z = 1$         & one \\
\verb'GxB_PAIR_'$T$   & $T \times T \rightarrow T$ & $z = 1$         & one (historical) \\
\verb'GrB_PLUS_'$T$   & $T \times T \rightarrow T$ & $z = x+y$       & addition \\
\verb'GrB_MINUS_'$T$  & $T \times T \rightarrow T$ & $z = x-y$       & subtraction \\
\verb'GxB_RMINUS_'$T$ & $T \times T \rightarrow T$ & $z = y-x$       & reverse subtraction \\
\verb'GrB_TIMES_'$T$  & $T \times T \rightarrow T$ & $z = xy$        & multiplication \\
\verb'GrB_DIV_'$T$    & $T \times T \rightarrow T$ & $z = x/y$       & division \\
\verb'GxB_RDIV_'$T$   & $T \times T \rightarrow T$ & $z = y/x$       & reverse division \\
\verb'GxB_POW_'$T$    & $T \times T \rightarrow T$ & $z = x^y$       & power \\
\hline
% TxT->T comparators
\verb'GxB_ISEQ_'$T$   & $T \times T \rightarrow T$ & $z = (x == y)$  & equal \\
\verb'GxB_ISNE_'$T$   & $T \times T \rightarrow T$ & $z = (x \ne y)$ & not equal \\
\hline
\end{tabular}
}
\vspace{0.2in}

The \verb'GxB_POW_*' operators for real types do not return a complex result,
and thus $z = f(x,y) = x^y$ is undefined if $x$ is negative and $y$ is not an
integer.  To compute a complex result, use \verb'GxB_POW_FC32' or
\verb'GxB_POW_FC64'.

Operators that require the domain to be ordered (\verb'MIN', \verb'MAX',
less-than, greater-than, and so on) are not defined for
complex types.  These are listed in the following table:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for all non-complex types} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
% numeric RxR->R
\verb'GrB_MIN_'$R$    & $R \times R \rightarrow R$ & $z = \min(x,y)$ & minimum \\
\verb'GrB_MAX_'$R$    & $R \times R \rightarrow R$ & $z = \max(x,y)$ & maximum \\
\hline
% RxR->R comparators
\verb'GxB_ISGT_'$R$   & $R \times R \rightarrow R$ & $z = (x >   y)$ & greater than \\
\verb'GxB_ISLT_'$R$   & $R \times R \rightarrow R$ & $z = (x <   y)$ & less than  \\
\verb'GxB_ISGE_'$R$   & $R \times R \rightarrow R$ & $z = (x \ge y)$ & greater than or equal \\
\verb'GxB_ISLE_'$R$   & $R \times R \rightarrow R$ & $z = (x \le y)$ & less than or equal  \\
\hline
% RxR->R logical
\verb'GxB_LOR_'$R$    & $R \times R \rightarrow R$ & $z = (x \ne 0) \vee    (y \ne 0) $ & logical OR \\
\verb'GxB_LAND_'$R$   & $R \times R \rightarrow R$ & $z = (x \ne 0) \wedge  (y \ne 0) $ & logical AND \\
\verb'GxB_LXOR_'$R$   & $R \times R \rightarrow R$ & $z = (x \ne 0) \veebar (y \ne 0) $ & logical XOR \\
\hline
\end{tabular}
}
\vspace{0.2in}

Another set of six kinds of built-in comparators have the form $T
\times T \rightarrow $\verb'bool'.  Note that when $T$ is \verb'bool', the six
operators give the same results as the six \verb'GxB_IS*_BOOL' operators in the
table above.  These six comparators are useful as ``multiply''
operators for creating semirings with Boolean monoids.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary comparators for all 13 types} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
% 6 TxT -> bool comparators
\verb'GrB_EQ_'$T$     & $T \times T \rightarrow $\verb'bool' & $z = (x == y)$  & equal \\
\verb'GrB_NE_'$T$     & $T \times T \rightarrow $\verb'bool' & $z = (x \ne y)$ & not equal \\
\hline
\multicolumn{4}{ }{\mbox{ }} \\
\hline
\multicolumn{4}{|c|}{Binary comparators for non-complex types} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
\verb'GrB_GT_'$R$     & $R \times R \rightarrow $\verb'bool' & $z = (x >   y)$ & greater than \\
\verb'GrB_LT_'$R$     & $R \times R \rightarrow $\verb'bool' & $z = (x <   y)$ & less than  \\
\verb'GrB_GE_'$R$     & $R \times R \rightarrow $\verb'bool' & $z = (x \ge y)$ & greater than or equal \\
\verb'GrB_LE_'$R$     & $R \times R \rightarrow $\verb'bool' & $z = (x \le y)$ & less than or equal  \\
\hline
\end{tabular}
}
\vspace{0.2in}

GraphBLAS has four built-in binary operators that operate purely in
the Boolean domain.  The first three are identical to the \verb'GxB_L*_BOOL'
operators described above, just with a shorter name.  The \verb'GrB_LXNOR'
operator is the same as \verb'GrB_EQ_BOOL'.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for the boolean type only} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
% 3 bool x bool -> bool
\verb'GrB_LOR'        & \verb'bool'
                        $\times$ \verb'bool'
                        $\rightarrow$ \verb'bool'  & $z = x \vee    y $ & logical OR \\
\verb'GrB_LAND'       & \verb'bool'
                        $\times$ \verb'bool'
                        $\rightarrow$ \verb'bool'  & $z = x \wedge  y $ & logical AND \\
\verb'GrB_LXOR'       & \verb'bool'
                        $\times$ \verb'bool'
                        $\rightarrow$ \verb'bool'  & $z = x \veebar y $ & logical XOR \\
\verb'GrB_LXNOR'      & \verb'bool'
                        $\times$ \verb'bool'
                        $\rightarrow$ \verb'bool'  & $z = \lnot (x \veebar y) $ & logical XNOR \\
\hline
\end{tabular}
}
\vspace{0.2in}

The following operators are defined for real floating-point types only (\verb'GrB_FP32' and  \verb'GrB_FP64').
They are identical to the ANSI C11 functions of the same name.  The last one in the table constructs
the corresponding complex type.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for the real floating-point types only} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
\verb'GxB_ATAN2_'$F$     & $F \times F \rightarrow F$ & $z = \tan^{-1}(y/x)$ & 4-quadrant arc tangent  \\
\verb'GxB_HYPOT_'$F$     & $F \times F \rightarrow F$ & $z = \sqrt{x^2+y^2}$ & hypotenuse \\
\verb'GxB_FMOD_'$F$      & $F \times F \rightarrow F$ &                      & ANSI C11 \verb'fmod' \\
\verb'GxB_REMAINDER_'$F$ & $F \times F \rightarrow F$ &                      & ANSI C11 \verb'remainder' \\
\verb'GxB_LDEXP_'$F$     & $F \times F \rightarrow F$ &                      & ANSI C11 \verb'ldexp' \\
\verb'GxB_COPYSIGN_'$F$  & $F \times F \rightarrow F$ &                      & ANSI C11 \verb'copysign' \\
\hline
\verb'GxB_CMPLX_'$F$     & $F \times F \rightarrow Z$ & $z = x + y \times i$ & complex from real \& imag \\
\hline
\end{tabular}
}
\vspace{0.2in}

Eight bitwise operators are predefined for signed and unsigned integers.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for signed and unsigned integers} \\
\hline
GraphBLAS name        & types (domains)            & $z=f(x,y)$      & description \\
\hline
\verb'GrB_BOR_'$I$    & $I \times I \rightarrow I$ & \verb'z=x|y'    & bitwise logical OR \\
\verb'GrB_BAND_'$I$   & $I \times I \rightarrow I$ & \verb'z=x&y'    & bitwise logical AND \\
\verb'GrB_BXOR_'$I$   & $I \times I \rightarrow I$ & \verb'z=x^y'    & bitwise logical XOR \\
\verb'GrB_BXNOR_'$I$  & $I \times I \rightarrow I$ & \verb'z=~(x^y)' & bitwise logical XNOR \\
\hline
\verb'GxB_BGET_'$I$    & $I \times I \rightarrow I$  & & get bit y of x \\
\verb'GxB_BSET_'$I$    & $I \times I \rightarrow I$  & & set bit y of x \\
\verb'GxB_BCLR_'$I$    & $I \times I \rightarrow I$  & & clear bit y of x \\
\verb'GxB_BSHIFT_'$I$  & $I \times $\verb'int8'$  \rightarrow I$ & & bit shift \\
\hline
\end{tabular}
}
\vspace{0.2in}

There are two sets of built-in comparators in SuiteSparse:Graph\-BLAS,
but they are not redundant.  They are identical except for the type (domain) of
their output, $z$.  The \verb'GrB_EQ_'$T$ and related operators compare their
inputs of type $T$ and produce a Boolean result of true or false.  The
\verb'GxB_ISEQ_'$T$ and related operators compute the same thing and produce a
result with same type $T$ as their input operands, returning one for true or
zero for false.  The \verb'IS*' comparators are useful when combining
comparators with other non-Boolean operators.  For example, a \verb'PLUS-ISEQ'
semiring counts how many terms are true.  With this semiring,
matrix multiplication ${\bf C=AB}$ for two weighted undirected graphs ${\bf A}$
and ${\bf B}$ computes $c_{ij}$ as the number of edges node $i$ and $j$ have in
common that have identical edge weights.  Since the output type of the
``multiplier'' operator in a semiring must match the type of its monoid, the
Boolean \verb'EQ' cannot be combined with a non-Boolean \verb'PLUS' monoid to
perform this operation.

Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and XOR
operators.  Without the \verb'_'$T$ suffix, the three operators \verb'GrB_LOR',
\verb'GrB_LAND', and \verb'GrB_LXOR' operate purely in the Boolean domain,
where all input and output types are \verb'GrB_BOOL'.  The second set
(\verb'GxB_LOR_'$T$ \verb'GxB_LAND_'$T$ and \verb'GxB_LXOR_'$T$) provides
Boolean operators to all 11 real domains, implicitly typecasting their inputs from
type $T$ to Boolean and returning a value of type $T$ that is 1 for true or
zero for false.  The set of \verb'GxB_L*_'$T$ operators are useful since they
can be combined with non-Boolean monoids in a semiring.

Floating-point operations follow the IEEE 754 standard.  Thus, computing $x/0$
for a floating-point $x$ results in \verb'+Inf' if $x$ is positive, \verb'-Inf'
if $x$ is negative, and \verb'NaN' if $x$ is zero.  The application is not
terminated.  However, integer division by zero normally terminates an
application.  SuiteSparse:GraphBLAS avoids this by adopting the same rules as
MATLAB, which are analogous to how the IEEE standard handles floating-point
division by zero.  For integers, when $x$ is positive, $x/0$ is the largest
positive integer, for negative $x$ it is the minimum integer, and 0/0 results
in zero.  For example, for an integer $x$ of type \verb'GrB_INT32', 1/0 is
$2^{31}-1$ and (-1)/0 is $-2^{31}$.  Refer to Section~\ref{type} for a list of
integer ranges.

Eight positional operators are predefined.  They differ when used in a semiring
and when used in \verb'GrB_eWise*' and \verb'GrB_apply'.  Positional operators
cannot be used in \verb'GrB_build', nor can they be used as the \verb'accum'
operator for any operation.

The positional binary operators do not depend on the type or numerical value of
their inputs, just their position in a matrix or vector.  For a vector, $j$ is
always 0, and $i$ is the index into the vector.  There are two types $N$
available: \verb'INT32' and \verb'INT64', which is the type of the output $z$.
User-defined positional operators cannot be defined by \verb'GrB_BinaryOp_new'.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Positional binary operators for any type (including user-defined)} \\
\multicolumn{4}{|c|}{when used as a multiplicative operator in a semiring} \\
\hline
GraphBLAS name            & types (domains)   & $z=f(a_{ik},b_{kj})$      & description \\
\hline
\verb'GxB_FIRSTI_'$N$    & $ \rightarrow N$  & $z = i$       & row index of $a_{ik}$ (0-based) \\
\verb'GxB_FIRSTI1_'$N$   & $ \rightarrow N$  & $z = i+1$     & row index of $a_{ik}$ (1-based) \\
\verb'GxB_FIRSTJ_'$N$    & $ \rightarrow N$  & $z = k$       & column index of $a_{ik}$ (0-based) \\
\verb'GxB_FIRSTJ1_'$N$   & $ \rightarrow N$  & $z = k+1$     & column index of $a_{ik}$ (1-based) \\
\verb'GxB_SECONDI_'$N$   & $ \rightarrow N$  & $z = k$       & row index of $b_{kj}$ (0-based) \\
\verb'GxB_SECONDI1_'$N$  & $ \rightarrow N$  & $z = k+1$     & row index of $b_{kj}$ (1-based) \\
\verb'GxB_SECONDJ_'$N$   & $ \rightarrow N$  & $z = j$       & column index of $b_{kj}$ (0-based) \\
\verb'GxB_SECONDJ1_'$N$  & $ \rightarrow N$  & $z = j+1$     & column index of $b_{kj}$ (1-based) \\
\hline
\end{tabular}
}

\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Positional binary operators for any type (including user-defined)} \\
\multicolumn{4}{|c|}{when used in all other methods} \\
\hline
GraphBLAS name            & types (domains)   & $z=f(a_{ij},b_{ij})$      & description \\
\hline
\verb'GxB_FIRSTI_'$N$    & $ \rightarrow N$  & $z = i$       & row index of $a_{ij}$ (0-based) \\
\verb'GxB_FIRSTI1_'$N$   & $ \rightarrow N$  & $z = i+1$     & row index of $a_{ij}$ (1-based) \\
\verb'GxB_FIRSTJ_'$N$    & $ \rightarrow N$  & $z = j$       & column index of $a_{ij}$ (0-based) \\
\verb'GxB_FIRSTJ1_'$N$   & $ \rightarrow N$  & $z = j+1$     & column index of $a_{ij}$ (1-based) \\
\verb'GxB_SECONDI_'$N$   & $ \rightarrow N$  & $z = i$       & row index of $b_{ij}$ (0-based) \\
\verb'GxB_SECONDI1_'$N$  & $ \rightarrow N$  & $z = i+1$     & row index of $b_{ij}$ (1-based) \\
\verb'GxB_SECONDJ_'$N$   & $ \rightarrow N$  & $z = j$       & column index of $b_{ij}$ (0-based) \\
\verb'GxB_SECONDJ1_'$N$  & $ \rightarrow N$  & $z = j+1$     & column index of $b_{ij}$ (1-based) \\
\hline
\end{tabular}
}
\vspace{0.2in}

Finally, one special binary operator can only be used as input to
\verb'GrB_Matrix_build' or \verb'GrB_Vector_build': the \verb'GxB_IGNORE_DUP'
operator.  If \verb'dup' is \verb'NULL', any duplicates in the \verb'GrB*build'
methods result in an error.  If \verb'dup' is the special binary operator
\verb'GxB_IGNORE_DUP', then any duplicates are ignored.  If duplicates appear,
the last one in the list of tuples is taken and the prior ones ignored.  This
is not an error.

The next sections define the following methods for the \verb'GrB_BinaryOp'
object:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_BinaryOp_new'   & create a user-defined binary operator   & \ref{binaryop_new} \\
\verb'GxB_BinaryOp_new'   & create a named user-defined binary operator   & \ref{binaryop_new_named} \\
\verb'GrB_BinaryOp_wait'  & wait for a user-defined binary operator & \ref{binaryop_wait} \\
\verb'GxB_BinaryOp_ztype_name' & return the type of the output $z$ for $z=f(x,y)$    & \ref{binaryop_ztype_name} \\
\verb'GxB_BinaryOp_xtype_name' & return the type of the input $x$ for $z=f(x,y)$     & \ref{binaryop_xtype_name} \\
\verb'GxB_BinaryOp_ytype_name' & return the type of the input $y$ for $z=f(x,y)$     & \ref{binaryop_ytype_name} \\
\verb'GrB_BinaryOp_free'  & free a user-defined binary operator     & \ref{binaryop_free} \\
\hline
\end{tabular}
}
\vspace{0.2in}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_new:} create a user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_BinaryOp_new
(
    GrB_BinaryOp *binaryop,         // handle for the new binary operator
    void *function,                 // pointer to the binary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    GrB_Type ytype                  // type of input y
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_BinaryOp_new' creates a new binary operator.  The new operator is
returned in the \verb'binaryop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new binary operator.

The three types \verb'xtype', \verb'ytype', and \verb'ztype' are the GraphBLAS
types of the inputs $x$ and $y$, and output $z$ of the user-defined function
$z=f(x,y)$.  These types may be built-in types or user-defined types, in any
combination.  The three types need not be the same, but they must be previously
defined before passing them to \verb'GrB_BinaryOp_new'.

The final argument to \verb'GrB_BinaryOp_new' is a pointer to a user-defined
function with the following signature:

    {\footnotesize
    \begin{verbatim}
    void (*f) (void *z, const void *x, const void *y) ; \end{verbatim} }

When the function \verb'f' is called, the arguments \verb'z', \verb'x', and
\verb'y' are passed as \verb'(void *)' pointers, but they will be pointers to
values of the correct type, defined by \verb'ztype', \verb'xtype', and
\verb'ytype', respectively, when the operator was created.

{\bf NOTE:} SuiteSparse:GraphBLAS may call the function with the pointers
\verb'z' and \verb'x' equal to one another, in which case \verb'z=f(z,y)'
should be computed.  Future versions may use additional pointer aliasing.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_new:} create a named user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_new_named}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_new
(
    GrB_BinaryOp *op,               // handle for the new binary operator
    GxB_binary_function function,   // pointer to the binary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    GrB_Type ytype,                 // type of input y
    const char *binop_name,         // name of the user function
    const char *binop_defn          // definition of the user function
) ;
\end{verbatim} }\end{mdframed}

Creates a named \verb'GrB_BinaryOp'.  Only the first 127 characters of
\verb'binop_name' are used.  The \verb'binop_defn' is a string containing the
entire function itself.  For example:

{\footnotesize
\begin{verbatim}
void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; } ;
...
GrB_Type AbsDiff ;
GxB_BinaryOp_new (&AbsDiff, absdiff, GrB_FP64, GrB_FP64, GrB_FP64, "absdiff",
  "void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; }") ; \end{verbatim}}

Currently, only the \verb'binop_name' is used, but future versions will
rely on the \verb'binop_defn' when employing a JIT for better performance.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_wait:} wait for a binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined binary operator
(
    GrB_BinaryOp binaryop,      // binary operator to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined binary operator, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation.  Currently,
SuiteSparse:GraphBLAS currently does nothing for except to ensure that the
\verb'binaryop' is valid.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_ztype\_name:} return the name of the type of $z$}
%-------------------------------------------------------------------------------
\label{binaryop_ztype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_ztype_name    // return the type_name of z
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_BinaryOp binaryop     // binary operator to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_BinaryOp_ztype_name'
returns name of the \verb'ztype' of the binary operator, which is the
type of $z$ in the function $z=f(x,y)$.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_xtype\_name:} return the name of the type of $x$}
%-------------------------------------------------------------------------------
\label{binaryop_xtype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_xtype_name    // return the type_name of x
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_BinaryOp binaryop     // binary operator to query
) ;
\end{verbatim}
}\end{mdframed}

\verb'GxB_BinaryOp_xtype_name'
returns name of the \verb'xtype' of the binary operator, which is the
type of $x$ in the function $z=f(x,y)$.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_ytype\_name:} return the name of the type of $y$}
%-------------------------------------------------------------------------------
\label{binaryop_ytype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_ytype_name    // return the type_name of y
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_BinaryOp binaryop     // binary operator to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_BinaryOp_ytype_name'
returns name of the \verb'ytype' of the binary operator, which is the
type of $y$ in the function $z=f(x,y)$.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_free:} free a user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free                   // free a user-created binary operator
(
    GrB_BinaryOp *binaryop          // handle of binary operator to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_BinaryOp_free' frees a user-defined binary operator.
Either usage:

    {\small
    \begin{verbatim}
    GrB_BinaryOp_free (&op) ;
    GrB_free (&op) ; \end{verbatim}}

\noindent
frees the \verb'op' and sets \verb'op' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'op == NULL' on input.
It does nothing at all if passed a built-in binary operator.

%-------------------------------------------------------------------------------
\subsubsection{{\sf ANY} and {\sf PAIR} ({\sf ONEB}) operators}
%-------------------------------------------------------------------------------
\label{any_pair}

The \verb'GxB_PAIR' operator (also called \verb'GrB_ONEB') is simple to describe:
just $f(x,y)=1$.  It is called
the \verb'PAIR' operator since it returns $1$ in a semiring when a pair of
entries $a_{ik}$ and $b_{kj}$ is found in the matrix multiply.  This operator
is simple yet very useful.  It allows purely structural computations to be
performed on matrices of any type, without having to typecast them to Boolean
with all values being true.  Typecasting need not be performed on the inputs to
the \verb'PAIR' operator, and the \verb'PAIR' operator does not need to access
the values of the matrix.  This cuts memory accesses, so it is a very fast
operator to use.

The \verb'GxB_PAIR_T' operator is a SuiteSparse:GraphBLAS extension.
It has since been added to the v2.0 C API Specification as \verb'GrB_ONEB_T'.
They are identical, but the latter name should be used for compatibility
with other GraphBLAS libraries.

The \verb'ANY' operator is very unusual, but very powerful.  It is the function
$f_{\mbox{any}}(x,y)=x$, or $y$, where GraphBLAS has to freedom to select
either $x$, or $y$, at its own discretion.  Do not confuse the \verb'ANY'
operator with the \verb'any' function in MATLAB/Octave, which computes a reduction
using the logical OR operator.

The \verb'ANY' function is associative and commutative, and can thus serve as
an operator for a monoid.  The selection of $x$ are $y$ is not randomized.
Instead, SuiteSparse:GraphBLAS uses this freedom to compute as fast a result as
possible.  When used as the monoid in a dot product, \[ c_{ij} = \sum_k a_{ik}
b_{kj} \] for example, the computation can terminate as soon as any matching
pair of entries is found.  When used in a parallel saxpy-style computation, the
\verb'ANY' operator allows for a relaxed form of synchronization to be used,
resulting in a fast benign race condition.

Because of this benign race condition, the result of the \verb'ANY' monoid can
be non-deterministic, unless it is coupled with the \verb'PAIR' multiplicative
operator.  In this case, the \verb'ANY_PAIR' semiring will return a
deterministic result, since $f_{\mbox{any}}(1,1)$ is always 1.

When paired with a different operator, the results are non-deterministic.  This
gives a powerful method when computing results for which any value selected by
the \verb'ANY' operator is valid.  One such example is the breadth-first-search
tree.  Suppose node $j$ is at level $v$, and there are multiple nodes $i$ at
level $v-1$ for which the edge $(i,j)$ exists in the graph.  Any of these nodes
$i$ can serve as a valid parent in the BFS tree.  Using the \verb'ANY'
operator, GraphBLAS can quickly compute a valid BFS tree; if it used again on
the same inputs, it might return a different, yet still valid, BFS tree, due to
the non-deterministic nature of intra-thread synchronization.

\newpage
%===============================================================================
\subsection{GraphBLAS IndexUnaryOp operators: {\sf GrB\_IndexUnaryOp}} %========
%===============================================================================
\label{idxunop}

An index-unary operator is a scalar function of the form
$z=f(a_{ij},i,j,y)$ that is applied to the entries $a_{ij}$ of an
$m$-by-$n$ matrix.  It can be used in \verb'GrB_apply' (Section~\ref{apply}) or
in \verb'GrB_select' (Section~\ref{select}) to select entries from a matrix or
vector.

The signature of the index-unary function \verb'f' is as follows:

{\footnotesize
\begin{verbatim}
void f
(
    void *z,            // output value z, of type ztype
    const void *x,      // input value x of type xtype; value of v(i) or A(i,j)
    GrB_Index i,        // row index of A(i,j)
    GrB_Index j,        // column index of A(i,j), or zero for v(i)
    const void *y       // input scalar y
) ; \end{verbatim}}

The following built-in operators are available.  Operators that do not depend
on the value of \verb'A(i,j)' can be used on any matrix or vector, including
those of user-defined type.  In the table, \verb'y' is a
scalar whose type matches the suffix of the operator.  The \verb'VALUEEQ' and
\verb'VALUENE' operators are defined for any built-in type. The other
\verb'VALUE' operators are defined only for real (not complex) built-in types.
Any index computations are done in \verb'int64_t' arithmetic; the result is
typecasted to \verb'int32_t' for the \verb'*INDEX_INT32' operators.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS name          & MATLAB/Octave     & description \\
                        & analog            & \\
\hline
\verb'GrB_ROWINDEX_INT32'  & \verb'z=i+y'       & row index of \verb'A(i,j)', as int32 \\
\verb'GrB_ROWINDEX_INT64'  & \verb'z=i+y'       & row index of \verb'A(i,j)', as int64 \\
\verb'GrB_COLINDEX_INT32'  & \verb'z=j+y'       & column index of \verb'A(i,j)', as int32 \\
\verb'GrB_COLINDEX_INT64'  & \verb'z=j+y'       & column index of \verb'A(i,j)', as int64 \\
\verb'GrB_DIAGINDEX_INT32' & \verb'z=j-(i+y)'   & column diagonal index of \verb'A(i,j)', as int32 \\
\verb'GrB_DIAGINDEX_INT64' & \verb'z=j-(i+y)'   & column diagonal index of \verb'A(i,j)', as int64 \\
\hline
\verb'GrB_TRIL'    & \verb'z=(j<=(i+y))'  & true for entries on or below the \verb'y'th diagonal \\
\verb'GrB_TRIU'    & \verb'z=(j>=(i+y))'  & true for entries on or above the \verb'y'th diagonal \\
\verb'GrB_DIAG'    & \verb'z=(j==(i+y))'  & true for entries on the \verb'y'th diagonal \\
\verb'GrB_OFFDIAG' & \verb'z=(j!=(i+y))'  & true for entries not on the \verb'y'th diagonal \\
\verb'GrB_COLLE'   & \verb'z=(j<=y)'      & true for entries in columns 0 to \verb'y' \\
\verb'GrB_COLGT'   & \verb'z=(j>y)'       & true for entries in columns \verb'y+1' and above \\
\verb'GrB_ROWLE'   & \verb'z=(i<=y)'      & true for entries in rows 0 to \verb'y' \\
\verb'GrB_ROWGT'   & \verb'z=(i>y)'       & true for entries in rows \verb'y+1' and above \\
\hline
\verb'GrB_VALUENE_T'     & \verb'z=(aij!=y)'    & true if \verb'A(i,j)' is not equal to \verb'y'\\
\verb'GrB_VALUEEQ_T'     & \verb'z=(aij==y)'    & true if \verb'A(i,j)' is equal to \verb'y'\\
\verb'GrB_VALUEGT_T'     & \verb'z=(aij>y)'     & true if \verb'A(i,j)' is greater than \verb'y' \\
\verb'GrB_VALUEGE_T'     & \verb'z=(aij>=y)'    & true if \verb'A(i,j)' is greater than or equal to \verb'y' \\
\verb'GrB_VALUELT_T'     & \verb'z=(aij<y)'     & true if \verb'A(i,j)' is less than \verb'y' \\
\verb'GrB_VALUELE_T'     & \verb'z=(aij<=y)'    & true if \verb'A(i,j)' is less than or equal to \verb'y' \\
%
\hline
\end{tabular}
}
\vspace{0.2in}


The following methods operate on the \verb'GrB_IndexUnaryOp' object:

\vspace{0.1in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_IndexUnaryOp_new'   & create a user-defined index-unary operator   & \ref{idxunop_new} \\
\verb'GxB_IndexUnaryOp_new'   & create a named user-defined index-unary operator   & \ref{idxunop_new_named} \\
\verb'GrB_IndexUnaryOp_wait'  & wait for a user-defined index-unary operator  & \ref{idxunop_wait} \\
\verb'GrB_IndexUnaryOp_ztype_name' & return the type of the output $z$        & \ref{idxunop_ztype_name} \\
\verb'GrB_IndexUnaryOp_xtype_name' & return the type of the input $x$         & \ref{idxunop_xtype_name} \\
\verb'GrB_IndexUnaryOp_ytype_name' & return the type of the scalar $y$        & \ref{idxunop_ytype_name} \\
\verb'GrB_IndexUnaryOp_free'  & free a user-defined index-unary operator      & \ref{idxunop_free} \\
\hline
\end{tabular}
}
\vspace{0.1in}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_IndexUnaryOp\_new:} create a user-defined index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_IndexUnaryOp_new       // create a new user-defined IndexUnary op
(
    GrB_IndexUnaryOp *op,           // handle for the new IndexUnary operator
    void *function,                 // pointer to IndexUnary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x (the A(i,j) entry)
    GrB_Type ytype                  // type of scalar input y
) ;
\end{verbatim} }\end{mdframed}


\verb'GrB_IndexUnaryOp_new' creates a new index-unary operator.  The new operator is
returned in the \verb'op' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new index-unary operator.

The \verb'function' argument to \verb'GrB_IndexUnaryOp_new' is a pointer to a
user-defined function whose signature is given at the beginning of
Section~\ref{idxunop}.  Given the properties of an entry $a_{ij}$ in a
matrix, the \verb'function' should return \verb'z' as \verb'true' if the entry
should be kept in the output of \verb'GrB_select', or \verb'false' if it should
not appear in the output.  If the return value is not \verb'GrB_BOOL',
it is typecasted to \verb'GrB_BOOL' by \verb'GrB_select'.

The type \verb'xtype' is the GraphBLAS type of the input $x$ of the
user-defined function $z=f(x,i,j,y)$, which is used for the
entry \verb'A(i,j)' of a matrix or \verb'v(i)' of a vector.  The type may be
built-in or user-defined.

The type \verb'ytype' is the GraphBLAS type of the scalar input $y$ of the
user-defined function $z=f(x,i,j,y)$.  The type may be built-in
or user-defined.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_new:} create a named user-defined index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_new_named}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_new   // create a named user-created IndexUnaryOp
(
    GrB_IndexUnaryOp *op,           // handle for the new IndexUnary operator
    GxB_index_unary_function function,    // pointer to index_unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    GrB_Type ytype,                 // type of scalar input y
    const char *idxop_name,         // name of the user function
    const char *idxop_defn          // definition of the user function
) ;
\end{verbatim} }\end{mdframed}

Creates a named \verb'GrB_IndexUnaryOp'.  Only the first 127 characters of
\verb'idxop_name' are used.  The \verb'ixdop_defn' is a string containing the
entire function itself.  Currently, only the \verb'idxop_name' is used, but
future versions will rely on the \verb'idxop_defn' when employing a JIT for
better performance.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_IndexUnaryOp\_wait:} wait for an index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined binary operator
(
    GrB_IndexUnaryOp op,        // index-unary operator to wait for   
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined select operator, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation.  Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the
\verb'op' is valid.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_ztype\_name:} return the name of the type of $z$}
%-------------------------------------------------------------------------------
\label{idxunop_ztype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_ztype_name    // return the type_name of x
(
    char *type_name,                    // user array of size GxB_MAX_NAME_LEN
    const GrB_IndexUnaryOp op           // index-unary operator
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_IndexUnaryOp_ztype_name' returns the \verb'ztype' of the index-unary
operator, which is the type of $z$ in the function $z=f(x,i,j,y)$.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_xtype\_name:} return the name of the type of $x$}
%-------------------------------------------------------------------------------
\label{idxunop_xtype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_xtype_name    // return the type_name of x
(
    char *type_name,                    // user array of size GxB_MAX_NAME_LEN
    const GrB_IndexUnaryOp op           // index-unary operator
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_IndexUnaryOp_xtype_name' returns the \verb'xtype' of the index-unary
operator, which is the type of $x$ in the function $z=f(x,i,j,y)$.
This input is used for the entry \verb'A(i,j)' of a matrix or \verb'v(i)' of a
vector.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_IndexUnaryOp\_ytype\_name:} return the name of the type of scalar $y$}
%-------------------------------------------------------------------------------
\label{idxunop_ytype_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_ytype_name    // return the type_name of the scalar y
(
    char *type_name,                    // user array of size GxB_MAX_NAME_LEN
    const GrB_IndexUnaryOp op           // index-unary operator
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_IndexUnaryOp_ytype_name' returns the \verb'ytype' of the index-unary
operator, which is the type of the scalar y in the function $z=f(x,i,j,y)$.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_IndexUnaryOp\_free:} free a user-defined index-unary operator}
%-------------------------------------------------------------------------------
\label{idxunop_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free               // free a user-created index-unary operator
(
    GrB_IndexUnaryOp *op        // handle of IndexUnary to free
) ;
\end{verbatim}
}\end{mdframed}

\verb'GrB_IndexUnaryOp_free' frees a user-defined index-unary operator.  Either usage:

    {\small
    \begin{verbatim}
    GrB_IndexUnaryOp_free (&op) ;
    GrB_free (&op) ; \end{verbatim}}

\noindent
frees the \verb'op' and sets \verb'op' to \verb'NULL'.  It safely
does nothing if passed a \verb'NULL' handle, or if \verb'op == NULL' on
input.  It does nothing at all if passed a built-in index-unary operator.


\newpage
%===============================================================================
\subsection{GraphBLAS monoids: {\sf GrB\_Monoid}} %=============================
%===============================================================================
\label{monoid}

A {\em monoid} is defined on a single domain (that is, a single type), $T$.  It
consists of an associative binary operator $z=f(x,y)$ whose three operands $x$,
$y$, and $z$ are all in this same domain $T$ (that is $T \times T \rightarrow
T$).  The operator must also have an identity element, or ``zero'' in this
domain, such that $f(x,0)=f(0,x)=x$.  Recall that an associative operator
$f(x,y)$ is one for which the condition $f(a, f(b,c)) = f(f (a,b),c)$ always
holds.  That is, operator can be applied in any order and the results remain
the same.  If used in a semiring, the operator must also be commutative.

The 77 predefined monoids are listed in the table below, which
includes nearly all monoids that can be constructed from built-in binary
operators.  A few additional monoids can be defined with \verb'GrB_Monoid_new'
using built-in operators, such as bitwise monoids for signed integers.
Recall that $T$ denotes any built-in type (including boolean, integer, floating
point real, and complex), $R$ denotes any non-complex type (including bool),
$I$ denotes any integer type, and $Z$ denotes any complex type.  Let $S$ denote
the 10 non-boolean real types.  Let $U$ denote all unsigned integer types.

The table lists the GraphBLAS monoid, its type, expression, identity
value, and {\em terminal} value (if any).  For these built-in monoids, the
terminal values are the {\em annihilators} of the function, which is the value
$z$ so that $z=f(z,y)$ regardless of the value of $y$.  For example
$\min(-\infty,y) = -\infty$ for any $y$.  For integer domains, $+\infty$ and
$-\infty$ are the largest and smallest integer in their range.  With unsigned
integers, the smallest value is zero, and thus \verb'GrB_MIN_MONOID_UINT8' has an
identity of 255 and a terminal value of 0.

When computing with a monoid, the computation can terminate early if the
terminal value arises.  No further work is needed since the result will not
change.  This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator.  See Section~\ref{monoid_terminal_new} for an example.

The \verb'GxB_ANY_*' monoid can terminate as soon as it finds any value at all.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lllll}
\hline
GraphBLAS             & types (domains)            & expression      & identity  & terminal \\
operator              &                            & $z=f(x,y)$      &           & \\
\hline
% numeric SxS -> S
\verb'GrB_PLUS_MONOID_'$S$   & $S \times S \rightarrow S$ & $z = x+y$       & 0         & none \\
\verb'GrB_TIMES_MONOID_'$S$  & $S \times S \rightarrow S$ & $z = xy$        & 1         & 0 or none (see note) \\
\verb'GrB_MIN_MONOID_'$S$    & $S \times S \rightarrow S$ & $z = \min(x,y)$ & $+\infty$ & $-\infty$ \\
\verb'GrB_MAX_MONOID_'$S$    & $S \times S \rightarrow S$ & $z = \max(x,y)$ & $-\infty$ & $+\infty$ \\
\hline
% complex ZxZ -> Z
\verb'GxB_PLUS_'$Z$\verb'_MONOID'   & $Z \times Z \rightarrow Z$ & $z = x+y$       & 0         & none \\
\verb'GxB_TIMES_'$Z$\verb'_MONOID'  & $Z \times Z \rightarrow Z$ & $z = xy$        & 1         & none \\
\hline
% any TxT -> T
\verb'GxB_ANY_'$T$\verb'_MONOID'   & $T \times T \rightarrow T$ & $z = x$ or $y$  & any       & any        \\
\hline
% bool x bool -> bool
\verb'GrB_LOR_MONOID'        & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \vee    y $ & false & true  \\
\verb'GrB_LAND_MONOID'       & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \wedge  y $ & true  & false \\
\verb'GrB_LXOR_MONOID'       & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \veebar y $ & false & none \\
\verb'GrB_LXNOR_MONOID'      & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z =(x ==      y)$ & true  & none \\
\hline
% bitwise: UxU -> U
\verb'GxB_BOR_'$U$\verb'_MONOID'    & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x|y'    & all bits zero & all bits one  \\
\verb'GxB_BAND_'$U$\verb'_MONOID'   & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x&y'    & all bits one  & all bits zero \\
\verb'GxB_BXOR_'$U$\verb'_MONOID'   & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x^y'    & all bits zero & none \\
\verb'GxB_BXNOR_'$U$\verb'_MONOID'  & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=~(x^y)' & all bits one  & none \\
\hline
\end{tabular}
}
\vspace{0.2in}

% 40: (min,max,+,*) x (int8,16,32,64, uint8,16,32,64, fp32, fp64)
The C API Specification includes 44 predefined monoids, with the naming
convention \verb'GrB_op_MONOID_type'.  Forty monoids are available for the four
operators \verb'MIN', \verb'MAX', \verb'PLUS', and \verb'TIMES', each with the
10 non-boolean real types.  Four boolean monoids are predefined:
\verb'GrB_LOR_MONOID_BOOL', \verb'GrB_LAND_MONOID_BOOL',
\verb'GrB_LXOR_MONOID_BOOL', and \verb'GrB_LXNOR_MONOID_BOOL'.

% 13 ANY
%  4 complex (PLUS, TIMES)
% 16 bitwise
% 33 total
These all appear in SuiteSparse:GraphBLAS, which adds 33 additional predefined
\verb'GxB*' monoids, with the naming convention \verb'GxB_op_type_MONOID'.  The
\verb'ANY' operator can be used for all 13 types (including complex).  The
\verb'PLUS' and \verb'TIMES' operators are provided for both complex types, for
4 additional complex monoids.  Sixteen monoids are predefined for four bitwise
operators (\verb'BOR', \verb'BAND', \verb'BXOR', and \verb'BNXOR'), each with
four unsigned integer types (\verb'UINT8', \verb'UINT16', \verb'UINT32', and
\verb'UINT64').

{\bf NOTE:}
The \verb'GrB_TIMES_FP*' operators do not have a terminal value of zero, since
they comply with the IEEE 754 standard, and \verb'0*NaN' is not zero, but
\verb'NaN'.  Technically, their terminal value is \verb'NaN', but this value is
rare in practice and thus the terminal condition is not worth checking.

The next sections define the following methods for the \verb'GrB_Monoid'
object:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Monoid_new'       & create a user-defined monoid                  & \ref{monoid_new} \\
\verb'GrB_Monoid_wait'      & wait for a user-defined monoid                & \ref{monoid_wait} \\
\verb'GxB_Monoid_terminal_new'  & create a monoid that has a terminal value & \ref{monoid_terminal_new} \\
\verb'GxB_Monoid_operator'  & return the monoid operator                    & \ref{monoid_operator} \\
\verb'GxB_Monoid_identity'  & return the monoid identity value              & \ref{monoid_identity} \\
\verb'GxB_Monoid_terminal'  & return the monoid terminal value (if any)     & \ref{monoid_terminal} \\
\verb'GrB_Monoid_free'      & free a monoid                                 & \ref{monoid_free} \\
\hline
\end{tabular}
}
\vspace{0.2in}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_new:} create a monoid}
%-------------------------------------------------------------------------------
\label{monoid_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Monoid_new             // create a monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    <type> identity                 // identity value of the monoid
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Monoid_new' creates a monoid.  The operator, \verb'op', must be an
associative binary operator, either built-in or user-defined.

In the definition above, \verb'<type>' is a place-holder for the specific type
of the monoid.  For built-in types, it is the C type corresponding to the
built-in type (see Section~\ref{type}), such as \verb'bool', \verb'int32_t',
\verb'float', or \verb'double'.  In this case, \verb'identity' is a
scalar value of the particular type, not a pointer.  For
user-defined types, \verb'<type>' is \verb'void *', and thus \verb'identity' is
a not a scalar itself but a \verb'void *' pointer to a memory location
containing the identity value of the user-defined operator, \verb'op'.

If \verb'op' is a built-in operator with a known identity value, then the
\verb'identity' parameter is ignored, and its known identity value is used
instead.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_wait:} wait for a monoid}
%-------------------------------------------------------------------------------
\label{monoid_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined monoid
(
    GrB_Monoid monoid,          // monoid to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined monoid, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation.  Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the \verb'monoid' is valid.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal\_new:} create a monoid with terminal}
%-------------------------------------------------------------------------------
\label{monoid_terminal_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal_new    // create a monoid that has a terminal value
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    <type> identity,                // identity value of the monoid
    <type> terminal                 // terminal value of the monoid
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Monoid_terminal_new' is identical to \verb'GrB_Monoid_new', except
that it allows for the specification of a {\em terminal value}.  The
\verb'<type>' of the terminal value is the same as the \verb'identity'
parameter; see Section~\ref{monoid_new} for details.

The terminal value of a monoid is the value $z$ for which $z=f(z,y)$ for any
$y$, where $z=f(x,y)$ is the binary operator of the monoid.  This is also
called the {\em annihilator}, but the term {\em terminal value} is used here.
This is because all annihilators are terminal values, but a terminal value need
not be an annihilator, as described in the \verb'MIN' example below.

If the terminal value is encountered during computation, the rest of the
computations can be skipped.  This can greatly improve the performance of
\verb'GrB_reduce', and matrix multiply in specific cases (when a dot product
method is used).  For example, using \verb'GrB_reduce' to compute the sum of
all entries in a \verb'GrB_FP32' matrix with $e$ entries takes $O(e)$ time,
since a monoid based on \verb'GrB_PLUS_FP32' has no terminal value.  By
contrast, a reduction using \verb'GrB_LOR' on a \verb'GrB_BOOL' matrix can take
as little as $O(1)$ time, if a \verb'true' value is found in the matrix very
early.

Monoids based on the built-in \verb'GrB_MIN_*' and \verb'GrB_MAX_*' operators
(for any type), the boolean \verb'GrB_LOR', and the boolean \verb'GrB_LAND'
operators all have terminal values.  For example, the identity value of
\verb'GrB_LOR' is \verb'false', and its terminal value is \verb'true'.  When
computing a reduction of a set of boolean values to a single value, once a
\verb'true' is seen, the computation can exit early since the result is now
known.

If \verb'op' is a built-in operator with known identity and terminal values,
then the \verb'identity' and \verb'terminal' parameters are ignored, and its
known identity and terminal values are used instead.

There may be cases in which the user application needs to use a non-standard
terminal value for a built-in operator.  For example, suppose the matrix has
type \verb'GrB_FP32', but all values in the matrix are known to be
non-negative.  The annihilator value of \verb'MIN' is \verb'-INFINITY', but
this will never be seen.  However, the computation could terminate when
finding the value zero.  This is an example of using a terminal value that is
not actually an annihilator, but it functions like one since the monoid will
operate strictly on non-negative values.

In this case, a monoid created with \verb'GrB_MIN_FP32' will not terminate
early, because the identity and terminal inputs are ignored when using
\verb'GrB_Monoid_new' with a built-in operator as its input.
To create a monoid that can terminate early, create a user-defined operator
that computes the same thing as \verb'GrB_MIN_FP32', and then create a monoid
based on this user-defined operator with a terminal value of zero and an
identity of \verb'+INFINITY'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_operator:} return the monoid operator}
%-------------------------------------------------------------------------------
\label{monoid_operator}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_operator        // return the monoid operator
(
    GrB_BinaryOp *op,               // returns the binary op of the monoid
    GrB_Monoid monoid               // monoid to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Monoid_operator' returns the binary operator of the monoid.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_identity:} return the monoid identity}
%-------------------------------------------------------------------------------
\label{monoid_identity}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_identity        // return the monoid identity
(
    void *identity,                 // returns the identity of the monoid
    GrB_Monoid monoid               // monoid to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Monoid_identity' returns the identity value of the monoid.  The
\verb'void *' pointer, \verb'identity', must be non-\verb'NULL' and must point
to a memory space of size at least equal to the size of the type of the
\verb'monoid'.  The type size can be obtained via \verb'GxB_Monoid_operator' to
return the monoid additive operator, then \verb'GxB_BinaryOp_ztype' to obtain
the \verb'ztype', followed by \verb'GxB_Type_size' to get its size.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal:} return the monoid terminal value}
%-------------------------------------------------------------------------------
\label{monoid_terminal}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal        // return the monoid terminal
(
    bool *has_terminal,             // true if the monoid has a terminal value
    void *terminal,                 // returns the terminal of the monoid
    GrB_Monoid monoid               // monoid to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Monoid_terminal' returns the terminal value of the monoid (if any).
The \verb'void *' pointer, \verb'terminal', must be non-\verb'NULL' and must
point to a memory space of size at least equal to the size of the type of the
\verb'monoid'.  The type size can be obtained via \verb'GxB_Monoid_operator' to
return the monoid additive operator, then \verb'GxB_BinaryOp_ztype' to obtain
the \verb'ztype', followed by \verb'GxB_Type_size' to get its size.

If the monoid has a terminal value, then \verb'has_terminal' is \verb'true',
and its value is returned in the \verb'terminal' parameter.  If it has no
terminal value, then \verb'has_terminal' is \verb'false', and the
\verb'terminal' parameter is not modified.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_free:} free a monoid}
%-------------------------------------------------------------------------------
\label{monoid_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free                   // free a user-created monoid
(
    GrB_Monoid *monoid              // handle of monoid to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Monoid_frees' frees a monoid.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Monoid_free (&monoid) ;
    GrB_free (&monoid) ; \end{verbatim}}

\noindent
frees the \verb'monoid' and sets \verb'monoid' to \verb'NULL'.  It safely does
nothing if passed a \verb'NULL' handle, or if \verb'monoid == NULL' on input.
It does nothing at all if passed a built-in monoid.

\newpage
%===============================================================================
\subsection{GraphBLAS semirings: {\sf GrB\_Semiring}} %=========================
%===============================================================================
\label{semiring}

A {\em semiring} defines all the operators required to define the
multiplication of two sparse matrices in GraphBLAS, ${\bf C=AB}$.  The ``add''
operator is a commutative and associative monoid, and the binary ``multiply''
operator defines a function $z=fmult(x,y)$ where the type of $z$ matches the
exactly with the monoid type.  SuiteSparse:GraphBLAS includes 1,473 predefined
built-in semirings.  The next sections define the following methods for the
\verb'GrB_Semiring' object:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Semiring_new'       & create a user-defined semiring           & \ref{semiring_new} \\
\verb'GrB_Semiring_wait'      & wait for a user-defined semiring         & \ref{semiring_wait} \\
\verb'GxB_Semiring_add'       & return the additive monoid of a semiring & \ref{semiring_add} \\
\verb'GxB_Semiring_multiply'  & return the binary operator of a semiring & \ref{semiring_multiply} \\
\verb'GrB_Semiring_free'      & free a semiring                          & \ref{semiring_free} \\
\hline
\end{tabular}
}

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_new:} create a semiring}
%-------------------------------------------------------------------------------
\label{semiring_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Semiring_new           // create a semiring
(
    GrB_Semiring *semiring,         // handle of semiring to create
    GrB_Monoid add,                 // add monoid of the semiring
    GrB_BinaryOp multiply           // multiply operator of the semiring
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Semiring_new' creates a new semiring, with \verb'add' being the
additive monoid and \verb'multiply' being the binary ``multiply'' operator.  In
addition to the standard error cases, the function returns
\verb'GrB_DOMAIN_MISMATCH' if the output (\verb'ztype') domain of
\verb'multiply' does not match the domain of the \verb'add' monoid.

The v2.0 C API Specification for GraphBLAS includes 124 predefined semirings,
with names of the form \verb'GrB_add_mult_SEMIRING_type', where \verb'add' is
the operator of the additive monoid, \verb'mult' is the multiply operator, and
\verb'type' is the type of the input $x$ to the multiply operator, $f(x,y)$.
The name of the domain for the additive monoid does not appear in the name,
since it always matches the type of the output of the \verb'mult' operator.
Twelve kinds of \verb'GrB*' semirings are available for all 10 real, non-boolean types:
    \verb'PLUS_TIMES', \verb'PLUS_MIN',
    \verb'MIN_PLUS', \verb'MIN_TIMES', \verb'MIN_FIRST', \verb'MIN_SECOND', \verb'MIN_MAX',
    \verb'MAX_PLUS', \verb'MAX_TIMES', \verb'MAX_FIRST', \verb'MAX_SECOND', and \verb'MAX_MIN'.
Four semirings are for boolean types only: 
    \verb'LOR_LAND', \verb'LAND_LOR', \verb'LXOR_LAND', and \verb'LXNOR_LOR'.

SuiteSparse:GraphBLAS pre-defines 1,553 semirings from built-in types and
operators, listed below.  The naming convention is \verb'GxB_add_mult_type'.
The 124 \verb'GrB*' semirings are a subset of the list below, included with two
names: \verb'GrB*' and \verb'GxB*'.  If the \verb'GrB*' name is provided, its
use is preferred, for portability to other GraphBLAS implementations.

\vspace{-0.05in}
\begin{itemize}
\item 1000 semirings with a multiplier $T \times T \rightarrow T$ where $T$ is
    any of the 10 non-Boolean, real types, from the complete cross product of:

    \vspace{-0.05in}
    \begin{itemize}
    \item 5 monoids (\verb'MIN', \verb'MAX', \verb'PLUS', \verb'TIMES', \verb'ANY')
    \item 20 multiply operators
    (\verb'FIRST', \verb'SECOND', \verb'PAIR' (same as \verb'ONEB'),
    \verb'MIN', \verb'MAX',
    \verb'PLUS', \verb'MINUS', \verb'RMINUS', \verb'TIMES', \verb'DIV', \verb'RDIV',
    \verb'ISEQ', \verb'ISNE', \verb'ISGT',
    \verb'ISLT', \verb'ISGE', \verb'ISLE',
    \verb'LOR', \verb'LAND', \verb'LXOR').
    \item 10 non-Boolean types, $T$
    \end{itemize}

\item 300 semirings with a comparator $T \times T \rightarrow$
    \verb'bool', where $T$ is non-Boolean and real, from the complete cross product of:

    \vspace{-0.05in}
    \begin{itemize}
    \item 5 Boolean monoids
    (\verb'LAND', \verb'LOR', \verb'LXOR', \verb'EQ', \verb'ANY')
    \item 6 multiply operators
    (\verb'EQ', \verb'NE', \verb'GT', \verb'LT', \verb'GE', \verb'LE')
    \item 10 non-Boolean types, $T$
    \end{itemize}

\item 55 semirings with purely Boolean types, \verb'bool' $\times$ \verb'bool'
    $\rightarrow$ \verb'bool', from the complete cross product of:

    \vspace{-0.05in}
    \begin{itemize}
    \item 5 Boolean monoids
    (\verb'LAND', \verb'LOR', \verb'LXOR', \verb'EQ', \verb'ANY')
    \item 11 multiply operators
    (\verb'FIRST', \verb'SECOND', \verb'PAIR' (same as \verb'ONEB'),
    \verb'LOR', \verb'LAND', \verb'LXOR',
    \verb'EQ', \verb'GT', \verb'LT', \verb'GE', \verb'LE')
    \end{itemize}

\item 54 complex semirings, $Z \times Z \rightarrow Z$ where $Z$ is
    \verb'GxB_FC32' (single precision complex) or
    \verb'GxB_FC64' (double precision complex):

    \vspace{-0.05in}
    \begin{itemize}
    \item 3 complex monoids (\verb'PLUS', \verb'TIMES', \verb'ANY')
    \item 9 complex multiply operators
        (\verb'FIRST', \verb'SECOND', \verb'PAIR' (same as \verb'ONEB'),
        \verb'PLUS', \verb'MINUS',
            \verb'TIMES', \verb'DIV', \verb'RDIV', \verb'RMINUS')
    \item 2 complex types, $Z$
    \end{itemize}

\item 64 bitwise semirings, $U \times U \rightarrow U$ where $U$ is
    an unsigned integer.

    \vspace{-0.05in}
    \begin{itemize}
    \item 4 bitwise monoids (\verb'BOR', \verb'BAND', \verb'BXOR', \verb'BXNOR')
    \item 4 bitwise multiply operators (the same list)
    \item 4 unsigned integer types
    \end{itemize}

\item 80 positional semirings, $X \times X \rightarrow N$ where $N$ is
    \verb'INT32' or \verb'INT64':

    \vspace{-0.05in}
    \begin{itemize}
    \item 5 monoids (\verb'MIN', \verb'MAX', \verb'PLUS', \verb'TIMES', \verb'ANY')
    \item 8 positional operators
        (\verb'FIRSTI', \verb'FIRSTI1', \verb'FIRSTJ', \verb'FIRSTJ1',
        \verb'SECONDI', \verb'SECONDI1', \verb'SECONDJ', \verb'SECONDJ1')
    \item 2 integer types (\verb'INT32', \verb'INT64')
    \end{itemize}

\end{itemize}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_wait:} wait for a semiring}
%-------------------------------------------------------------------------------
\label{semiring_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined semiring
(
    GrB_Semiring semiring,      // semiring to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined semiring, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation.  Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the
\verb'semiring' is valid.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Semiring\_add:} return the additive monoid of a semiring}
%-------------------------------------------------------------------------------
\label{semiring_add}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_add           // return the add monoid of a semiring
(
    GrB_Monoid *add,                // returns add monoid of the semiring
    GrB_Semiring semiring           // semiring to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Semiring_add' returns the additive monoid of a semiring.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Semiring\_multiply:} return multiply operator of a semiring}
%-------------------------------------------------------------------------------
\label{semiring_multiply}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_multiply      // return multiply operator of a semiring
(
    GrB_BinaryOp *multiply,         // returns multiply operator of the semiring
    GrB_Semiring semiring           // semiring to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Semiring_multiply' returns the binary multiplicative operator of a
semiring.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_free:} free a semiring}
%-------------------------------------------------------------------------------
\label{semiring_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free                   // free a user-created semiring
(
    GrB_Semiring *semiring          // handle of semiring to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Semiring_free' frees a semiring.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Semiring_free (&semiring) ;
    GrB_free (&semiring) ; \end{verbatim}}

\noindent
frees the \verb'semiring' and sets \verb'semiring' to \verb'NULL'.  It safely
does nothing if passed a \verb'NULL' handle, or if \verb'semiring == NULL' on
input.  It does nothing at all if passed a built-in semiring.

\newpage
%===============================================================================
\subsection{GraphBLAS scalars: {\sf GrB\_Scalar}} %=============================
%===============================================================================
\label{scalar}

This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS scalar, \verb'GrB_Scalar':

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Scalar_new'            & create a scalar                      & \ref{scalar_new} \\
\verb'GrB_Scalar_wait'           & wait for a scalar                    & \ref{scalar_wait} \\
\verb'GrB_Scalar_dup'            & copy a scalar                        & \ref{scalar_dup} \\
\verb'GrB_Scalar_clear'          & clear a scalar of its entry          & \ref{scalar_clear} \\
\verb'GrB_Scalar_nvals'          & return number of entries in a scalar & \ref{scalar_nvals}  \\
\verb'GxB_Scalar_type_name'      & return name of the type of a scalar  & \ref{scalar_type_name} \\
\verb'GrB_Scalar_setElement'     & set the single entry of a scalar     & \ref{scalar_setElement} \\
\verb'GrB_Scalar_extractElement' & get the single entry from a scalar   & \ref{scalar_extractElement} \\
\verb'GxB_Scalar_memoryUsage'    & memory used by a scalar              & \ref{scalar_memusage} \\
\verb'GrB_Scalar_free'           & free a scalar                        & \ref{scalar_free} \\
\hline
\end{tabular}
}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_new:} create a scalar}
%-------------------------------------------------------------------------------
\label{scalar_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_new     // create a new GrB_Scalar with no entry
(
    GrB_Scalar *s,          // handle of GrB_Scalar to create
    GrB_Type type           // type of GrB_Scalar to create
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Scalar_new' creates a new scalar with no
entry in it, of the given type.  This is analogous to MATLAB/Octave statement
\verb's = sparse(0)', except that GraphBLAS can create scalars any
type.  The pattern of the new scalar is empty.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_wait:} wait for a scalar}
%-------------------------------------------------------------------------------
\label{scalar_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a scalar
(
    GrB_Scalar s,               // scalar to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

In non-blocking mode, the computations for a \verb'GrB_Scalar' may be delayed.
In this case, the scalar is not yet safe to use by multiple independent user
threads.  A user application may force completion of a scalar \verb's' via
\verb'GrB_Scalar_wait(&s)' (in v5.2.0), or
\verb'GrB_Scalar_wait(s,mode)' (in v6.0.0).
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and different user threads may
simultaneously call GraphBLAS operations that use the scalar \verb's' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_dup:} copy a scalar}
%-------------------------------------------------------------------------------
\label{scalar_dup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_dup     // make an exact copy of a GrB_Scalar
(
    GrB_Scalar *s,          // handle of output GrB_Scalar to create
    const GrB_Scalar t      // input GrB_Scalar to copy
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Scalar_dup' makes a deep copy of a scalar.
In GraphBLAS, it is possible, and valid, to write the following:

    {\footnotesize
    \begin{verbatim}
    GrB_Scalar t, s ;
    GrB_Scalar_new (&t, GrB_FP64) ;
    s = t ;                         // s is a shallow copy of t  \end{verbatim}}

Then \verb's' and \verb't' can be used interchangeably.  However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different scalars are needed, then this should be used instead:

    {\footnotesize
    \begin{verbatim}
    GrB_Scalar t, s ;
    GrB_Scalar_new (&t, GrB_FP64) ;
    GrB_Scalar_dup (&s, t) ;        // like s = t, but making a deep copy \end{verbatim}}

Then \verb's' and \verb't' are two different scalars that currently have
the same value, but they do not depend on each other.  Modifying one has no
effect on the other.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_clear:} clear a scalar of its entry}
%-------------------------------------------------------------------------------
\label{scalar_clear}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_clear   // clear a GrB_Scalar of its entry
(                           // type remains unchanged.
    GrB_Scalar s            // GrB_Scalar to clear
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Scalar_clear' clears the entry from a scalar.  The pattern of
\verb's' is empty, just as if it were created fresh with \verb'GrB_Scalar_new'.
Analogous with \verb's = sparse (0)' in MATLAB/Octave.  The type of \verb's' does not
change.  Any pending updates to the scalar are discarded.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_nvals:} return the number of entries in a scalar}
%-------------------------------------------------------------------------------
\label{scalar_nvals}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_nvals   // get the number of entries in a GrB_Scalar
(
    GrB_Index *nvals,       // GrB_Scalar has nvals entries (0 or 1)
    const GrB_Scalar s      // GrB_Scalar to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Scalar_nvals' returns the number of entries in a scalar, which
is either 0 or 1.  Roughly analogous to \verb'nvals = nnz(s)' in MATLAB/Octave,
except that the implicit value in GraphBLAS need not be zero and \verb'nnz'
(short for ``number of nonzeros'') in MATLAB is better described as ``number of
entries'' in GraphBLAS.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_type\_name:} return name of the type of a scalar}
%-------------------------------------------------------------------------------
\label{scalar_type_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_type_name      // return the name of the type of a scalar
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Scalar s      // GrB_Scalar to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Scalar_type_name' returns the name of the type of a scalar.
Analogous to \verb'type = class (s)' in MATLAB.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_setElement:} set the single entry of a scalar}
%-------------------------------------------------------------------------------
\label{scalar_setElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_setElement          // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    <type> x                            // user scalar to assign to s
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Scalar_setElement' sets the single entry in a scalar, like
\verb's = sparse(x)' in MATLAB notation.  For further details of this function,
see \verb'GrB_Matrix_setElement' in Section~\ref{matrix_setElement}.
If an error occurs, \verb'GrB_error(&err,s)' returns details about the error.
The scalar \verb'x' can be any non-opaque C scalar corresponding to
a built-in type, or \verb'void *' for a user-defined type.  It cannot be
a \verb'GrB_Scalar'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_extractElement:} get the single entry from a scalar}
%-------------------------------------------------------------------------------
\label{scalar_extractElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Scalar_extractElement  // x = s
(
    <type> *x,                      // user scalar extracted
    const GrB_Scalar s              // GrB_Sclar to extract an entry from
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Scalar_extractElement' extracts the single entry from a sparse
scalar, like \verb'x = full(s)' in MATLAB.  Further details of this method are
discussed in Section~\ref{matrix_extractElement}, which discusses
\verb'GrB_Matrix_extractElement'.  {\bf NOTE: }  if no entry is present in the
scalar \verb's', then \verb'x' is not modified, and the return value of
\verb'GrB_Scalar_extractElement' is \verb'GrB_NO_VALUE'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_memoryUsage:} memory used by a scalar}
%-------------------------------------------------------------------------------
\label{scalar_memusage}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_memoryUsage  // return # of bytes used for a scalar
(
    size_t *size,           // # of bytes used by the scalar s
    const GrB_Scalar s      // GrB_Scalar to query
) ;
\end{verbatim} } \end{mdframed}

Returns the memory space required for a scalar, in bytes.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Scalar\_free:} free a scalar}
%-------------------------------------------------------------------------------
\label{scalar_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free           // free a GrB_Scalar
(
    GrB_Scalar *s           // handle of GrB_Scalar to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Scalar_free' frees a scalar.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Scalar_free (&s) ;
    GrB_free (&s) ; \end{verbatim}}

\noindent
frees the scalar \verb's' and sets \verb's' to \verb'NULL'.  It safely
does nothing if passed a \verb'NULL' handle, or if \verb's == NULL' on input.
Any pending updates to the scalar are abandoned.

\newpage
%===============================================================================
\subsection{GraphBLAS vectors: {\sf GrB\_Vector}} %=============================
%===============================================================================
\label{vector}

This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse vector, \verb'GrB_Vector':

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Vector_new'            & create a vector                  & \ref{vector_new} \\
\verb'GrB_Vector_wait'           & wait for a vector                & \ref{vector_wait} \\
\verb'GrB_Vector_dup'            & copy a vector                    & \ref{vector_dup} \\
\verb'GrB_Vector_clear'          & clear a vector of all entries    & \ref{vector_clear} \\
\verb'GrB_Vector_size'           & size of a vector                 & \ref{vector_size} \\
\verb'GrB_Vector_nvals'          & number of entries in a vector    & \ref{vector_nvals} \\
\verb'GxB_Vector_type_name'      & name of the type of a vector     & \ref{vector_type_name} \\
\verb'GrB_Vector_build'          & build a vector from tuples       & \ref{vector_build} \\
\verb'GxB_Vector_build_Scalar'   & build a vector from tuples       & \ref{vector_build_Scalar} \\
\verb'GrB_Vector_setElement'     & add an entry to a vector         & \ref{vector_setElement} \\
\verb'GrB_Vector_extractElement' & get an entry from a vector       & \ref{vector_extractElement} \\
\verb'GxB_Vector_isStoredElement'& check if entry present in vector & \ref{vector_isStoredElement} \\
\verb'GrB_Vector_removeElement'  & remove an entry from a vector    & \ref{vector_removeElement} \\
\verb'GrB_Vector_extractTuples'  & get all entries from a vector    & \ref{vector_extractTuples} \\
\verb'GrB_Vector_resize'         & resize a vector                  & \ref{vector_resize} \\
\verb'GxB_Vector_diag'           & extract a diagonal from a matrix & \ref{vector_diag} \\
\verb'GxB_Vector_iso'            & query iso status                 & \ref{vector_iso} \\
\verb'GxB_Vector_memoryUsage'    & memory used by a vector          & \ref{vector_memusage} \\
\verb'GrB_Vector_free'           & free a vector                    & \ref{vector_free} \\
\hline
\hline
% NOTE: GrB_Vector_serialize / deserialize does not appear in the 2.0 C API.
% \verb'GrB_Vector_serializeSize'  & return size of serialized vector & \ref{vector_serialize_size} \\
% \verb'GrB_Vector_serialize'      & serialize a vector               & \ref{vector_serialize} \\
\verb'GxB_Vector_serialize'      & serialize a vector               & \ref{vector_serialize_GxB} \\
% \verb'GrB_Vector_deserialize'    & deserialize a vector             & \ref{vector_deserialize} \\
\verb'GxB_Vector_deserialize'    & deserialize a vector             & \ref{vector_deserialize_GxB} \\
\hline
\hline
\verb'GxB_Vector_pack_CSC'         & pack in CSC format      & \ref{vector_pack_csc} \\
\verb'GxB_Vector_unpack_CSC'       & unpack in CSC format    & \ref{vector_unpack_csc} \\
\hline
\verb'GxB_Vector_pack_Bitmap'      & pack in bitmap format   & \ref{vector_pack_bitmap} \\
\verb'GxB_Vector_unpack_Bitmap'    & unpack in bitmap format & \ref{vector_unpack_bitmap} \\
\hline
\verb'GxB_Vector_pack_Full'        & pack in full format     & \ref{vector_pack_full} \\
\verb'GxB_Vector_unpack_Full'      & unpack in full format   & \ref{vector_unpack_full} \\
\hline
\hline
\verb'GxB_Vector_sort'          & sort a vector & \ref{vector_sort} \\
\end{tabular}
}

\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods,
Section~\ref{pack_unpack} for pack/unpack methods,
and to
Section~\ref{sorting_methods} for sorting methods.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_new:}           create a vector}
%-------------------------------------------------------------------------------
\label{vector_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_new     // create a new vector with no entries
(
    GrB_Vector *v,          // handle of vector to create
    GrB_Type type,          // type of vector to create
    GrB_Index n             // vector dimension is n-by-1
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_new' creates a new \verb'n'-by-\verb'1' sparse vector with no
entries in it, of the given type.  This is analogous to MATLAB/Octave statement
\verb'v = sparse (n,1)', except that GraphBLAS can create sparse vectors any
type.  The pattern of the new vector is empty.

\begin{alert}
{\bf SPEC:} \verb'n' may be zero, as an extension to the specification.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_wait:} wait for a vector}
%-------------------------------------------------------------------------------
\label{vector_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a vector
(
    GrB_Vector w,               // vector to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

In non-blocking mode, the computations for a \verb'GrB_Vector' may be delayed.
In this case, the vector is not yet safe to use by multiple independent user
threads.  A user application may force completion of a vector \verb'w' via
\verb'GrB_Vector_wait(&w)' (in v5.2.0), or
\verb'GrB_Vector_wait(w,mode)' (in v6.0.0).
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and different user threads may
simultaneously call GraphBLAS operations that use the vector \verb'w' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_dup:}           copy a vector}
%-------------------------------------------------------------------------------
\label{vector_dup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_dup     // make an exact copy of a vector
(
    GrB_Vector *w,          // handle of output vector to create
    const GrB_Vector u      // input vector to copy
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_dup' makes a deep copy of a sparse vector.
In GraphBLAS, it is possible, and valid, to write the following:

    {\footnotesize
    \begin{verbatim}
    GrB_Vector u, w ;
    GrB_Vector_new (&u, GrB_FP64, n) ;
    w = u ;                         // w is a shallow copy of u  \end{verbatim}}

Then \verb'w' and \verb'u' can be used interchangeably.  However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different vectors are needed, then this should be used instead:

    {\footnotesize
    \begin{verbatim}
    GrB_Vector u, w ;
    GrB_Vector_new (&u, GrB_FP64, n) ;
    GrB_Vector_dup (&w, u) ;        // like w = u, but making a deep copy \end{verbatim}}

Then \verb'w' and \verb'u' are two different vectors that currently have the
same set of values, but they do not depend on each other.  Modifying one has
no effect on the other.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_clear:}         clear a vector of all entries}
%-------------------------------------------------------------------------------
\label{vector_clear}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_clear   // clear a vector of all entries;
(                           // type and dimension remain unchanged.
    GrB_Vector v            // vector to clear
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_clear' clears all entries from a vector.  All values
\verb'v(i)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the vector.  The pattern of \verb'v' is
empty, just as if it were created fresh with \verb'GrB_Vector_new'.  Analogous
with \verb'v (:) = sparse(0)' in MATLAB.  The type and dimension of \verb'v' do
not change.  Any pending updates to the vector are discarded.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_size:}          return the size of a vector}
%-------------------------------------------------------------------------------
\label{vector_size}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_size    // get the dimension of a vector
(
    GrB_Index *n,           // vector dimension is n-by-1
    const GrB_Vector v      // vector to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_size' returns the size of a vector (the number of rows).
Analogous to \verb'n = length(v)' or \verb'n = size(v,1)' in MATLAB.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_nvals:}         return the number of entries in a vector}
%-------------------------------------------------------------------------------
\label{vector_nvals}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_nvals   // get the number of entries in a vector
(
    GrB_Index *nvals,       // vector has nvals entries
    const GrB_Vector v      // vector to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_nvals' returns the number of entries in a vector.  Roughly
analogous to \verb'nvals = nnz(v)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_type\_name:} return name of the type of a vector}
%-------------------------------------------------------------------------------
\label{vector_type_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_type_name      // return the name of the type of a vector
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Vector v      // vector to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_type_name' returns the name of the type of a vector.
Analogous to \verb'type = class (v)' in MATLAB.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_build:}         build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build           // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const <type> *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_build' constructs a sparse vector \verb'w' from a set of
tuples, \verb'I' and \verb'X', each of length \verb'nvals'.  The vector
\verb'w' must have already been initialized with \verb'GrB_Vector_new', and it
must have no entries in it before calling \verb'GrB_Vector_build'.
This function is just like \verb'GrB_Matrix_build' (see
Section~\ref{matrix_build}), except that it builds a sparse vector instead of a
sparse matrix.  For a description of what \verb'GrB_Vector_build' does, refer
to \verb'GrB_Matrix_build'.  For a vector, the list of column indices \verb'J'
in \verb'GrB_Matrix_build' is implicitly a vector of length \verb'nvals' all
equal to zero.  Otherwise the methods are identical.

If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored.  If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored.  This is not an error.

\begin{alert}
{\bf SPEC:} Results are defined even if \verb'dup' is non-associative.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_build\_Scalar:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build_Scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_build_Scalar    // build a vector from (i,scalar) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    GrB_Scalar scalar,              // value for all tuples
    GrB_Index nvals                 // number of tuples
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_build_Scalar' constructs a sparse vector \verb'w' from a set
of tuples defined by the index array \verb'I' of length \verb'nvals', and a
scalar.  The scalar is the value of all of the tuples.  Unlike
\verb'GrB_Vector_build', there is no \verb'dup' operator to handle duplicate
entries.  Instead, any duplicates are silently ignored (if the number of
duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the vector is constructed).  All
entries in the sparsity pattern of \verb'w' are identical, and equal to the
input scalar value.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_setElement:}    add an entry to a vector}
%-------------------------------------------------------------------------------
\label{vector_setElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_setElement          // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    <type> x,                           // scalar to assign to w(i)
    GrB_Index i                         // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_setElement' sets a single entry in a vector, \verb'w(i) = x'.
The operation is exactly like setting a single entry in an \verb'n'-by-1
matrix, \verb'A(i,0) = x', where the column index for a vector is implicitly
\verb'j=0'.  For further details of this function, see
\verb'GrB_Matrix_setElement' in Section~\ref{matrix_setElement}.
If an error occurs, \verb'GrB_error(&err,w)' returns details about the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractElement:} get an entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractElement  // x = v(i)
(
    <type> *x,                  // scalar extracted (non-opaque, C scalar)
    const GrB_Vector v,         // vector to extract an entry from
    GrB_Index i                 // index
) ;

GrB_Info GrB_Vector_extractElement  // x = v(i)
(
    GrB_Scalar x,               // GrB_Scalar extracted
    const GrB_Vector v,         // vector to extract an entry from
    GrB_Index i                 // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_extractElement' extracts a single entry from a vector,
\verb'x = v(i)'.  The method is identical to extracting a single entry
\verb'x = A(i,0)' from an \verb'n'-by-1 matrix; see
Section~\ref{matrix_extractElement}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_isStoredElement:} check if entry present in vector}
%-------------------------------------------------------------------------------
\label{vector_isStoredElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_isStoredElement
(
    const GrB_Vector v,         // check presence of entry v(i)
    GrB_Index i                 // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_isStoredElement' checks if a single entry \verb'v(i)'
is present, returning \verb'GrB_SUCCESS' if the entry is present or
\verb'GrB_NO_VALUE' otherwise.  The value of \verb'v(i)' is not returned.
See also Section~\ref{matrix_isStoredElement}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_removeElement:} remove an entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_removeElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_removeElement
(
    GrB_Vector w,                   // vector to remove an entry from
    GrB_Index i                     // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_removeElement' removes a single entry \verb'w(i)' from a vector.
If no entry is present at \verb'w(i)', then the vector is not modified.
If an error occurs, \verb'GrB_error(&err,w)' returns details about the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractTuples:} get all entries from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractTuples}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractTuples           // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    <type> *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_extractTuples' extracts all tuples from a sparse vector,
analogous to \verb'[I,~,X] = find(v)' in MATLAB/Octave.  This function is
identical to its \verb'GrB_Matrix_extractTuples' counterpart, except that the
array of column indices \verb'J' does not appear in this function.  Refer to
Section~\ref{matrix_extractTuples} where further details of this function are
described.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_resize:}          resize a vector}
%-------------------------------------------------------------------------------
\label{vector_resize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_resize      // change the size of a vector
(
    GrB_Vector u,               // vector to modify
    GrB_Index nrows_new         // new number of rows in vector
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_resize' changes the size of a vector.  If the dimension
decreases, entries that fall outside the resized vector are deleted.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_diag:} extract a diagonal from a matrix}
%-------------------------------------------------------------------------------
\label{vector_diag}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_diag    // extract a diagonal from a matrix
(
    GrB_Vector v,                   // output vector
    const GrB_Matrix A,             // input matrix
    int64_t k,
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}


\verb'GxB_Vector_diag' extracts a vector \verb'v' from an input matrix
\verb'A', which may be rectangular.  If \verb'k' = 0, the main diagonal of
\verb'A' is extracted; \verb'k' $> 0$ denotes diagonals above the main diagonal
of \verb'A', and \verb'k' $< 0$ denotes diagonals below the main diagonal of
\verb'A'.  Let \verb'A' have dimension $m$-by-$n$.  If \verb'k' is in the range
0 to $n-1$, then \verb'v' has length $\min(m,n-k)$.  If \verb'k' is negative
and in the range -1 to $-m+1$, then \verb'v' has length $\min(m+k,n)$.  If
\verb'k' is outside these ranges, \verb'v' has length 0 (this is not an error).
This function computes the same thing as the MATLAB/Octave statement
\verb'v=diag(A,k)' when \verb'A' is a matrix, except that
\verb'GxB_Vector_diag' can also do typecasting.

The vector \verb'v' must already exist on input, and
\verb'GrB_Vector_size (&len,v)' must return \verb'len' = 0 if \verb'k' $\ge n$
or \verb'k' $\le -m$, \verb'len' $=\min(m,n-k)$ if \verb'k' is in the range 0
to $n-1$, and \verb'len' $=\min(m+k,n)$ if \verb'k' is in the range -1 to
$-m+1$.  Any existing entries in \verb'v' are discarded.  The type of \verb'v'
is preserved, so that if the type of \verb'A' and \verb'v' differ, the entries
are typecasted into the type of \verb'v'.  Any settings made to \verb'v' by
\verb'GxB_Vector_Option_set' (bitmap switch and sparsity control) are
unchanged.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_iso:} query iso status of a vector}
%-------------------------------------------------------------------------------
\label{vector_iso}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_iso     // return iso status of a vector
(
    bool *iso,              // true if the vector is iso-valued
    const GrB_Vector v      // vector to query
) ;
\end{verbatim} } \end{mdframed}

Returns the true if the vector is iso-valued, false otherwise.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_memoryUsage:} memory used by a vector}
%-------------------------------------------------------------------------------
\label{vector_memusage}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_memoryUsage  // return # of bytes used for a vector
(
    size_t *size,           // # of bytes used by the vector v
    const GrB_Vector v      // vector to query
) ;
\end{verbatim} } \end{mdframed}

Returns the memory space required for a vector, in bytes.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_free:}          free a vector}
%-------------------------------------------------------------------------------
\label{vector_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free           // free a vector
(
    GrB_Vector *v           // handle of vector to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_free' frees a vector.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Vector_free (&v) ;
    GrB_free (&v) ; \end{verbatim}}

\noindent
frees the vector \verb'v' and sets \verb'v' to \verb'NULL'.  It safely does
nothing if passed a \verb'NULL' handle, or if \verb'v == NULL' on input.  Any
pending updates to the vector are abandoned.

\newpage
%===============================================================================
\subsection{GraphBLAS matrices: {\sf GrB\_Matrix}} %============================
%===============================================================================
\label{matrix}

This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse matrix, \verb'GrB_Matrix':

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Matrix_new'           & create a matrix                       & \ref{matrix_new} \\
\verb'GrB_Matrix_wait'          & wait for a matrix                     & \ref{matrix_wait} \\
\verb'GrB_Matrix_dup'           & copy a matrix                         & \ref{matrix_dup} \\
\verb'GrB_Matrix_clear'         & clear a matrix of all entries         & \ref{matrix_clear} \\
\verb'GrB_Matrix_nrows'         & number of rows of a matrix            & \ref{matrix_nrows} \\
\verb'GrB_Matrix_ncols'         & number of columns of a matrix         & \ref{matrix_ncols} \\
\verb'GrB_Matrix_nvals'         & number of entries in a matrix         & \ref{matrix_nvals} \\
\verb'GxB_Matrix_type_name'     & type of a matrix                      & \ref{matrix_type_name} \\
\verb'GrB_Matrix_build'         & build a matrix from tuples            & \ref{matrix_build} \\
\verb'GxB_Matrix_build_Scalar'  & build a matrix from tuples            & \ref{matrix_build_Scalar} \\
\verb'GrB_Matrix_setElement'    & add an entry to a matrix              & \ref{matrix_setElement} \\
\verb'GrB_Matrix_extractElement'& get an entry from a matrix            & \ref{matrix_extractElement} \\
\verb'GxB_Matrix_isStoredElement'& check if entry present in matrix     & \ref{matrix_isStoredElement} \\
\verb'GrB_Matrix_removeElement' & remove an entry from a matrix         & \ref{matrix_removeElement} \\
\verb'GrB_Matrix_extractTuples' & get all entries from a matrix         & \ref{matrix_extractTuples} \\
\verb'GrB_Matrix_resize'        & resize a matrix                       & \ref{matrix_resize} \\
\verb'GxB_Matrix_concat'        & concatenate matrices                  & \ref{matrix_concat} \\
\verb'GxB_Matrix_split'         & split a matrix into matrices          & \ref{matrix_split} \\
\verb'GrB_Matrix_diag'          & diagonal matrix from vector           & \ref{matrix_diag} \\
\verb'GxB_Matrix_diag'          & diagonal matrix from vector           & \ref{matrix_diag_GxB} \\
\verb'GxB_Matrix_iso'           & query iso status                      & \ref{matrix_iso} \\
\verb'GxB_Matrix_memoryUsage'   & memory used by a matrix               & \ref{matrix_memusage} \\
\verb'GrB_Matrix_free'          & free a matrix                         & \ref{matrix_free} \\
\hline
\hline
\verb'GrB_Matrix_serializeSize' & return size of serialized matrix & \ref{matrix_serialize_size} \\
\verb'GrB_Matrix_serialize'     & serialize a matrix               & \ref{matrix_serialize} \\
\verb'GxB_Matrix_serialize'     & serialize a matrix               & \ref{matrix_serialize_GxB} \\
\verb'GrB_Matrix_deserialize'   & deserialize a matrix             & \ref{matrix_deserialize} \\
\verb'GxB_Matrix_deserialize'   & deserialize a matrix             & \ref{matrix_deserialize_GxB} \\
\hline
\end{tabular}
}

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GxB_Matrix_pack_CSR'        &   pack CSR           & \ref{matrix_pack_csr} \\
\verb'GxB_Matrix_unpack_CSR'      & unpack CSR           & \ref{matrix_unpack_csr} \\
\hline
\verb'GxB_Matrix_pack_CSC'        &   pack CSC           & \ref{matrix_pack_csc} \\
\verb'GxB_Matrix_unpack_CSC'      & unpack CSC           & \ref{matrix_unpack_csc} \\
\hline
\verb'GxB_Matrix_pack_HyperCSR'   &   pack HyperCSR      & \ref{matrix_pack_hypercsr} \\
\verb'GxB_Matrix_unpack_HyperCSR' & unpack HyperCSR      & \ref{matrix_unpack_hypercsr} \\
\hline
\verb'GxB_Matrix_pack_HyperCSC'   &   pack HyperCSC      & \ref{matrix_pack_hypercsc} \\
\verb'GxB_Matrix_unpack_HyperCSC' & unpack HyperCSC      & \ref{matrix_unpack_hypercsc} \\
\hline
\verb'GxB_Matrix_pack_BitmapR'    &   pack BitmapR       & \ref{matrix_pack_bitmapr} \\
\verb'GxB_Matrix_unpack_BitmapR'  & unpack BitmapR       & \ref{matrix_unpack_bitmapr} \\
\hline
\verb'GxB_Matrix_pack_BitmapC'    &   pack BitmapC       & \ref{matrix_pack_bitmapc} \\
\verb'GxB_Matrix_unpack_BitmapC'  & unpack BitmapC       & \ref{matrix_unpack_bitmapc} \\
\hline
\verb'GxB_Matrix_pack_FullR'      &   pack FullR         & \ref{matrix_pack_fullr} \\
\verb'GxB_Matrix_unpack_FullR'    & unpack FullR         & \ref{matrix_unpack_fullr} \\
\hline
\verb'GxB_Matrix_pack_FullC'      &   pack FullC         & \ref{matrix_pack_fullc} \\
\verb'GxB_Matrix_unpack_FullC'    & unpack FullC         & \ref{matrix_unpack_fullc} \\
\hline
\hline
\verb'GrB_Matrix_import'        & import in various formats & \ref{GrB_matrix_import} \\
\verb'GrB_Matrix_export'        & export in various formats & \ref{GrB_matrix_export} \\
\verb'GrB_Matrix_exportSize'    & array sizes for export & \ref{export_size} \\
\verb'GrB_Matrix_exportHint'    & hint best export format & \ref{export_hint} \\
\hline
\hline
\verb'GxB_Matrix_sort'          & sort a matrix & \ref{matrix_sort} \\
\hline
\end{tabular}
}

\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods,
Section~\ref{pack_unpack} for \verb'GxB'pack/unpack methods,
Section~\ref{GrB_import_export} for \verb'GrB' import/export methods,
and
Section~\ref{sorting_methods} for sorting methods.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_new:}          create a matrix}
%-------------------------------------------------------------------------------
\label{matrix_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_new     // create a new matrix with no entries
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create
    GrB_Index nrows,        // matrix dimension is nrows-by-ncols
    GrB_Index ncols
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_new' creates a new \verb'nrows'-by-\verb'ncols' sparse matrix
with no entries in it, of the given type.  This is analogous to the MATLAB
statement \verb'A = sparse (nrows, ncols)', except that GraphBLAS can create
sparse matrices of any type.

By default, matrices of size \verb'nrows-by-1' are held by column, regardless
of the global setting controlled by \verb'GxB_set (GxB_FORMAT, ...)', for any
value of \verb'nrows'.  Matrices of size \verb'1-by-ncols' with \verb'ncols'
not equal to 1 are held by row, regardless of this global setting.  The global
setting only affects matrices with both \verb'm > 1' and \verb'n > 1'.  Empty
matrices (\verb'0-by-0') are also controlled by the global setting.

Once a matrix is created, its format (by-row or by-column) can be arbitrarily
changed with \verb'GxB_set (A, GxB_FORMAT, fmt)' with \verb'fmt' equal to
\verb'GxB_BY_COL' or \verb'GxB_BY_ROW'.

\begin{alert}
{\bf SPEC:} \verb'nrows' and/or \verb'ncols' may be zero,
as an extension to the specification.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_wait:} wait for a matrix}
%-------------------------------------------------------------------------------
\label{matrix_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a matrix
(
    GrB_Matrix C,               // matrix to wait for
    GrB_WaitMode mode           // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

In non-blocking mode, the computations for a \verb'GrB_Matrix' may be delayed.
In this case, the matrix is not yet safe to use by multiple independent user
threads.  A user application may force completion of a matrix \verb'C' via
\verb'GrB_Matrix_wait(&C)' (in v5.2.0), or
\verb'GrB_Matrix_wait(C,mode)' (in v6.0.0).
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and different user threads may
simultaneously call GraphBLAS operations that use the matrix \verb'C' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.

%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GrB\_Matrix\_dup:}          copy a matrix}
%-------------------------------------------------------------------------------
\label{matrix_dup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_dup     // make an exact copy of a matrix
(
    GrB_Matrix *C,          // handle of output matrix to create
    const GrB_Matrix A      // input matrix to copy
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_dup' makes a deep copy of a sparse matrix.
In GraphBLAS, it is possible, and valid, to write the following:

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix A, C ;
    GrB_Matrix_new (&A, GrB_FP64, n) ;
    C = A ;                         // C is a shallow copy of A  \end{verbatim}}

Then \verb'C' and \verb'A' can be used interchangeably.  However, only a
pointer reference is made, and modifying one of them modifies both, and freeing
one of them leaves the other as a dangling handle that should not be used.  If
two different matrices are needed, then this should be used instead:

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix A, C ;
    GrB_Matrix_new (&A, GrB_FP64, n) ;
    GrB_Matrix_dup (&C, A) ;        // like C = A, but making a deep copy \end{verbatim}}

Then \verb'C' and \verb'A' are two different matrices that currently have the
same set of values, but they do not depend on each other.  Modifying one has
no effect on the other.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_clear:}        clear a matrix of all entries}
%-------------------------------------------------------------------------------
\label{matrix_clear}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_clear   // clear a matrix of all entries;
(                           // type and dimensions remain unchanged
    GrB_Matrix A            // matrix to clear
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_clear' clears all entries from a matrix.  All values
\verb'A(i,j)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the matrix.  The pattern of \verb'A' is
empty, just as if it were created fresh with \verb'GrB_Matrix_new'.  Analogous
with \verb'A (:,:) = 0' in MATLAB.  The type and dimensions of \verb'A' do not
change.  Any pending updates to the matrix are discarded.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nrows:}        return the number of rows of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nrows}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nrows   // get the number of rows of a matrix
(
    GrB_Index *nrows,       // matrix has nrows rows
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_nrows' returns the number of rows of a matrix
(\verb'nrows=size(A,1)' in MATLAB).

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_ncols:}        return the number of columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_ncols}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_ncols   // get the number of columns of a matrix
(
    GrB_Index *ncols,       // matrix has ncols columns
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Matrix_ncols' returns the number of columns of a matrix
(\verb'ncols=size(A,2)' in MATLAB).

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nvals:}        return the number of entries in a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nvals}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nvals   // get the number of entries in a matrix
(
    GrB_Index *nvals,       // matrix has nvals entries
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_nvals' returns the number of entries in a matrix.  Roughly
analogous to \verb'nvals = nnz(A)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_type\_name:} return name of the type of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_type_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_type_name      // return the name of the type of a matrix
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_type_name' returns the name of the type of a matrix, like
\verb'type=class(A)' in MATLAB.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_build:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build           // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const <type> *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_build' constructs a sparse matrix \verb'C' from a set of
tuples, \verb'I', \verb'J', and \verb'X', each of length \verb'nvals'.  The
matrix \verb'C' must have already been initialized with \verb'GrB_Matrix_new',
and it must have no entries in it before calling \verb'GrB_Matrix_build'.  Thus
the dimensions and type of \verb'C' are not changed by this function, but are
inherited from the prior call to \verb'GrB_Matrix_new' or
\verb'GrB_matrix_dup'.

An error is returned (\verb'GrB_INDEX_OUT_OF_BOUNDS') if any row index in
\verb'I' is greater than or equal to the number of rows of \verb'C', or if any
column index in \verb'J' is greater than or equal to the number of columns of
\verb'C'

Any duplicate entries with identical indices are assembled using the binary
\verb'dup' operator provided on input.  All three types (\verb'x', \verb'y',
\verb'z' for \verb'z=dup(x,y)') must be identical.  The types of \verb'dup',
\verb'C' and \verb'X' must all be compatible.  See Section~\ref{typecasting}
regarding typecasting and compatibility.  The values in \verb'X' are
typecasted, if needed, into the type of \verb'dup'.  Duplicates are then
assembled into a matrix \verb'T' of the same type as \verb'dup', using
\verb'T(i,j) = dup (T (i,j), X (k))'.  After \verb'T' is constructed, it is
typecasted into the result \verb'C'.  That is, typecasting does not occur at
the same time as the assembly of duplicates.

If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored.  If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored.  This is not an error.

\begin{alert}
{\bf SPEC:} As an extension to the specification, results are defined even if \verb'dup'
is non-associative.
\end{alert}

The GraphBLAS API requires \verb'dup' to be associative so
that entries can be assembled in any order, and states that the result is
undefined if \verb'dup' is not associative.  However, SuiteSparse:GraphBLAS
guarantees a well-defined order of assembly.  Entries in the tuples
\verb'[I,J,X]' are first sorted in increasing order of row and column index,
with ties broken by the position of the tuple in the \verb'[I,J,X]' list.  If
duplicates appear, they are assembled in the order they appear in the
\verb'[I,J,X]' input.  That is, if the same indices \verb'i' and \verb'j'
appear in positions \verb'k1', \verb'k2', \verb'k3', and \verb'k4' in
\verb'[I,J,X]', where \verb'k1 < k2 < k3 < k4', then the following operations
will occur in order:

    {\footnotesize
    \begin{verbatim}
    T (i,j) = X (k1) ;
    T (i,j) = dup (T (i,j), X (k2)) ;
    T (i,j) = dup (T (i,j), X (k3)) ;
    T (i,j) = dup (T (i,j), X (k4)) ; \end{verbatim}}

This is a well-defined order but the user should not depend upon it when using
other GraphBLAS implementations since the GraphBLAS API does not
require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, even when it compute
the result in parallel.  With this well-defined order, several operators become
very useful.  In particular, the \verb'SECOND' operator results in the last
tuple overwriting the earlier ones.  The \verb'FIRST' operator means the value
of the first tuple is used and the others are discarded.

The acronym \verb'dup' is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the \verb'_dup'
suffix in the name of the function \verb'GrB_Matrix_dup'.  The latter function
does not apply any operator at all, nor any typecasting, but simply makes a
pure deep copy of a matrix.

The parameter \verb'X' is a pointer to any C equivalent built-in type, or a
\verb'void *' pointer.  The \verb'GrB_Matrix_build' function uses the
\verb'_Generic' feature of ANSI C11 to detect the type of pointer passed as the
parameter \verb'X'.  If \verb'X' is a pointer to a built-in type, then the
function can do the right typecasting.  If \verb'X' is a \verb'void *' pointer,
then it can only assume \verb'X' to be a pointer to a user-defined type that is
the same user-defined type of \verb'C' and \verb'dup'.  This function has no
way of checking this condition that the \verb'void * X' pointer points to an
array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The \verb'GrB_Matrix_build' method is analogous to \verb'C = sparse (I,J,X)' in
MATLAB, with several important extensions that go beyond that which MATLAB can
do.  In particular, the MATLAB \verb'sparse' function only provides one option
for assembling duplicates (summation), and it can only build double, double
complex, and logical sparse matrices.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Scalar:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_build_Scalar    // build a matrix from (I,J,scalar) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    GrB_Scalar scalar,              // value for all tuples
    GrB_Index nvals                 // number of tuples
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_build_Scalar' constructs a sparse matrix \verb'C' from a set
of tuples defined the index arrays \verb'I' and \verb'J' of length
\verb'nvals', and a scalar.  The scalar is the value of all of the tuples.
Unlike \verb'GrB_Matrix_build', there is no \verb'dup' operator to handle
duplicate entries.  Instead, any duplicates are silently ignored (if the number
of duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the matrix is constructed).  All
entries in the sparsity pattern of \verb'C' are identical, and equal to the
input scalar value.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_setElement:}   add an entry to a matrix}
%-------------------------------------------------------------------------------
\label{matrix_setElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_setElement          // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    <type> x,                           // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_setElement' sets a single entry in a matrix, \verb'C(i,j)=x'.
If the entry is already present in the pattern of \verb'C', it is overwritten
with the new value.  If the entry is not present, it is added to \verb'C'.  In
either case, no entry is ever deleted by this function.  Passing in a value of
\verb'x=0' simply creates an explicit entry at position \verb'(i,j)' whose
value is zero, even if the implicit value is assumed to be zero.

An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if the column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.  Note
that this error code differs from the same kind of condition in
\verb'GrB_Matrix_build', which returns \verb'GrB_INDEX_OUT_OF_BOUNDS'.  This is
because \verb'GrB_INVALID_INDEX' is an API error, and is caught immediately
even in non-blocking mode, whereas \verb'GrB_INDEX_OUT_OF_BOUNDS' is an
execution error whose detection may wait until the computation completes
sometime later.

The scalar \verb'x' is typecasted into the type of \verb'C'.  Any value can be
passed to this function and its type will be detected, via the \verb'_Generic'
feature of ANSI C11.  For a user-defined type, \verb'x' is a \verb'void *'
pointer that points to a memory space holding a single entry of this
user-defined type.  This user-defined type must exactly match the user-defined
type of \verb'C' since no typecasting is done between user-defined types.
%
If \verb'x' is a \verb'GrB_Scalar' and contains no entry, then the
entry \verb'C(i,j)' is removed (if it exists).  The action taken is
identical to \verb'GrB_Matrix_removeElement(C,i,j)' in this case.

{\bf Performance considerations:} % BLOCKING: setElement, *assign
SuiteSparse:GraphBLAS exploits the non-blocking mode to greatly improve the
performance of this method.  Refer to the example shown in
Section~\ref{overview}.  If the entry exists in the pattern already, it is
updated right away and the work is not left pending.  Otherwise, it is placed
in a list of pending updates, and the later on the updates are done all at
once, using the same algorithm used for \verb'GrB_Matrix_build'.  In other
words, \verb'setElement' in SuiteSparse:GraphBLAS builds its own internal list
of tuples \verb'[I,J,X]', and then calls \verb'GrB_Matrix_build' whenever the
matrix is needed in another computation, or whenever \verb'GrB_Matrix_wait' is
called.

As a result, if calls to \verb'setElement' are mixed with calls to most other
methods and operations (even \verb'extractElement') then the pending updates
are assembled right away, which will be slow.  Performance will be good if many
\verb'setElement' updates are left pending, and performance will be poor if the
updates are assembled frequently.

A few methods and operations can be intermixed with \verb'setElement', in
particular, some forms of the \verb'GrB_assign' and \verb'GxB_subassign'
operations are compatible with the pending updates from \verb'setElement'.
Section~\ref{compare_assign} gives more details on which \verb'GxB_subassign'
and \verb'GrB_assign' operations can be interleaved with calls to
\verb'setElement' without forcing updates to be assembled.  Other methods that
do not access the existing entries may also be done without forcing the updates
to be assembled, namely \verb'GrB_Matrix_clear' (which erases all pending
updates), \verb'GrB_Matrix_free', \verb'GrB_Matrix_ncols',
\verb'GrB_Matrix_nrows', \verb'GxB_Matrix_type', and of course
\verb'GrB_Matrix_setElement' itself.  All other methods and operations cause
the updates to be assembled.  Future versions of SuiteSparse:GraphBLAS may
extend this list.

See Section~\ref{random} for an example of how to use
\verb'GrB_Matrix_setElement'.
If an error occurs, \verb'GrB_error(&err,C)' returns details about the error.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractElement:} get an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractElement      // x = A(i,j)
(
    <type> *x,                  // extracted scalar (non-opaque C scalar)
    const GrB_Matrix A,         // matrix to extract a scalar from
    GrB_Index i,                // row index
    GrB_Index j                 // column index
) ;
GrB_Info GrB_Matrix_extractElement      // x = A(i,j)
(
    GrB_Scalar x,               // extracted GrB_Scalar
    const GrB_Matrix A,         // matrix to extract a scalar from
    GrB_Index i,                // row index
    GrB_Index j                 // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_extractElement' extracts a single entry from a matrix
\verb'x=A(i,j)'.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.
If the entry is present, \verb'x=A(i,j)' is performed and the scalar \verb'x'
is returned with this value.  The method returns \verb'GrB_SUCCESS'.
If no entry is present at \verb'A(i,j)', and \verb'x' is a non-opaque C scalar,
then \verb'x' is not modified, and the return value of
\verb'GrB_Matrix_extractElement' is \verb'GrB_NO_VALUE'.  If \verb'x' is a
\verb'GrB_Scalar', then \verb'x' is returned as an empty scalar with no entry,
and \verb'GrB_SUCCESS' is returned.

The function knows the type of the pointer \verb'x', so it can do typecasting
as needed, from the type of \verb'A' into the type of \verb'x'.  User-defined
types cannot be typecasted, so if \verb'A' has a user-defined type then
\verb'x' must be a \verb'void *' pointer that points to a memory space the same
size as a single scalar of the type of \verb'A'.

Currently, this method causes all pending updates from
\verb'GrB_setElement', \verb'GrB_assign', or \verb'GxB_subassign' to be
assembled, so its use can have performance implications.  Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions.  Everything will work correctly and results will be predictable, it
will just be slow.

%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GxB\_Matrix\_isStoredElement:} check if entry present in matrix}
%-------------------------------------------------------------------------------
\label{matrix_isStoredElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_isStoredElement
(
    const GrB_Matrix A,         // check for A(i,j)
    GrB_Index i,                // row index
    GrB_Index j                 // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_isStoredElement' check if the single entry \verb'A(i,j)' is
present in the matrix \verb'A'.  It returns \verb'GrB_SUCCESS' if the entry is
present, or \verb'GrB_NO_VALUE' otherwise.  The value of \verb'A(i,j)' is not
returned. It is otherwise identical to \verb'GrB_Matrix_extractElement'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_removeElement:} remove an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_removeElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_removeElement
(
    GrB_Matrix C,                   // matrix to remove an entry from
    GrB_Index i,                    // row index
    GrB_Index j                     // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_removeElement' removes a single entry \verb'A(i,j)' from a
matrix.  If no entry is present at \verb'A(i,j)', then the matrix is not
modified.  If an error occurs, \verb'GrB_error(&err,A)' returns details about
the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractTuples:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples           // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    <type> *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_extractTuples' extracts all the entries from the matrix
\verb'A', returning them as a list of tuples, analogous to
\verb'[I,J,X]=find(A)' in MATLAB.  Entries in the tuples \verb'[I,J,X]' are
unique.  No pair of row and column indices \verb'(i,j)' appears more than once.

The GraphBLAS API states the tuples can be returned in any order.  If
\verb'GrB_wait' is called first, then SuiteSparse:GraphBLAS chooses to
always return them in sorted order, depending on whether the matrix is stored
by row or by column.  Otherwise, the indices can be returned in any order.

The number of tuples in the matrix \verb'A' is given by
\verb'GrB_Matrix_nvals(&anvals,A)'.  If \verb'anvals' is larger than the size
of the arrays (\verb'nvals' in the parameter list), an error
\verb'GrB_INSUFFICIENT_SIZE' is returned, and no tuples are extracted.  If
\verb'nvals' is larger than \verb'anvals', then only the first \verb'anvals'
entries in the arrays \verb'I' \verb'J', and \verb'X' are modified, containing
all the tuples of \verb'A', and the rest of \verb'I' \verb'J', and \verb'X' are
left unchanged.  On output, \verb'nvals' contains the number of tuples
extracted.

\begin{alert}
{\bf SPEC:} As an extension to the specification, the arrays \verb'I', \verb'J', and/or
\verb'X' may be passed in as \verb'NULL' pointers.
\verb'GrB_Matrix_extractTuples' does not return a component specified as
\verb'NULL'.  This is not an error condition.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_resize:}          resize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_resize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_resize      // change the size of a matrix
(
    GrB_Matrix A,               // matrix to modify
    const GrB_Index nrows_new,  // new number of rows in matrix
    const GrB_Index ncols_new   // new number of columns in matrix
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_resize' changes the size of a matrix.  If the dimensions
decrease, entries that fall outside the resized matrix are deleted.  Unlike
\verb'GxB_Matrix_reshape*' (see Sections \ref{matrix_reshape} and
\ref{matrix_reshapedup}), entries remain in their same position after resizing
the matrix.

%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GxB\_Matrix\_reshape:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshape}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshape     // reshape a GrB_Matrix in place
(
    // input/output:
    GrB_Matrix C,               // input/output matrix, reshaped in place
    // input:
    bool by_col,                // true if reshape by column, false if by row
    GrB_Index nrows_new,        // new number of rows of C
    GrB_Index ncols_new,        // new number of columns of C
    const GrB_Descriptor desc   // to control # of threads used
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_reshape' changes the size of a matrix \verb'C', taking entries
from the input matrix either column-wise or row-wise.  If matrix \verb'C' on
input is \verb'nrows'-by-\verb'ncols', and the requested dimensions of
\verb'C' on output are \verb'nrows_new'-by-\verb'nrows_cols', then
the condition \verb'nrows*ncols == nrows_new*nrows_cols' must hold.
The matrix \verb'C' is modified in-place, as both an input and output for
this method.  To create a new matrix, use \verb'GxB_Matrix_reshapeDup'
instead (Section \ref{matrix_reshapedup}).

For example, if \verb'C' is 3-by-4 on input, and is reshaped column-wise to
have dimensions 2-by-6:

\begin{verbatim}
        C on input      C on output (by_col true)
        00 01 02 03     00 20 11 02 22 13
        10 11 12 13     10 01 21 12 03 23
        20 21 22 23
\end{verbatim}

If the same \verb'C' on input is reshaped row-wise to dimensions 2-by-6:

\begin{verbatim}
        C on input      C on output (by_col false)
        00 01 02 03     00 01 02 03 10 11
        10 11 12 13     12 13 20 21 22 23
        20 21 22 23
\end{verbatim}

NOTE: because an intermediate linear index must be computed for each entry,
\verb'GxB_Matrix_reshape' cannot be used on matrices for which
\verb'nrows*ncols' exceeds $2^{60}$.

%-------------------------------------------------------------------------------
\newpage
\subsubsection{{\sf GxB\_Matrix\_reshapeDup:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshapedup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix
(
    // output:
    GrB_Matrix *C,              // newly created output matrix, not in place
    // input:
    GrB_Matrix A,               // input matrix, not modified
    bool by_col,                // true if reshape by column, false if by row
    GrB_Index nrows_new,        // number of rows of C
    GrB_Index ncols_new,        // number of columns of C
    const GrB_Descriptor desc   // to control # of threads used
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_reshapeDup' is identical to \verb'GxB_Matrix_reshape' (see
Section \ref{matrix_reshape}), except that creates a new output matrix
\verb'C' that is reshaped from the input matrix \verb'A'.

%-------------------------------------------------------------------------------
% \newpage
\subsubsection{{\sf GxB\_Matrix\_concat:} concatenate matrices   }
%-------------------------------------------------------------------------------
\label{matrix_concat}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_concat          // concatenate a 2D array of matrices
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix *Tiles,        // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_concat' concatenates an array of matrices (\verb'Tiles') into
a single \verb'GrB_Matrix' \verb'C'.

\verb'Tiles' is an \verb'm'-by-\verb'n' dense array of matrices held in
row-major format, where \verb'Tiles [i*n+j]' is the $(i,j)$th tile, and where
\verb'm' $> 0$ and \verb'n' $> 0$ must hold.  Let $A_{i,j}$ denote the
$(i,j)$th tile.  The matrix \verb'C' is constructed by concatenating these
tiles together, as:

\[
C = 
\left[
\begin{array}{ccccc}
          A_{0,0}   & A_{0,1}   & A_{0,2}   & \cdots & A_{0,n-1}   \\
          A_{1,0}   & A_{1,1}   & A_{1,2}   & \cdots & A_{1,n-1}   \\
          \cdots    &                                              \\
          A_{m-1,0} & A_{m-1,1} & A_{m-1,2} & \cdots & A_{m-1,n-1}
\end{array}
\right]
\]

On input, the matrix \verb'C' must already exist.  Any existing entries in
\verb'C' are discarded.  \verb'C' must have dimensions \verb'nrows' by
\verb'ncols' where \verb'nrows' is the sum of the number of rows in the
matrices $A_{i,0}$ for all $i$, and \verb'ncols' is the sum of the number of
columns in the matrices $A_{0,j}$ for all $j$.  All matrices in any given tile
row $i$ must have the same number of rows (that is, and all matrices in any
given tile column $j$ must have the same number of columns).

The type of \verb'C' is unchanged, and all matrices $A_{i,j}$ are typecasted
into the type of \verb'C'.  Any settings made to \verb'C' by
\verb'GxB_Matrix_Option_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.

%-------------------------------------------------------------------------------
% \newpage
\subsubsection{{\sf GxB\_Matrix\_split:} split a matrix   }
%-------------------------------------------------------------------------------
\label{matrix_split}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_split           // split a matrix into 2D array of matrices
(
    GrB_Matrix *Tiles,              // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    const GrB_Index *Tile_nrows,    // array of size m
    const GrB_Index *Tile_ncols,    // array of size n
    const GrB_Matrix A,             // input matrix to split
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_split' does the opposite of \verb'GxB_Matrix_concat'.  It
splits a single input matrix \verb'A' into a 2D array of tiles.  On input, the
\verb'Tiles' array must be a non-\verb'NULL' pointer to a previously allocated
array of size at least \verb'm*n' where both \verb'm' and \verb'n' must be
greater than zero.  The \verb'Tiles_nrows' array has size \verb'm', and
\verb'Tiles_ncols' has size \verb'n'.  The $(i,j)$th tile has dimension
\verb'Tiles_nrows[i]'-by-\verb'Tiles_ncols[j]'.  The sum of
\verb'Tiles_nrows [0:m-1]' must equal the number of rows of \verb'A', and the
sum of \verb'Tiles_ncols [0:n-1]' must equal the number of columns of \verb'A'.
The type of each tile is the same as the type of \verb'A'; no typecasting is
done.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_diag:} construct a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_diag    // construct a diagonal matrix from a vector
(
    GrB_Matrix *C,                  // output matrix
    const GrB_Vector v,             // input vector
    int64_t k
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_diag' constructs a matrix from a vector.  Let $n$ be the
length of the \verb'v' vector, from \verb'GrB_Vector_size (&n, v)'.  If
\verb'k' = 0, then \verb'C' is an $n$-by-$n$ diagonal matrix with the entries
from \verb'v' along the main diagonal of \verb'C', with \verb'C(i,i)=v(i)'.  If
\verb'k' is nonzero, \verb'C' is square with dimension $n+|k|$.  If \verb'k' is
positive, it denotes diagonals above the main diagonal, with
\verb'C(i,i+k)=v(i)'.
If \verb'k' is negative, it denotes diagonals below the main diagonal of
\verb'C', with \verb'C(i-k,i)=v(i)'.  This behavior is identical to the MATLAB
statement \verb'C=diag(v,k)', where \verb'v' is a vector.

The output matrix \verb'C' is a newly-constructed square matrix with the
same type as the input vector \verb'v'.  No typecasting is performed.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_diag:} build a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag_GxB}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_diag    // build a diagonal matrix from a vector
(
    GrB_Matrix C,                   // output matrix
    const GrB_Vector v,             // input vector
    int64_t k,
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}

Identical to \verb'GrB_Matrix_diag', except for the extra parameter
(a \verb'descriptor' to provide control over the number of threads used),
and this method is not a constructor.

The matrix \verb'C' must already exist on input, of the correct size.  It must
be square of dimension $n+|k|$ where the vector \verb'v' has length $n$.  Any
existing entries in \verb'C' are discarded.  The type of \verb'C' is preserved,
so that if the type of \verb'C' and \verb'v' differ, the entries are typecasted
into the type of \verb'C'.  Any settings made to \verb'C' by
\verb'GxB_Matrix_Option_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_iso:} query iso status of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_iso}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_iso     // return iso status of a matrix
(
    bool *iso,              // true if the matrix is iso-valued
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

Returns the true if the matrix is iso-valued, false otherwise.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_memoryUsage:} memory used by a matrix}
%-------------------------------------------------------------------------------
\label{matrix_memusage}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_memoryUsage  // return # of bytes used for a matrix
(
    size_t *size,           // # of bytes used by the matrix A
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

Returns the memory space required for a matrix, in bytes.

%-------------------------------------------------------------------------------
% \newpage
\subsubsection{{\sf GrB\_Matrix\_free:} free a matrix}
%-------------------------------------------------------------------------------
\label{matrix_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free           // free a matrix
(
    GrB_Matrix *A           // handle of matrix to free
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_free' frees a matrix.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Matrix_free (&A) ;
    GrB_free (&A) ; \end{verbatim}}

\noindent
frees the matrix \verb'A' and sets \verb'A' to \verb'NULL'.  It safely does
nothing if passed a \verb'NULL' handle, or if \verb'A == NULL' on input.  Any
pending updates to the matrix are abandoned.

\newpage
%===============================================================================
\subsection{Serialize/deserialize methods}
%===============================================================================
\label{serialize_deserialize}

{\em Serialization} takes an opaque GraphBLAS object (a vector or matrix) and
encodes it in a single non-opaque array of bytes, the {\em blob}.  The blob can
only be deserialized by the same library that created it (SuiteSparse:GraphBLAS
in this case).  The array of bytes can be written to a file, sent to another
process over an MPI channel, or operated on in any other way that moves the
bytes around.  The contents of the array cannot be interpreted except by
deserialization back into a vector or matrix, by the same library (and
sometimes the same version) that created the blob.  Currently, all versions of
SuiteSparse:GraphBLAS that implement serialization/deserialization use the same
format for the blob, so the library versions are compatible with each other.

There are two forms of serialization: \verb'GrB*serialize' and
\verb'GxB*serialize'.  For the \verb'GrB' form, the blob must first be
allocated by the user application, and it must be large enough to hold the
matrix or vector.

By default, ZSTD (level 1) compression is used for serialization, but other
options can be selected via the descriptor:
\verb'GxB_set (desc, GxB_COMPRESSION, method)', where \verb'method' is an
integer selected from the following options:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
method                           &  description \\
\hline
\verb'GxB_COMPRESSION_NONE'      &  no compression \\
\verb'GxB_COMPRESSION_DEFAULT'   &  ZSTD, with default level 1 \\
\verb'GxB_COMPRESSION_LZ4'       &  LZ4 \\
\verb'GxB_COMPRESSION_LZ4HC'     &  LZ4HC, with default level 9 \\
\verb'GxB_COMPRESSION_ZSTD'      &  ZSTD, with default level 1 \\
\hline
\end{tabular} }
\vspace{0.2in}

The LZ4HC method can be modified by adding a level of zero to 9, with 9 being
the default.  Higher levels lead to a more compact blob, at the cost of extra
computational time. This level is simply added to the method, so to compress a
vector with LZ4HC with level 6, use:

    {\footnotesize
    \begin{verbatim}
    GxB_set (desc, GxB_COMPRESSION, GxB_COMPRESSION_LZ4HC + 6) ; \end{verbatim}}

The ZSTD method can be specified as level 1 to 19, with 1 being the default.
To compress with ZSTD at level 6, use:

    {\footnotesize
    \begin{verbatim}
    GxB_set (desc, GxB_COMPRESSION, GxB_COMPRESSION_ZSTD + 6) ; \end{verbatim}}

Deserialization of untrusted data is a common security problem; see
\url{https://cwe.mitre.org/data/definitions/502.html}. The deserialization
methods do a few basic checks so that no out-of-bounds access occurs during
deserialization, but the output matrix or vector itself may still be corrupted.
If the data is untrusted, use \verb'GxB_*_fprint' to
check the matrix or vector after deserializing it:

{\footnotesize
\begin{verbatim}
    info = GxB_Vector_fprint (w, "w deserialized", GrB_SILENT, NULL) ;
    if (info != GrB_SUCCESS) GrB_free (&w) ;
    info = GxB_Matrix_fprint (A, "A deserialized", GrB_SILENT, NULL) ;
    if (info != GrB_SUCCESS) GrB_free (&A) ; \end{verbatim}}

The following methods are described in this Section:

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
% \verb'GrB_Vector_serializeSize'  & return size of serialized vector & \ref{vector_serialize_size} \\
% \verb'GrB_Vector_serialize'      & serialize a vector               & \ref{vector_serialize} \\
\verb'GxB_Vector_serialize'      & serialize a vector               & \ref{vector_serialize_GxB} \\
% \verb'GrB_Vector_deserialize'    & deserialize a vector             & \ref{vector_deserialize} \\
\verb'GxB_Vector_deserialize'    & deserialize a vector             & \ref{vector_deserialize_GxB} \\
\hline
\verb'GrB_Matrix_serializeSize' & return size of serialized matrix & \ref{matrix_serialize_size} \\
\verb'GrB_Matrix_serialize'     & serialize a matrix               & \ref{matrix_serialize} \\
\verb'GxB_Matrix_serialize'     & serialize a matrix               & \ref{matrix_serialize_GxB} \\
\verb'GrB_Matrix_deserialize'   & deserialize a matrix             & \ref{matrix_deserialize} \\
\verb'GxB_Matrix_deserialize'   & deserialize a matrix             & \ref{matrix_deserialize_GxB} \\
\hline
\verb'GrB_deserialize_type_name' & return the name of type of the blob & \ref{deserialize_type_name} \\
\hline
\end{tabular}
}

%-------------------------------------------------------------------------------
% \subsubsection{{\sf GrB\_Vector\_serializeSize:}  return size of serialized vector}
%-------------------------------------------------------------------------------
% \label{vector_serialize_size}

% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Vector_serializeSize   // estimate the size of a blob
% (
%    // output:
%    GrB_Index *blob_size_handle,    // upper bound on the required size of the
%                                    // blob on output.
%    // input:
%    GrB_Vector u                    // vector to serialize
%) ;
%\end{verbatim}
%} \end{mdframed}
% 
% \verb'GrB_Vector_serializeSize' returns an upper bound on the size of the blob
% needed to serialize a \verb'GrB_Vector' using \verb'GrB_Vector_serialize'.
% After the vector is serialized, the actual size used is returned, and the blob
% may be \verb'realloc''d to that size if desired.
% This method is not required for \verb'GxB_Vector_serialize'.

% \newpage
%-------------------------------------------------------------------------------
% \subsubsection{{\sf GrB\_Vector\_serialize:}      serialize a vector}
%-------------------------------------------------------------------------------
% \label{vector_serialize}

% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Vector_serialize       // serialize a GrB_Vector to a blob
% (
%    // output:
%    void *blob,                     // the blob, already allocated in input
%    // input/output:
%    GrB_Index *blob_size_handle,    // size of the blob on input.  On output,
%                                    // the # of bytes used in the blob.
%    // input:
%    GrB_Vector u                    // vector to serialize
% ) ;
% \end{verbatim}
% } \end{mdframed}
%
% \verb'GrB_Vector_serialize' serializes a vector into a single array of bytes
% (the blob), which must be already allocated by the user application.
% On input, \verb'&blob_size' is the size of the allocated blob in bytes.
% On output, it is reduced to the numbed of bytes actually used to serialize
% the vector.  After calling \verb'GrB_Vector_serialize', the blob may be
% \verb'realloc''d to this revised size if desired (this is optional).
% ZSTD (level 1) compression is used to construct a compact blob.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_serialize:}      serialize a vector}
%-------------------------------------------------------------------------------
\label{vector_serialize_GxB}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_serialize       // serialize a GrB_Vector to a blob
(
    // output:
    void **blob_handle,             // the blob, allocated on output
    GrB_Index *blob_size_handle,    // size of the blob on output
    // input:
    GrB_Vector u,                   // vector to serialize
    const GrB_Descriptor desc       // descriptor to select compression method
                                    // and to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_serialize' serializes a vector into a single array of bytes
(the blob), which is \verb'malloc''ed and filled with the serialized vector.
By default, ZSTD (level 1) compression is used, but other options can be
selected via the descriptor.  Serializing a vector is identical to serializing
a matrix; see Section \ref{matrix_serialize_GxB} for more information.

\newpage
%-------------------------------------------------------------------------------
% \subsubsection{{\sf GrB\_Vector\_deserialize:}    deserialize a vector}
%-------------------------------------------------------------------------------
% \label{vector_deserialize}

% \begin{mdframed}[userdefinedwidth=6in]
% {\footnotesize
% \begin{verbatim}
% GrB_Info GrB_Vector_deserialize     // deserialize blob into a GrB_Vector
% (
%     // output:
%     GrB_Vector *w,      // output vector created from the blob
%     // input:
%     GrB_Type type,      // type of the vector w.  Required if the blob holds a
%                         // vector of user-defined type.  May be NULL if blob
%                         // holds a built-in type; otherwise must match the
%                         // type of w.
%     const void *blob,       // the blob
%     GrB_Index blob_size     // size of the blob
% ) ;
% \end{verbatim}
% } \end{mdframed}
% 
% This method creates a vector \verb'w' by deserializing the contents of the
% blob, constructed by either \verb'GrB_Vector_serialize' or
% \verb'GxB_Vector_serialize'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_deserialize:}    deserialize a vector}
%-------------------------------------------------------------------------------
\label{vector_deserialize_GxB}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_deserialize     // deserialize blob into a GrB_Vector
(
    // output:
    GrB_Vector *w,      // output vector created from the blob
    // input:
    GrB_Type type,      // type of the vector w.  See GxB_Matrix_deserialize.
    const void *blob,       // the blob
    GrB_Index blob_size,    // size of the blob
    const GrB_Descriptor desc       // to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}

This method creates a vector \verb'w' by deserializing the contents of the
blob, constructed by
% either \verb'GrB_Vector_serialize' or
\verb'GxB_Vector_serialize'.
Deserializing a vector is identical to deserializing a matrix;
see Section \ref{matrix_deserialize_GxB} for more information.

The blob is allocated with the \verb'malloc' function passed to
\verb'GxB_init', or the ANSI C11 \verb'malloc' if \verb'GrB_init' was used
to initialize GraphBLAS.  The blob must be freed by the matching \verb'free'
method, either the \verb'free' function passed to \verb'GxB_init' or
the ANSI C11 \verb'free' if \verb'GrB_init' was used.

% Identical to \verb'GrB_Vector_deserialize', except that the descriptor
% appears as the last parameter to control the number of threads used.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_serializeSize:}  return size of serialized matrix}
%-------------------------------------------------------------------------------
\label{matrix_serialize_size}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_serializeSize   // estimate the size of a blob
(
    // output:
    GrB_Index *blob_size_handle,    // upper bound on the required size of the
                                    // blob on output.
    // input:
    GrB_Matrix A                    // matrix to serialize
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Matrix_serializeSize' returns an upper bound on the size of the blob
needed to serialize a \verb'GrB_Matrix' with \verb'GrB_Matrix_serialize'.
After the matrix is serialized, the actual size used is returned, and the blob
may be \verb'realloc''d to that size if desired.
This method is not required for \verb'GxB_Matrix_serialize'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_serialize:}      serialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_serialize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_serialize       // serialize a GrB_Matrix to a blob
(
    // output:
    void *blob,                     // the blob, already allocated in input
    // input/output:
    GrB_Index *blob_size_handle,    // size of the blob on input.  On output,
                                    // the # of bytes used in the blob.
    // input:
    GrB_Matrix A                    // matrix to serialize
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Matrix_serialize' serializes a matrix into a single array of bytes
(the blob), which must be already allocated by the user application.
On input, \verb'&blob_size' is the size of the allocated blob in bytes.
On output, it is reduced to the numbed of bytes actually used to serialize
the matrix.  After calling \verb'GrB_Matrix_serialize', the blob may be
\verb'realloc''d to this revised size if desired (this is optional).
ZSTD (level 1) compression is used to construct a compact blob.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_serialize:}      serialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_serialize_GxB}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_serialize       // serialize a GrB_Matrix to a blob
(
    // output:
    void **blob_handle,             // the blob, allocated on output
    GrB_Index *blob_size_handle,    // size of the blob on output
    // input:
    GrB_Matrix A,                   // matrix to serialize
    const GrB_Descriptor desc       // descriptor to select compression method
                                    // and to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_serialize' is identical to \verb'GrB_Matrix_serialize', except
that it does not require a pre-allocated blob.  Instead, it allocates the blob
internally, and fills it with the serialized matrix.  By default, ZSTD (level 1)
compression is used, but other options can be selected via the descriptor.

The blob is allocated with the \verb'malloc' function passed to
\verb'GxB_init', or the ANSI C11 \verb'malloc' if \verb'GrB_init' was used
to initialize GraphBLAS.  The blob must be freed by the matching \verb'free'
method, either the \verb'free' function passed to \verb'GxB_init' or
the ANSI C11 \verb'free' if \verb'GrB_init' was used.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_deserialize:}    deserialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_deserialize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_deserialize     // deserialize blob into a GrB_Matrix
(
    // output:
    GrB_Matrix *C,      // output matrix created from the blob
    // input:
    GrB_Type type,      // type of the matrix C.  Required if the blob holds a
                        // matrix of user-defined type.  May be NULL if blob
                        // holds a built-in type; otherwise must match the
                        // type of C.
    const void *blob,       // the blob
    GrB_Index blob_size     // size of the blob
) ;
\end{verbatim}
} \end{mdframed}

This method creates a matrix \verb'A' by deserializing the contents of the
blob, constructed by either \verb'GrB_Matrix_serialize' or
\verb'GxB_Matrix_serialize'.

\begin{alert}
{\bf SPEC:} The specification requires the \verb'type' to always be non-NULL.
As an extension, SuiteSparse:GraphBLAS allows \verb'type' to be NULL if
the blob contains a serialized matrix with a built-in type.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_deserialize:}    deserialize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_deserialize_GxB}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_deserialize     // deserialize blob into a GrB_Matrix
(
    // output:
    GrB_Matrix *C,      // output matrix created from the blob
    // input:
    GrB_Type type,      // type of the matrix C.  Required if the blob holds a
                        // matrix of user-defined type.  May be NULL if blob
                        // holds a built-in type; otherwise must match the
                        // type of C.
    const void *blob,       // the blob
    GrB_Index blob_size,    // size of the blob
    const GrB_Descriptor desc       // to control # of threads used
) ;
\end{verbatim}
} \end{mdframed}

Identical to \verb'GrB_Matrix_deserialize', except that the descriptor
appears as the last parameter to control the number of threads used.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_deserialize\_type\_name:} name of the type of a blob}
%-------------------------------------------------------------------------------
\label{deserialize_type_name}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_deserialize_type_name  // return the type name of a blob
(
    // output:
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    // input, not modified:
    const void *blob,       // the blob
    GrB_Index blob_size     // size of the blob
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_deserialize_type_name' returns the name of type of the matrix or
vector serialized into the blob.  This method works for any blob, from
% \verb'GrB_Vector_serialize',
\verb'GxB_Vector_serialize',
\verb'GrB_Matrix_serialize', or \verb'GxB_Matrix_serialize'.

\newpage
%===============================================================================
\subsection{GraphBLAS pack/unpack: using move semantics} %========
%===============================================================================
\label{pack_unpack}

The pack/unpack functions allow the user application to create a
\verb'GrB_Matrix' or \verb'GrB_Vector' object, and to extract its contents,
faster and with less memory overhead than the \verb'GrB_*_build' and
\verb'GrB_*_extractTuples' functions.

The \verb'GrB_Matrix_import' and \verb'GrB_Matrix_export' are not
described in this section.  Refer to Section~\ref{GrB_import_export} instead.

The semantics of the \verb'GxB' pack/unpack are the same as the
{\em move constructor} in C++.  For \verb'GxB*pack*', the user provides a set of
arrays that have been previously allocated via the ANSI C \verb'malloc',
\verb'calloc', or \verb'realloc' functions (by default), or by the
corresponding functions passed to \verb'GxB_init'.  The arrays define the
content of the matrix or vector.  Unlike \verb'GrB_*_build', the GraphBLAS
library then takes ownership of the user's input arrays and may either:

\begin{enumerate}
\item incorporate them
into its internal data structure for the new \verb'GrB_Matrix' or
\verb'GrB_Vector', potentially creating the \verb'GrB_Matrix' or
\verb'GrB_Vector' in constant time with no memory copying performed, or
\item if
the library does not support the format directly, then it may convert
the input to its internal format, and then free the user's input arrays.
\item A
GraphBLAS implementation may also choose to use a mix of the two strategies.
\end{enumerate}

SuiteSparse:GraphBLAS takes the first approach, and so the pack
functions always take $O(1)$ time, and require $O(1)$ memory space to be
allocated.

Regardless of the method chosen, as listed above, the input arrays are no
longer owned by the user application.  If \verb'A' is a \verb'GrB_Matrix'
created by a pack method, the user input arrays are freed no later than
\verb'GrB_free(&A)', and may be freed earlier, at the discretion of the
GraphBLAS library.  The data structure of the \verb'GrB_Matrix' and
\verb'GrB_Vector' remain opaque.

The \verb'GxB*unpack*' of a \verb'GrB_Matrix' or \verb'GrB_Vector' is symmetric with the
pack operation.  The unpack changes the ownership of the arrays, which are
returned to the user and which contain the
matrix or vector in the requested format.  Ownership of these arrays is given
to the user application, which is then responsible for freeing them via the
ANSI C \verb'free' function (by default), or by the \verb'free_function' that
was passed in to \verb'GxB_init'.  Alternatively, these arrays can be
re-packed into a \verb'GrB_Matrix' or \verb'GrB_Vector', at which point they
again become the responsibility of GraphBLAS.

For an unpack method, if the output format matches the current internal format of the
matrix or vector then these arrays are returned to the user application in
$O(1)$ time and with no memory copying performed.  Otherwise, the
\verb'GrB_Matrix' or \verb'GrB_Vector' is first converted into the requested
format, and then unpacked.

For the pack methods, the \verb'A' matrix/vector must already exist on input, and its contents are
populated with the new content, just like \verb'GrB_Matrix_build'.
For the unpack
methods, \verb'A' is passed in, and the matrix/vector still exists on return,
just with no entries.  Its type and dimensions are preserved.

Unpacking a matrix or vector forces completion of any pending
operations on the matrix, with one exception.  SuiteSparse:GraphBLAS supports
three kinds of pending operations: {\em zombies} (pending deletions), {\em
pending tuples} (pending insertions), and a {\em lazy sort}.  Zombies and
pending tuples are never unpacked, but the {\em jumbled} state may be
optionally unpacked.  In the latter, if the matrix or vector is unpacked in a
{\em jumbled} state, indices in any row or column may appear out of order.  If
unpacked as {\em unjumbled}, the indices always appear in ascending order.

The vector pack/unpack methods use three formats for a
\verb'GrB_Vector'.  Eight different formats are provided for the
pack/unpack of a \verb'GrB_Matrix'.  For each format, the
numerical value array (\verb'Ax' or \verb'vx') has a C type corresponding to
one of the 13 built-in types in GraphBLAS (\verb'bool', \verb'int*_t',
\verb'uint*_t', \verb'float', \verb'double' \verb'float complex', \verb'double complex'),
or that corresponds with the user-defined type.  No typecasting is
done.

If \verb'iso' is true, then all entries present in the matrix or vector
have the same value, and the \verb'Ax' array (for matrices) or \verb'vx' array
(for vectors) only need to be large enough to hold a single value.

The unpack of a \verb'GrB_Vector' in \verb'CSC' format may return the
indices in a jumbled state, in any order.
For a \verb'GrB_Matrix' in \verb'CSR' or \verb'HyperCSR' format, if the matrix
is returned as jumbled, the column indices in any given row may appear out of
order.  For \verb'CSC' or \verb'HyperCSC' formats, if the matrix is returned as
jumbled, the row indices in any given column may appear out of order.

On pack, if the user-provided arrays contain jumbled row or column vectors,
then the input flag \verb'jumbled' must be passed in as \verb'true'.  On
unpack, if \verb'*jumbled' is \verb'NULL', this indicates to the unpack method
that the user expects the unpacked matrix or vector to be returned in an
ordered, unjumbled state.  If \verb'*jumbled' is provided as non-\verb'NULL',
then it is returned as \verb'true' if the indices may appear out of order, or
\verb'false' if they are known to be in ascending order.

Matrices and vectors in bitmap or full format are never jumbled.

If data is packed using
\verb'GxB*_pack_*', the default is to trust the input data so that the
pack can be done in $O(1)$ time.  However, if the data comes from an
untrusted source, additional checks should be made during the pack.  This is
indicated with a descriptor setting, and then passing the descriptor
to the \verb'GxB' pack methods:

    {\footnotesize
    \begin{verbatim}
    GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ; \end{verbatim}}

The table below lists the methods presented in this section.

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
method & purpose & Section \\
\hline
\verb'GxB_Vector_pack_CSC'       & pack a vector in CSC format & \ref{vector_pack_csc} \\
\verb'GxB_Vector_unpack_CSC'     & unpack a vector in CSC format & \ref{vector_unpack_csc} \\
\hline
\verb'GxB_Vector_pack_Bitmap'    & pack a vector in bitmap format & \ref{vector_pack_bitmap} \\
\verb'GxB_Vector_unpack_Bitmap'  & unpack a vector in bitmap format & \ref{vector_unpack_bitmap} \\
\hline
\verb'GxB_Vector_pack_Full'      & pack a vector in full format & \ref{vector_pack_full} \\
\verb'GxB_Vector_unpack_Full'    & unpack a vector in full format & \ref{vector_unpack_full} \\
\hline
\hline
\verb'GxB_Matrix_pack_CSR'        & pack a matrix in CSR form & \ref{matrix_pack_csr} \\
\verb'GxB_Matrix_unpack_CSR'      & unpack a matrix in CSR form & \ref{matrix_unpack_csr} \\
\hline
\verb'GxB_Matrix_pack_CSC'        & pack a matrix in CSC form & \ref{matrix_pack_csc} \\
\verb'GxB_Matrix_unpack_CSC'      & unpack a matrix in CSC form & \ref{matrix_unpack_csc} \\
\hline
\verb'GxB_Matrix_pack_HyperCSR'   & pack a matrix in HyperCSR form & \ref{matrix_pack_hypercsr} \\
\verb'GxB_Matrix_unpack_HyperCSR' & unpack a matrix in HyperCSR form & \ref{matrix_unpack_hypercsr} \\
\hline
\verb'GxB_Matrix_pack_HyperCSC'   & pack a matrix in HyperCSC form & \ref{matrix_pack_hypercsc} \\
\verb'GxB_Matrix_unpack_HyperCSC' & unpack a matrix in HyperCSC form & \ref{matrix_unpack_hypercsc} \\
\hline
\verb'GxB_unpack_HyperHash' & unpack a hyper-hash & \ref{unpack_hyperhash} \\
\verb'GxB_pack_HyperHash'   & pack a hyper-hash & \ref{pack_hyperhash} \\
\hline
\verb'GxB_Matrix_pack_BitmapR'    & pack a matrix in BitmapR form & \ref{matrix_pack_bitmapr} \\
\verb'GxB_Matrix_unpack_BitmapR'  & unpack a matrix in BitmapR form & \ref{matrix_unpack_bitmapr} \\
\hline
\verb'GxB_Matrix_pack_BitmapC'    & pack a matrix in BitmapC form & \ref{matrix_pack_bitmapc} \\
\verb'GxB_Matrix_unpack_BitmapC'  & unpack a matrix in BitmapC form & \ref{matrix_unpack_bitmapc} \\
\hline
\verb'GxB_Matrix_pack_FullR'      & pack a matrix in FullR form & \ref{matrix_pack_fullr} \\
\verb'GxB_Matrix_unpack_FullR'    & unpack a matrix in FullR form & \ref{matrix_unpack_fullr} \\
\hline
\verb'GxB_Matrix_pack_FullC'      & pack a matrix in FullC form & \ref{matrix_pack_fullc} \\
\verb'GxB_Matrix_unpack_FullC'    & unpack a matrix in FullC form & \ref{matrix_unpack_fullc} \\
\hline
\end{tabular}
}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_pack\_CSC} pack a vector in CSC form}
%-------------------------------------------------------------------------------
\label{vector_pack_csc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_pack_CSC  // pack a vector in CSC format
(
    GrB_Vector v,       // vector to create (type and length unchanged)
    GrB_Index **vi,     // indices, vi_size >= nvals(v) * sizeof(int64_t)
    void **vx,          // values, vx_size >= nvals(v) * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vi_size,  // size of vi in bytes
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    GrB_Index nvals,    // # of entries in vector
    bool jumbled,       // if true, indices may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\noindent
\verb'GxB_Vector_pack_CSC' is analogous to \verb'GxB_Matrix_pack_CSC'.
Refer to the description of \verb'GxB_Matrix_pack_CSC' for details
(Section~\ref{matrix_pack_csc}).

The vector \verb'v' must
exist on input with the right type and length.  No typecasting is done.
Its entries are
the row indices given by \verb'vi', with the corresponding values in \verb'vx'.
The two pointers \verb'vi' and \verb'vx' are returned as \verb'NULL', which
denotes that they are no longer owned by the user application.  They have
instead been moved into \verb'v'.  If \verb'jumbled'
is true, the row indices in \verb'vi' must appear in sorted order.  No
duplicates can appear.  These conditions are not checked, so results are
undefined if they are not met exactly.  The user application can check the
resulting vector \verb'v' with \verb'GxB_print', if desired, which will
determine if these conditions hold.

If not successful, \verb'v', \verb'vi' and
\verb'vx' are not modified.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_unpack\_CSC:} unpack a vector in CSC form}
%-------------------------------------------------------------------------------
\label{vector_unpack_csc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_unpack_CSC  // unpack a CSC vector
(
    GrB_Vector v,       // vector to unpack (type and length unchanged)
    GrB_Index **vi,     // indices
    void **vx,          // values
    GrB_Index *vi_size, // size of vi in bytes
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    GrB_Index *nvals,   // # of entries in vector
    bool *jumbled,      // if true, indices may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_unpack_CSC' is analogous to \verb'GxB_Matrix_unpack_CSC'.
Refer to the description of \verb'GxB_Matrix_unpack_CSC' for details
(Section~\ref{matrix_unpack_csc}).

Exporting a vector forces completion of any pending operations on the vector,
except that indices may be unpacked out of order (\verb'jumbled' is \verb'true'
if they may be out of order, \verb'false' if sorted in ascending order).  If
\verb'jumbled' is \verb'NULL' on input, then the indices are always returned in
sorted order.

If successful, \verb'v' is returned with no entries, and its contents are
returned to the user.
A list of row indices of entries that were in
\verb'v' is returned in \verb'vi', and the corresponding numerical values are
returned in \verb'vx'.  If \verb'nvals' is zero, the \verb'vi' and \verb'vx'
arrays are returned as \verb'NULL'; this is not an error condition.

If not successful, \verb'v' is unmodified and \verb'vi' and \verb'vx' are
not modified.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_pack\_Bitmap} pack a vector in bitmap form}
%-------------------------------------------------------------------------------
\label{vector_pack_bitmap}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_pack_Bitmap // pack a bitmap vector
(
    GrB_Vector v,       // vector to create (type and length unchanged)
    int8_t **vb,        // bitmap, vb_size >= n
    void **vx,          // values, vx_size >= n * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vb_size,  // size of vb in bytes
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\noindent
\verb'GxB_Vector_pack_Bitmap' is analogous to
\verb'GxB_Matrix_pack_BitmapC'.  Refer to the description of
\verb'GxB_Matrix_pack_BitmapC' for details
(Section~\ref{matrix_pack_bitmapc}).

The vector \verb'v' must
exist on input with the right type and length.  No typecasting is done.
Its entries are determined by \verb'vb', where \verb'vb[i]=1' denotes that
the entry $v(i)$ is present with value given by \verb'vx[i]', and
\verb'vb[i]=0' denotes that the entry $v(i)$ is not present (\verb'vx[i]' is
ignored in this case).

The two pointers \verb'vb' and \verb'vx' are returned as \verb'NULL', which
denotes that they are no longer owned by the user application.  They have
instead been moved into the new \verb'GrB_Vector' \verb'v'.

The \verb'vb' array must not hold any values other than 0 and 1.  The value
\verb'nvals' must exactly match the number of 1s in the \verb'vb' array.  These
conditions are not checked, so results are undefined if they are not met
exactly.  The user application can check the resulting vector \verb'v' with
\verb'GxB_print', if desired, which will determine if these conditions hold.

If not successful, \verb'v', \verb'vb' and
\verb'vx' are not modified.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_unpack\_Bitmap:} unpack a vector in bitmap form}
%-------------------------------------------------------------------------------
\label{vector_unpack_bitmap}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_unpack_Bitmap   // unpack a bitmap vector
(
    GrB_Vector v,       // vector to unpack (type and length unchanged)
    int8_t **vb,        // bitmap
    void **vx,          // values
    GrB_Index *vb_size, // size of vb in bytes
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    GrB_Index *nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_unpack_Bitmap' is analogous to
\verb'GxB_Matrix_unpack_BitmapC'; see
Section~\ref{matrix_unpack_bitmapc}.
Exporting a vector forces completion of any pending operations on the vector.
If successful, \verb'v' is returned with no entries, and its contents are
returned to the user.
The entries that were in \verb'v' are returned in
\verb'vb', where \verb'vb[i]=1' means $v(i)$ is present with value
\verb'vx[i]', and \verb'vb[i]=0' means $v(i)$ is not present (\verb'vx[i]' is
undefined in this case).  The corresponding numerical values are returned in
\verb'vx'.

If not successful, \verb'v' is unmodified and \verb'vb' and \verb'vx' are not
modified.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_pack\_Full} pack a vector in full form}
%-------------------------------------------------------------------------------
\label{vector_pack_full}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_pack_Full // pack a full vector
(
    GrB_Vector v,       // vector to create (type and length unchanged)
    void **vx,          // values, vx_size >= nvals(v) * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\noindent
\verb'GxB_Vector_pack_Full' is analogous to \verb'GxB_Matrix_pack_FullC'.
Refer to the description of \verb'GxB_Matrix_pack_BitmapC' for details
(Section~\ref{matrix_pack_fullc}).
The vector \verb'v' must exist on input with the right type and length.
No typecasting is done.
If successful, \verb'v' has
all entries are present, and the value of $v(i)$ is given by \verb'vx[i]'.
The pointer \verb'vx' is returned as \verb'NULL', which denotes that it is no
longer owned by the user application.  It has instead been moved into the new
\verb'GrB_Vector' \verb'v'.
If not successful, \verb'v' and
\verb'vx' are not modified.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_unpack\_Full:} unpack a vector in full form}
%-------------------------------------------------------------------------------
\label{vector_unpack_full}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_unpack_Full   // unpack a full vector
(
    GrB_Vector v,       // vector to unpack (type and length unchanged)
    void **vx,          // values
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_unpack_Full' is analogous to \verb'GxB_Matrix_unpack_FullC'.
Refer to the description of \verb'GxB_Matrix_unpack_FullC' for details
(Section~\ref{matrix_unpack_fullc}).
Exporting a vector forces completion of any pending operations on the vector.
All entries in \verb'v' must be present.  In other words, prior to the unpack,
\verb'GrB_Vector_nvals' for a vector of length \verb'n' must report that the
vector contains \verb'n' entries; \verb'GrB_INVALID_VALUE' is returned if this
condition does not hold.
If successful, \verb'v' is returned with no entries, and its contents are
returned to the user. The entries
that were in \verb'v' are returned in the array \verb'vx', \verb'vb', where
\verb'vb[i]=1' means $v(i)$ is present with value where the value of $v(i)$ is
\verb'vx[i]'.
If not successful, \verb'v' and \verb'vx' are not modified.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_CSR:} pack a CSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_csr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_CSR      // pack a CSR matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers", Ap_size >= (nrows+1)* sizeof(int64_t)
    GrB_Index **Aj,     // column indices, Aj_size >= nvals(A) * sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Aj_size,  // size of Aj in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    bool jumbled,       // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_CSR' packs a matrix from 3 user arrays in CSR format.
In the resulting \verb'GrB_Matrix A', the \verb'CSR' format is a sparse matrix
with a format (\verb'GxB_FORMAT') of \verb'GxB_BY_ROW'.

The \verb'GrB_Matrix A' must exist on input with the right type and
dimensions.  No typecasting is done.

This function populates the matrix
\verb'A' with the three arrays \verb'Ap', \verb'Aj' and \verb'Ax', provided by
the user, all of which must have been created with the ANSI C \verb'malloc',
\verb'calloc', or \verb'realloc' functions (by default), or by the
corresponding \verb'malloc_function', \verb'calloc_function', or
\verb'realloc_function' provided to \verb'GxB_init'.  These arrays define the
pattern and values of the new matrix \verb'A':

\begin{itemize}
\item \verb'GrB_Index Ap [nrows+1] ;'  The \verb'Ap' array is the row
``pointer'' array.  It does not actual contain pointers.  More precisely, it is
an integer array that defines where the column indices and values appear in
\verb'Aj' and \verb'Ax', for each row.  The number of entries in row \verb'i'
is given by the expression \verb'Ap [i+1] - Ap [i]'.

\item \verb'GrB_Index Aj [nvals] ;'  The \verb'Aj' array defines the
column indices of entries in each row.

\item \verb'ctype Ax [nvals] ;'  The \verb'Ax' array defines the values of
entries in each row.  It is passed in as a \verb'(void *)' pointer, but it must
point to an array of size \verb'nvals' values, each of size
\verb'sizeof(ctype)', where \verb'ctype' is the exact type in C that corresponds
to the \verb'GrB_Type type' parameter.  That is, if \verb'type' is
\verb'GrB_INT32', then \verb'ctype' is \verb'int32_t'.  User types
may be used, just the same as built-in types.
\end{itemize}

The content of the three arrays \verb'Ap' \verb'Aj', and \verb'Ax' is very
specific.  This content is not checked, since this function takes only
$O(1)$ time.  Results are undefined if the following specification is not
followed exactly.

The column indices of entries in the ith row of the matrix are held in
\verb'Aj [Ap [i] ... Ap[i+1]]', and the corresponding values are held in the
same positions in \verb'Ax'.  Column indices must be in the range 0 to
\verb'ncols'-1.  If \verb'jumbled' is \verb'false', column indices must appear
in ascending order within each row.  If \verb'jumbled' is \verb'true', column
indices may appear in any order within each row.  No duplicate column indices
may appear in any row.  \verb'Ap [0]' must equal zero, and \verb'Ap [nrows]'
must equal nvals.  The \verb'Ap' array must be of size \verb'nrows'+1 (or
larger), and the \verb'Aj' and \verb'Ax' arrays must have size at least
\verb'nvals'.

If \verb'nvals' is zero, then the content of the \verb'Aj' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).

An example of the CSR format is shown below.  Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.

    \begin{equation}
    \label{eqn:Aexample}
    A = \left[
    \begin{array}{cccc}
    4.5 &   0 & 3.2 &   0 \\
    3.1 & 2.9 &  0  & 0.9 \\
     0  & 1.7 & 3.0 &   0 \\
    3.5 & 0.4 &  0  & 1.0 \\
    \end{array}
    \right]
    \end{equation}

The \verb'Ap' array has length 5, since the matrix is 4-by-4.  The first entry
must always zero, and \verb'Ap [5] = 10' is the number of entries.
The content of the arrays is shown below:

{\footnotesize
\begin{verbatim}
    int64_t Ap [ ] = { 0,        2,             5,        7,            10 } ;
    int64_t Aj [ ] = { 0,   2,   0,   1,   3,   1,   2,   0,   1,   3   } ;
    double  Ax [ ] = { 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ; \end{verbatim} }

Spaces have been added to the \verb'Ap' array, just for illustration.  Row zero
is in \verb'Aj [0..1]' (column indices) and \verb'Ax [0..1]' (values), starting
at \verb'Ap [0] = 0' and ending at \verb'Ap [0+1]-1 = 1'.  The list of column
indices of row one is at \verb'Aj [2..4]' and row two is in \verb'Aj [5..6]'.
The last row (three) appears \verb'Aj [7..9]', because \verb'Ap [3] = 7' and
\verb'Ap [4]-1 = 10-1 = 9'.  The corresponding numerical values appear in the
same positions in \verb'Ax'.

To iterate over the rows and entries of this matrix, the following code can be
used
(assuming it has type \verb'GrB_FP64'):

    {\footnotesize
    \begin{verbatim}
    int64_t nvals = Ap [nrows] ;
    for (int64_t i = 0 ; i < nrows ; i++)
    {
        // get A(i,:)
        for (int64_t p = Ap [i] ; p < Ap [i+1] ; p++)
        {
            // get A(i,j)
            int64_t  j = Aj [p] ;           // column index
            double aij = Ax [iso ? 0 : p] ;   // numerical value
        }
    } \end{verbatim}}

If successful, the three pointers \verb'Ap', \verb'Aj',
and \verb'Ax' are set to \verb'NULL' on output.  This denotes to the user
application that it is no longer responsible for freeing these arrays.
Internally, GraphBLAS has moved these arrays into its internal data structure.
They will eventually be freed no later than when the user does
\verb'GrB_free(&A)', but they may be freed or resized later, if the matrix
changes.  If an unpack is performed, the freeing of these three arrays again
becomes the responsibility of the user application.

The \verb'GxB_Matrix_pack_CSR' function will rarely fail, since it allocates
just $O(1)$ space.  If it does fail, it returns \verb'GrB_OUT_OF_MEMORY',
and it leaves the three user arrays unmodified.  They are still owned by
the user application, which is eventually responsible for freeing them with
\verb'free(Ap)', etc.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_CSR:} unpack a CSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_csr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_CSR  // unpack a CSR matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers"
    GrB_Index **Aj,     // column indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Aj_size, // size of Aj in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    bool *jumbled,      // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_CSR' unpacks a matrix in CSR form.

If successful, the \verb'GrB_Matrix A' is returned with no entries.
The CSR format is in the three arrays
\verb'Ap', \verb'Aj', and \verb'Ax'.  If the matrix has no entries, the
\verb'Aj' and \verb'Ax' arrays may be returned as \verb'NULL'; this is not an
error, and \verb'GxB_Matrix_pack_CSR' also allows these two arrays to be
\verb'NULL' on input when the matrix has no entries.  After a successful
unpack, the user application is responsible for freeing these three arrays via
\verb'free' (or the \verb'free' function passed to \verb'GxB_init').  The CSR
format is described in Section~\ref{matrix_unpack_csr}.

If \verb'jumbled' is returned as \verb'false', column indices will appear in
ascending order within each row.  If \verb'jumbled' is returned as \verb'true',
column indices may appear in any order within each row.  If \verb'jumbled' is
passed in as \verb'NULL', then column indices will be returned in ascending
order in each row.  No duplicate column indices will appear in any row.
\verb'Ap [0]' is zero, and \verb'Ap [nrows]' is equal to the number of entries
in the matrix (\verb'nvals').  The \verb'Ap' array will be of size
\verb'nrows'+1 (or larger), and the \verb'Aj' and \verb'Ax' arrays will have
size at least \verb'nvals'.

This method takes $O(1)$ time if the matrix is already in CSR format
internally.  Otherwise, the matrix is converted to CSR format and then
unpacked.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_CSC:} pack a CSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_csc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_CSC      // pack a CSC matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // col "pointers", Ap_size >= (ncols+1)*sizeof(int64_t)
    GrB_Index **Ai,     // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ai_size,  // size of Ai in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    bool jumbled,       // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_CSC' packs a matrix from 3 user arrays in CSC format.
The \verb'GrB_Matrix A' must exist on input with the right type and dimensions.
No typecasting is done.
The arguments are identical to
\verb'GxB_Matrix_pack_CSR', except for how the 3 user arrays are
interpreted.  The column ``pointer'' array has size \verb'ncols+1'.  The row
indices of the columns are in \verb'Ai', and if \verb'jumbled' is false,
they must appear in ascending order in
each column.  The corresponding numerical values are held in \verb'Ax'.  The
row indices of column \verb'j' are held in \verb'Ai [Ap [j]...Ap [j+1]-1]',
and the corresponding numerical values are in the same locations in \verb'Ax'.

The same matrix from Equation~\ref{eqn:Aexample}in
the last section (repeated here):

    \begin{equation}
    A = \left[
    \begin{array}{cccc}
    4.5 &   0 & 3.2 &   0 \\
    3.1 & 2.9 &  0  & 0.9 \\
     0  & 1.7 & 3.0 &   0 \\
    3.5 & 0.4 &  0  & 1.0 \\
    \end{array}
    \right]
    \end{equation}

is held in CSC form as follows:

{\footnotesize
\begin{verbatim}
    int64_t Ap [ ] = { 0,             3,             6,        8,       10 } ;
    int64_t Ai [ ] = { 0,   1,   3,   1,   2,   3,   0,   2,   1,   3   } ;
    double  Ax [ ] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ; \end{verbatim} }

That is, the row indices of column 1 (the second column) are in
\verb'Ai [3..5]', and the values in the same place in \verb'Ax',
since \verb'Ap [1] = 3' and \verb'Ap [2]-1 = 5'.

To iterate over the columns and entries of this matrix, the following code can
be used
(assuming it has type \verb'GrB_FP64'):

    {\footnotesize
    \begin{verbatim}
    int64_t nvals = Ap [ncols] ;
    for (int64_t j = 0 ; j < ncols ; j++)
    {
        // get A(:,j)
        for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)
        {
            // get A(i,j)
            int64_t  i = Ai [p] ;             // row index
            double aij = Ax [iso ? 0 : p] ;   // numerical value
        }
    } \end{verbatim}}

The method is identical to \verb'GxB_Matrix_pack_CSR'; just the format is
transposed.

If \verb'Ap [ncols]' is zero, then the content of the \verb'Ai' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_CSC:} unpack a CSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_csc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_CSC  // unpack a CSC matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // column "pointers"
    GrB_Index **Ai,     // row indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ai_size, // size of Ai in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    bool *jumbled,      // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_CSC' unpacks a matrix in CSC form.

If successful, the \verb'GrB_Matrix A' is returned with no entries.
The CSC format is in the three arrays
\verb'Ap', \verb'Ai', and \verb'Ax'.  If the matrix has no entries, \verb'Ai'
and \verb'Ax' arrays are returned as \verb'NULL'; this is not an error, and
\verb'GxB_Matrix_pack_CSC' also allows these two arrays to be \verb'NULL' on
input when the matrix has no entries.  After a successful unpack, the user
application is responsible for freeing these three arrays via \verb'free' (or
the \verb'free' function passed to \verb'GxB_init').  The CSC format is
described in Section~\ref{matrix_unpack_csc}.

This method takes $O(1)$ time if the matrix is already in CSC format
internally.  Otherwise, the matrix is converted to CSC format and then
unpacked.


\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_HyperCSR:} pack a HyperCSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_hypercsr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_HyperCSR      // pack a hypersparse CSR matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers", Ap_size >= (plen+1)*sizeof(int64_t)
    GrB_Index **Ah,     // row indices, Ah_size >= plen*sizeof(int64_t)
                        // where plen = 1 if nrows = 1, or nvec otherwise.
    GrB_Index **Aj,     // column indices, Aj_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ah_size,  // size of Ah in bytes
    GrB_Index Aj_size,  // size of Aj in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvec,     // number of rows that appear in Ah
    bool jumbled,       // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_HyperCSR' packs a matrix in hypersparse CSR format.
The hypersparse HyperCSR format is identical to the CSR format, except that the
\verb'Ap' array itself becomes sparse, if the matrix has rows that are
completely empty.  An array \verb'Ah' of size \verb'nvec' provides a list of
rows that appear in the data structure.  For example, consider
Equation~\ref{eqn:Ahyper}, which is a sparser version of the matrix in
Equation~\ref{eqn:Aexample}.  Row 2 and column 1 of this matrix are all zero.

    \begin{equation}
    \label{eqn:Ahyper}
    A = \left[
    \begin{array}{cccc}
    4.5 &   0 & 3.2 &   0 \\
    3.1 &   0 &  0  & 0.9 \\
     0  &   0 &  0  &   0 \\
    3.5 &   0 &  0  & 1.0 \\
    \end{array}
    \right]
    \end{equation}

The conventional CSR format would appear as follows.  Since the third row (row
2) is all zero, accessing \verb'Ai [Ap [2] ... Ap [3]-1]' gives an empty set
(\verb'[2..1]'), and the number of entries in this row is
\verb'Ap [i+1] - Ap [i]' \verb'= Ap [3] - Ap [2] = 0'.

{\footnotesize
\begin{verbatim}
    int64_t Ap [ ] = { 0,        2,2,      4,       5 } ;
    int64_t Aj [ ] = { 0,   2,   0,   3,   0    3   }
    double  Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ; \end{verbatim} }

A hypersparse CSR format for this same matrix would discard
these duplicate integers in \verb'Ap'.  Doing so requires
another array, \verb'Ah', that keeps track of the rows that appear
in the data structure.

{\footnotesize
\begin{verbatim}
    int64_t nvec = 3 ;
    int64_t Ah [ ] = { 0,        1,        3        } ;
    int64_t Ap [ ] = { 0,        2,        4,       5 } ;
    int64_t Aj [ ] = { 0,   2,   0,   3,   0    3   }
    double  Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ; \end{verbatim} }

Note that the \verb'Aj' and \verb'Ax' arrays are the same in the CSR and
HyperCSR formats.  If \verb'jumbled' is false, the row indices in \verb'Ah'
must appear in ascending order, and no duplicates can appear.  To iterate over
this data structure (assuming it has type \verb'GrB_FP64'):

    {\footnotesize
    \begin{verbatim}
    int64_t nvals = Ap [nvec] ;
    for (int64_t k = 0 ; k < nvec ; k++)
    {
        int64_t i = Ah [k] ;                // row index
        // get A(i,:)
        for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
        {
            // get A(i,j)
            int64_t  j = Aj [p] ;             // column index
            double aij = Ax [iso ? 0 : p] ;   // numerical value
        }
    } \end{verbatim}}

\vspace{-0.05in}
This is more complex than the CSR format, but it requires at most
$O(e)$ space, where $A$ is $m$-by-$n$ with $e$ = \verb'nvals' entries.  The
CSR format requires $O(m+e)$ space.  If $e << m$, then the size $m+1$
of \verb'Ap' can dominate the memory required.  In the hypersparse form,
\verb'Ap' takes on size \verb'nvec+1', and \verb'Ah' has size \verb'nvec',
where \verb'nvec' is the number of rows that appear in the data structure.
The CSR format can be viewed as a dense array (of size \verb'nrows')
of sparse row vectors.   By contrast, the hypersparse CSR format is a sparse
array (of size \verb'nvec') of sparse row vectors.

The pack takes $O(1)$ time.  If successful, the four arrays \verb'Ah',
\verb'Ap', \verb'Aj', and \verb'Ax' are returned as \verb'NULL', and the
hypersparse \verb'GrB_Matrix A' is modified to contain the entries
they describe.

If the matrix has no entries, then the content of the \verb'Aj' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_HyperCSR:} unpack a HyperCSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_hypercsr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_HyperCSR  // unpack a hypersparse CSR matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers"
    GrB_Index **Ah,     // row indices
    GrB_Index **Aj,     // column indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ah_size, // size of Ah in bytes
    GrB_Index *Aj_size, // size of Aj in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvec,    // number of rows that appear in Ah
    bool *jumbled,      // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_HyperCSR' unpacks a matrix in HyperCSR format.

If successful, the \verb'GrB_Matrix A' is returned with no entries.
The number of non-empty rows is
\verb'nvec'.  The hypersparse CSR format is in the four arrays \verb'Ah',
\verb'Ap', \verb'Aj', and \verb'Ax'.  If the matrix has no entries, the
\verb'Aj' and \verb'Ax' arrays are returned as \verb'NULL'; this is not an
error.  After a successful unpack, the user application is responsible for
freeing these three arrays via \verb'free' (or the \verb'free' function passed
to \verb'GxB_init').  The hypersparse CSR format is described in
Section~\ref{matrix_pack_hypercsr}.

This method takes $O(1)$ time if the matrix is already in HyperCSR format
internally.  Otherwise, the matrix is converted to HyperCSR format and then
unpacked.

In v7.3.0 and later, a hypersparse matrix \verb'A' also may include a hash
table for \verb'Ah', called the {\em hyper-hash}, based on \cite{Green19}.  It
allows for fast lookups of entries in \verb'Ah'.  The hyper-hash is not
exported by this method.  Instead, it is discarded.  Use
\verb'GxB_unpack_HyperHash' (Section~\ref{unpack_hyperhash}) to preserve it,
prior to calling this method.  If the matrix is re-imported, and the hyper-hash
is not preserved, it is recomputed from \verb'Ah' when needed.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_HyperCSC:} pack a HyperCSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_hypercsc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_HyperCSC      // pack a hypersparse CSC matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // col "pointers", Ap_size >= (plen+1)*sizeof(int64_t)
    GrB_Index **Ah,     // column indices, Ah_size >= plen*sizeof(int64_t)
                        // where plen = 1 if ncols = 1, or nvec otherwise.
    GrB_Index **Ai,     // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A)*(type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ah_size,  // size of Ah in bytes
    GrB_Index Ai_size,  // size of Ai in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvec,     // number of columns that appear in Ah
    bool jumbled,       // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_HyperCSC' packs a matrix in hypersparse CSC format.
It is identical to \verb'GxB_Matrix_pack_HyperCSR', except the data
structure defined by the four arrays \verb'Ah', \verb'Ap', \verb'Ai', and
\verb'Ax' holds the matrix as a sparse array of \verb'nvec' sparse column
vectors.  The following code iterates over the matrix,
assuming it has type \verb'GrB_FP64':

    \vspace{-0.10in}
    {\footnotesize
    \begin{verbatim}
    int64_t nvals = Ap [nvec] ;
    for (int64_t k = 0 ; k < nvec ; k++)
    {
        int64_t j = Ah [k] ;                // column index
        // get A(:,j)
        for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
        {
            // get A(i,j)
            int64_t  i = Ai [p] ;             // row index
            double aij = Ax [iso ? 0 : p] ;   // numerical value
        }
    } \end{verbatim}}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_HyperCSC:} unpack a HyperCSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_hypercsc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_HyperCSC  // unpack a hypersparse CSC matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // column "pointers"
    GrB_Index **Ah,     // column indices
    GrB_Index **Ai,     // row indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ah_size, // size of Ah in bytes
    GrB_Index *Ai_size, // size of Ai in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvec,    // number of columns that appear in Ah
    bool *jumbled,      // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_HyperCSC' unpacks a matrix in HyperCSC form.

If successful, the \verb'GrB_Matrix A' is
returned with no entries.
The number of non-empty
rows is in \verb'nvec'.  The hypersparse CSC format is in the four arrays
\verb'Ah', \verb'Ap', \verb'Ai', and \verb'Ax'.  If the matrix has no entries,
the \verb'Ai' and \verb'Ax' arrays are returned as \verb'NULL'; this is not an
error.  After a successful unpack, the user application is responsible for
freeing these three arrays via \verb'free' (or the \verb'free' function passed
to \verb'GxB_init').  The hypersparse CSC format is described in
Section~\ref{matrix_pack_hypercsc}.

This method takes $O(1)$ time if the matrix is already in HyperCSC format
internally.  Otherwise, the matrix is converted to HyperCSC format and then
unpacked.

In v7.3.0 and later, a hypersparse matrix \verb'A' also may include a hash
table for \verb'Ah', called the {\em hyper-hash}, based on \cite{Green19}.  It
allows for fast lookups of entries in \verb'Ah'.  The hyper-hash is not
exported by this method.  Instead, it is discarded.  Use
\verb'GxB_unpack_HyperHash' (Section~\ref{unpack_hyperhash}) to preserve it,
prior to calling this method.  If the matrix is re-imported, and the hyper-hash
is not preserved, it is recomputed from \verb'Ah' when needed.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_unpack\_HyperHash:} unpack the hypersparse hash}
%-------------------------------------------------------------------------------
\label{unpack_hyperhash}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_unpack_HyperHash       // move A->Y into Y
(
    GrB_Matrix A,                   // matrix to modify
    GrB_Matrix *Y,                  // hyper_hash matrix to move from A
    const GrB_Descriptor desc       // unused
) ;
\end{verbatim}
} \end{mdframed}


SuiteSparse:GraphBLAS v7.3.0 adds a new internal component to the
hypersparse matrix format: the {\em hyper-hash} \verb'GrB_Matrix' \verb'A->Y'.
The matrix provides a fast lookup into the hyperlist \verb'Ah'.

\verb'GxB_unpack_HyperHash' unpacks the hyper-hash from the hypersparse matrix
\verb'A'.  Normally, this method is called immediately before calling one of
the two methods \verb'GxB_Matrix_unpack_Hyper(CSR/CSC)'.  For example, to
unpack then pack a hypersparse CSC matrix:

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix Y = NULL ;
    // to unpack all of A:
    GxB_unpack_HyperHash (A, &Y, desc) ;    // first unpack A->Y into Y
    GxB_Matrix_unpack_HyperCSC (A,          // then unpack the rest of A
        &Ap, &Ah, &Ai, &Ax, &Ap_size, &Ah_size, &Ai_size, &Ax_size,
        &iso, &nvec, &jumbled, descriptor) ;
    // use the unpacked contents of A here, but do not change Ah or nvec.
    ...
    // to pack the data back into A:
    GxB_Matrix_pack_HyperCSC (A, ...) ;     // pack most of A, except A->Y 
    GxB_pack_HyperHash (A, &Y, desc) ;      // then pack A->Y \end{verbatim}}

The same process is used with \verb'GxB_Matrix_unpack_HyperCSR'.

If \verb'A' is not hypersparse on input to \verb'GxB_unpack_HyperHash', or if
\verb'A' is hypersparse but does yet not have a hyper-hash, then \verb'Y' is
returned as \verb'NULL'.  This is not an error condition, and
\verb'GrB_SUCCESS' is returned.  The hyper-hash of a hypersparse matrix
\verb'A' is a matrix that provides quick access to the inverse of \verb'Ah'.
It is not always needed and may not be present.  It is left as pending work to
be computed when needed.  To ensure that the hyper-hash is constructed for a
hypersparse matrix \verb'A', use \verb'GrB_Matrix_wait (A, GrB_MATERIALIZE)' 

If \verb'Y' is moved from \verb'A' and returned as non-\verb'NULL' to the
caller, then it is the responsibility of the user application to free it, or to
re-pack it back into \verb'A' via \verb'GxB_pack_HyperHash', as shown in the
example above.

If this method is called to remove the hyper-hash \verb'Y' from the hypersparse
matrix \verb'A', and then \verb'GrB_Matrix_wait (A, GrB_MATERIALZE)' is called,
a new hyper-hash matrix is constructed for \verb'A'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_pack\_HyperHash:} pack the hypersparse hash}
%-------------------------------------------------------------------------------
\label{pack_hyperhash}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_pack_HyperHash         // move Y into A->Y
(
    GrB_Matrix A,                   // matrix to modify
    GrB_Matrix *Y,                  // hyper_hash matrix to pack into A
    const GrB_Descriptor desc       // unused
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_pack_HyperHash' assigns the input \verb'Y' matrix as the \verb'A->Y'
hyper-hash of the hypersparse matrix \verb'A'.  Normally, this method is called
immediately after calling one of the two methods
\verb'GxB_Matrix_pack_Hyper(CSR/CSC)'.

If \verb'A' is not hypersparse on input to \verb'GxB_pack_HyperHash', or if
\verb'A' already has a hyper-hash matrix, or if \verb'Y' is \verb'NULL' on
input, then nothing happens and \verb'Y' is unchanged.  This is not an error
condition and this method returns \verb'GrB_SUCCESS'.  In this case, if
\verb'Y' is non-\verb'NULL' after calling this method, it owned by the user
application and freeing it is the responsibility of the user application.

If \verb'Y' is moved into \verb'A' as its hyper-hash, then the caller's
\verb'Y' is set to \verb'NULL' to indicate that it has been moved into
\verb'A'.  It is no longer owned by the caller, but is instead becomes an
opaque component of the \verb'A' matrix.  It will be freed by
SuiteSparse:GraphBLAS if \verb'A' is modified or freed.

Results are undefined if the input \verb'Y' was not created by
\verb'GxB_unpack_HyperHash' (see the example in Section \ref{unpack_hyperhash})
or if the \verb'Ah' contents or \verb'nvec' of the matrix \verb'A' are modified
after they were unpacked by \verb'GxB_Matrix_unpack_Hyper(CSR/CSC)'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_BitmapR:} pack a BitmapR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_bitmapr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_BitmapR  // pack a bitmap matrix, held by row
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap, Ab_size >= nrows*ncols
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ab_size,  // size of Ab in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_BitmapR' packs a matrix from 2 user arrays in BitmapR
format.
The matrix must exist on input with the right type and dimensions.  No typecasting is done.

The \verb'GrB_Matrix' \verb'A' is populated from the arrays \verb'Ab' and
\verb'Ax', each of which are size \verb'nrows*ncols'.  Both arrays must have
been created with the ANSI C \verb'malloc', \verb'calloc', or \verb'realloc'
functions (by default), or by the corresponding \verb'malloc_function',
\verb'calloc_function', or \verb'realloc_function' provided to \verb'GxB_init'.
These arrays define the pattern and values of the new matrix \verb'A':

\begin{itemize}
\item \verb'int8_t Ab [nrows*ncols] ;'  The \verb'Ab' array defines which
entries of \verb'A' are present.  If \verb'Ab[i*ncols+j]=1', then the entry
$A(i,j)$ is present, with value \verb'Ax[i*ncols+j]'.  If
\verb'Ab[i*ncols+j]=0', then the entry $A(i,j)$ is not present.  The \verb'Ab'
array must contain only 0s and 1s.  The \verb'nvals' input must exactly match
the number of 1s in the \verb'Ab' array.

\item \verb'ctype Ax [nrows*ncols] ;'  The \verb'Ax' array defines the values
of entries in the matrix.  It is passed in as a \verb'(void *)' pointer, but it
must point to an array of size \verb'nrows*ncols' values, each of size
\verb'sizeof(ctype)', where \verb'ctype' is the exact type in C that
corresponds to the \verb'GrB_Type type' parameter.  That is, if \verb'type' is
\verb'GrB_INT32', then \verb'ctype' is \verb'int32_t'.  User types may be used,
just the same as built-in types.
If \verb'Ab[p]' is zero, the value of \verb'Ax[p]' is ignored.

\end{itemize}

To iterate over the rows and entries of this matrix, the following code can be
used (assuming it has type \verb'GrB_FP64'):

    {\footnotesize
    \begin{verbatim}
    for (int64_t i = 0 ; i < nrows ; i++)
    {
        // get A(i,:)
        for (int64_t j = 0 ; j < ncols ; j++)
        {
            // get A(i,j)
            int64_t p = i*ncols + j ;
            if (Ab [p])
            {
                double aij = Ax [iso ? 0 : p] ;   // numerical value
            }
        }
    } \end{verbatim}}

On successful pack of \verb'A', the two pointers \verb'Ab', \verb'Ax',
are set to \verb'NULL' on output.  This denotes to the user
application that it is no longer responsible for freeing these arrays.
Internally, GraphBLAS has moved these arrays into its internal data structure.
They will eventually be freed no later than when the user does
\verb'GrB_free(&A)', but they may be freed or resized later, if the matrix
changes.  If an unpack is performed, the freeing of these three arrays again
becomes the responsibility of the user application.

The \verb'GxB_Matrix_pack_BitmapR' function will rarely fail, since it allocates
just $O(1)$ space.  If it does fail, it returns \verb'GrB_OUT_OF_MEMORY',
and it leaves the two user arrays unmodified.  They are still owned by
the user application, which is eventually responsible for freeing them with
\verb'free(Ab)', etc.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_BitmapR:} unpack a BitmapR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_bitmapr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_BitmapR  // unpack a bitmap matrix, by row
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap
    void **Ax,          // values
    GrB_Index *Ab_size, // size of Ab in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvals,   // # of entries in bitmap
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_BitmapR' unpacks a matrix in BitmapR form.
If successful, the \verb'GrB_Matrix A' is returned with no entries.
The number of entries is in \verb'nvals'.
The BitmapR format is two arrays \verb'Ab', and \verb'Ax'.  After an
unpack, the user application is responsible for freeing these
arrays via \verb'free' (or the \verb'free' function passed to \verb'GxB_init').
The BitmapR format is described in Section~\ref{matrix_pack_bitmapr}.
If \verb'Ab[p]' is zero, the value of \verb'Ax[p]' is undefined.
This method takes $O(1)$ time if the matrix is already in BitmapR format.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_BitmapC:} pack a BitmapC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_bitmapc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_BitmapC  // pack a bitmap matrix, held by column
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap, Ab_size >= nrows*ncols
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ab_size,  // size of Ab in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_BitmapC' packs a matrix from 2 user arrays in BitmapC
format.  It is identical to \verb'GxB_Matrix_pack_BitmapR', except that the
entry $A(i,j)$ is held in \verb'Ab[i+j*nrows]' and \verb'Ax[i+j*nrows]',
in column-major format.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_BitmapC:} unpack a BitmapC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_bitmapc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_BitmapC  // unpack a bitmap matrix, by col
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap
    void **Ax,          // values
    GrB_Index *Ab_size, // size of Ab in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvals,   // # of entries in bitmap
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_BitmapC' unpacks a matrix in BitmapC form.
It is identical to \verb'GxB_Matrix_unpack_BitmapR', except that the
entry $A(i,j)$ is held in \verb'Ab[i+j*nrows]' and \verb'Ax[i+j*nrows]',
in column-major format.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_FullR:} pack a FullR matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_fullr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_FullR  // pack a full matrix, held by row
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_FullR' packs a matrix from a user array in FullR format.
For the \verb'FullR' format, t value of $A(i,j)$ is \verb'Ax[i*ncols+j]'.  To
iterate over the rows and entries of this matrix, the following code can be
used (assuming it has type \verb'GrB_FP64').  If \verb'A' is both full and iso,
it takes $O(1)$ memory, regardless of \verb'nrows' and \verb'ncols'.

    \vspace{-0.1in}
    {\footnotesize
    \begin{verbatim}
    for (int64_t i = 0 ; i < nrows ; i++)
    {
        for (int64_t j = 0 ; j < ncols ; j++)
        {
            int64_t p = i*ncols + j ;
            double aij = Ax [iso ? 0 : p] ;   // numerical value of A(i,j)
        }
    } \end{verbatim}}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_FullR:} unpack a FullR matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_fullr}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_FullR  // unpack a full matrix, by row
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    void **Ax,          // values
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_FullR' unpacks a matrix in FullR form.  It is identical
to \verb'GxB_Matrix_unpack_BitmapR', except that all entries must be present.
Prior to unpack, \verb'GrB_Matrix_nvals (&nvals, A)' must return
\verb'nvals' equal to \verb'nrows*ncols'.  Otherwise, if the \verb'A' is
unpacked with \newline \verb'GxB_Matrix_unpack_FullR', an error is returned
(\verb'GrB_INVALID_VALUE') and the matrix is not unpacked.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_pack\_FullC:} pack a FullC matrix}
%-------------------------------------------------------------------------------
\label{matrix_pack_fullc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_pack_FullC  // pack a full matrix, held by column
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_pack_FullC' packs a matrix from a user arrays in FullC
format.  For the \verb'FullC' format,
the value of $A(i,j)$ is \verb'Ax[i+j*nrows]'.
To iterate over the rows and entries of this matrix, the following code can be
used (assuming it has type \verb'GrB_FP64').
If \verb'A' is both full and iso, it takes $O(1)$ memory,
regardless of \verb'nrows' and \verb'ncols'.

    \vspace{-0.1in}
    {\footnotesize
    \begin{verbatim}
    for (int64_t i = 0 ; i < nrows ; i++)
    {
        for (int64_t j = 0 ; j < ncols ; j++)
        {
            int64_t p = i + j*nrows ;
            double aij = Ax [iso ? 0 : p] ;   // numerical value of A(i,j)
        }
    } \end{verbatim}}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_unpack\_FullC:} unpack a FullC matrix}
%-------------------------------------------------------------------------------
\label{matrix_unpack_fullc}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_unpack_FullC  // unpack a full matrix, by column
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    void **Ax,          // values
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_unpack_FullC' unpacks a matrix in FullC form.  It is identical
to \verb'GxB_Matrix_unpack_BitmapC', except that all entries must be present.
That is, prior to unpack, \verb'GrB_Matrix_nvals (&nvals, A)' must return
\verb'nvals' equal to \verb'nrows*ncols'.  Otherwise, if the \verb'A' is
unpacked with \newline \verb'GxB_Matrix_unpack_FullC', an error is returned
(\verb'GrB_INVALID_VALUE') and the matrix is not unpacked.

\newpage
%===============================================================================
\subsection{GraphBLAS import/export: using copy semantics} %====================
%===============================================================================
\label{GrB_import_export}

The v2.0 C API includes import/export methods for matrices (not vectors) using
a different strategy as compared to the \verb'GxB*pack/unpack*' methods.  The
\verb'GxB' methods are based on {\em move semantics}, in which ownership of
arrays is passed between SuiteSparse:GraphBLAS and the user application.  This
allows the \verb'GxB*pack/unpack*' methods to work in $O(1)$ time, and require
no additional memory, but it requires that GraphBLAS and the user application
agree on which memory manager to use.  This is done via \verb'GxB_init'.  This
allows GraphBLAS to \verb'malloc' an array that can be later \verb'free'd by
the user application, and visa versa.

The \verb'GrB' import/export methods take a different approach.  The data
is always copied in and out between the opaque GraphBLAS matrix and the
user arrays.  This takes $\Omega(e)$ time, if the matrix has $e$ entries,
and requires more memory.  It has the advantage that it does not require
GraphBLAS and the user application to agree on what memory manager to use,
since no ownership of allocated arrays is changed.

The format for \verb'GrB_Matrix_import' and \verb'GrB_Matrix_export' is
controlled by the following enum:

{\footnotesize
\begin{verbatim}
typedef enum
{
    GrB_CSR_FORMAT = 0,     // CSR format (equiv to GxB_SPARSE with GxB_BY_ROW)
    GrB_CSC_FORMAT = 1,     // CSC format (equiv to GxB_SPARSE with GxB_BY_COL)
    GrB_COO_FORMAT = 2      // triplet format (like input to GrB*build)
}
GrB_Format ; \end{verbatim}}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_import:}  import a matrix}
%-------------------------------------------------------------------------------
\label{GrB_matrix_import}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_import  // import a matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const <type> *Ax,       // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;
\end{verbatim}
} \end{mdframed}

The \verb'GrB_Matrix_import' method copies from user-provided arrays into an
opaque \verb'GrB_Matrix' and \verb'GrB_Matrix_export' copies data out, from an
opaque \verb'GrB_Matrix' into user-provided arrays.

The suffix \verb'TYPE' in the prototype above is one of \verb'BOOL',
\verb'INT8', \verb'INT16', etc, for built-n types, or \verb'UDT' for
user-defined types.  The type of the \verb'Ax' array must match this type.  No
typecasting is performed.

Unlike the \verb'GxB'
pack/unpack methods, memory is not handed off between the user application
and GraphBLAS.   The three arrays \verb'Ap', \verb'Ai'.  and \verb'Ax' are not
modified, and are still owned by the user application when the method finishes.

The matrix can be imported in one of three different formats:

\begin{packed_itemize}
    \item \verb'GrB_CSR_FORMAT': % CSR format (equiv to GxB_SPARSE with GxB_BY_ROW)
        Compressed-row format.  \verb'Ap' is an array of size \verb'nrows+1'.
        The arrays \verb'Ai' and \verb'Ax' are of size \verb'nvals = Ap [nrows]',
        and \verb'Ap[0]' must be zero.
        The column indices of entries in the \verb'i'th row appear in
        \verb'Ai[Ap[i]...Ap[i+1]-1]', and the values of those entries appear in
        the same locations in \verb'Ax'.
        The column indices need not be in any particular order.

    \item \verb'GrB_CSC_FORMAT': % CSC format (equiv to GxB_SPARSE with GxB_BY_COL)
        Compressed-column format.  \verb'Ap' is an array of size \verb'ncols+1'.
        The arrays \verb'Ai' and \verb'Ax' are of size \verb'nvals = Ap [ncols]',
        and \verb'Ap[0]' must be zero.
        The row indices of entries in the \verb'j'th column appear in
        \verb'Ai[Ap[j]...Ap[j+1]-1]', and the values of those entries appear in
        the same locations in \verb'Ax'.
        The row indices need not be in any particular order.
        
    \item \verb'GrB_COO_FORMAT': % triplet format (like input to GrB*build)
        Coordinate format.  This is the same format as \newline
        \verb'GrB_Matrix_build'.
        The three arrays \verb'Ap', \verb'Ai', and \verb'Ax' have the same
        size.  The \verb'k'th tuple has row index \verb'Ai[k]',
        column index \verb'Ap[k]', and value \verb'Ax[k]'.  The tuples can
        appear any order, but no duplicates are permitted.

%   \item \verb'GrB_DENSE_ROW_FORMAT': % FullR format (GxB_FULL with GxB_BY_ROW)
%       Dense matrix format, held by row.  Only the \verb'Ax' array is used, of
%       size \verb'nrows*ncols'.
%       It holds the matrix in dense format, in row major order.
%
%   \item \verb'GrB_DENSE_COL_FORMAT': % FullC format (GxB_FULL with GxB_BY_ROW)
%       Dense matrix format, held by column.  Only the \verb'Ax' array is used, of
%       size \verb'nrows*ncols'.
%       It holds the matrix in dense format, in column major order.

\end{packed_itemize}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_export:}  export a matrix}
%-------------------------------------------------------------------------------
\label{GrB_matrix_export}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_export  // export a matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    <type> *Ax,             // values (must match the type of A_input)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Matrix_export' copies the contents of a matrix into three
user-provided arrays, using any one of the three different formats
described in Section~\ref{GrB_matrix_import}.  The size of the arrays must be
at least as large as the lengths returned by \verb'GrB_Matrix_exportSize'.  The
matrix \verb'A' is not modified.

On input, the size of the three arrays \verb'Ap', \verb'Ai', and \verb'Ax' is
given by \verb'Ap_len', \verb'Ai_len', and \verb'Ax_len', respectively.  These
values are in terms of the number of entries in these arrays, not the number of
bytes.  On output, these three value are adjusted to report the number of
entries written to the three arrays.

The suffix \verb'TYPE' in the prototype above is one of \verb'BOOL',
\verb'INT8', \verb'INT16', etc, for built-n types, or \verb'UDT' for
user-defined types.  The type of the \verb'Ax' array must match this type.  No
typecasting is performed.

% The \verb'GrB_DENSE_ROW_FORMAT' and \verb'GrB_DENSE_COL_FORMAT' formats can
% only be used if all entries are present in the matrix.  That is,
% \verb'GrB_Matrix_nvals (&nvals,A)' must return \verb'nvals' equal to
% \verb'nrows*ncols'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_exportSize:} determine size of export}
%-------------------------------------------------------------------------------
\label{export_size}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_exportSize  // determine sizes of user arrays for export
(
    GrB_Index *Ap_len,      // # of entries required for Ap (not # of bytes)
    GrB_Index *Ai_len,      // # of entries required for Ai (not # of bytes)
    GrB_Index *Ax_len,      // # of entries required for Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export
) ;
\end{verbatim}
} \end{mdframed}

Returns the required sizes of the arrays \verb'Ap', \verb'Ai', and \verb'Ax'
for exporting a matrix using \verb'GrB_Matrix_export', using the same
\verb'format'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_exportHint:} determine best export format}
%-------------------------------------------------------------------------------
\label{export_hint}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_exportHint  // suggest the best export format
(
    GrB_Format *format,     // export format
    GrB_Matrix A            // matrix to export
) ;
\end{verbatim}
} \end{mdframed}

This method suggests the most efficient format for the export of a given
matrix.  For SuiteSparse:GraphBLAS, the hint depends on the current
format of the \verb'GrB_Matrix':

\begin{packed_itemize}
\item \verb'GxB_SPARSE', \verb'GxB_BY_ROW': export as \verb'GrB_CSR_FORMAT'
\item \verb'GxB_SPARSE', \verb'GxB_BY_COL': export as \verb'GrB_CSC_FORMAT'
\item \verb'GxB_HYPERSPARSE': export as \verb'GrB_COO_FORMAT'
\item \verb'GxB_BITMAP', \verb'GxB_BY_ROW': export as \verb'GrB_CSR_FORMAT'
\item \verb'GxB_BITMAP', \verb'GxB_BY_COL': export as \verb'GrB_CSC_FORMAT'
%\item \verb'GxB_FULL', \verb'GxB_BY_ROW': export as \verb'GrB_DENSE_ROW_FORMAT'
%\item \verb'GxB_FULL', \verb'GxB_BY_COL': export as \verb'GrB_DENSE_COL_FORMAT'
\item \verb'GxB_FULL', \verb'GxB_BY_ROW': export as \verb'GrB_CSR_FORMAT'
\item \verb'GxB_FULL', \verb'GxB_BY_COL': export as \verb'GrB_CSC_FORMAT'
\end{packed_itemize}

\newpage
%===============================================================================
\subsection{Sorting methods}
%===============================================================================
\label{sorting_methods}

\verb'GxB_Matrix_sort' provides a mechanism to sort all the rows or
all the columns of a matrix, and \verb'GxB_Vector_sort' sorts all the
entries in a vector.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_sort:} sort a vector}
%-------------------------------------------------------------------------------
\label{vector_sort}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_sort
(
    // output:
    GrB_Vector w,           // vector of sorted values
    GrB_Vector p,           // vector containing the permutation
    // input
    GrB_BinaryOp op,        // comparator op
    GrB_Vector u,           // vector to sort
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_sort' is identical to sorting the single column of an
\verb'n'-by-1 matrix.  The descriptor is ignored, except to control the number
of threads to use.  Refer to Section \ref{matrix_sort} for details.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_sort:} sort the rows/columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_sort}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_sort
(
    // output:
    GrB_Matrix C,           // matrix of sorted values
    GrB_Matrix P,           // matrix containing the permutations
    // input
    GrB_BinaryOp op,        // comparator op
    GrB_Matrix A,           // matrix to sort
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Matrix_sort' sorts all the rows or all the columns of a matrix.
Each row (or column) is sorted separately.  The rows are sorted by default.
To sort the columns, use \verb'GrB_DESC_T0'.  A comparator operator is
provided to define the sorting order (ascending or descending).
For example, to sort a \verb'GrB_FP64' matrix in ascending order,
use \verb'GrB_LT_FP64' as the \verb'op', and to sort in descending order,
use \verb'GrB_GT_FP64'.

The \verb'op' must have a return value of \verb'GrB_BOOL', and the types of
its two inputs must be the same.  The entries in \verb'A' are typecasted to
the inputs of the \verb'op', if necessary.  Matrices with user-defined types
can be sorted with a user-defined comparator operator, whose two input types
must match the type of \verb'A', and whose output is \verb'GrB_BOOL'.

The two matrix outputs are \verb'C' and \verb'P'.  Any entries present on input
in \verb'C' or \verb'P' are discarded on output.  The type of \verb'C' must
match the type of \verb'A' exactly.  The dimensions of \verb'C', \verb'P', and
\verb'A' must also match exactly (even with the \verb'GrB_DESC_T0'
descriptor).

With the default sort (by row), suppose \verb'A(i,:)' contains \verb'k'
entries.  In this case, \verb'C(i,0:k-1)' contains the values of those entries
in sorted order, and \verb'P(i,0:k-1)' contains their corresponding column
indices in the matrix \verb'A'.  If two values are the same, ties are broken
according column index.

If the matrix is sorted by column, and \verb'A(:,j)' contains \verb'k' entries,
then \verb'C(0:k-1,j)' contains the values of those entries in sorted order,
and \verb'P(0:k-1,j)' contains their corresponding row indices in the matrix
\verb'A'.  If two values are the same, ties are broken according row index.

The outputs \verb'C' and \verb'P' are both optional; either one (but not both)
may be \verb'NULL', in which case that particular output matrix is not
computed.

\newpage
%===============================================================================
\subsection{GraphBLAS descriptors: {\sf GrB\_Descriptor}} %=====================
%===============================================================================
\label{descriptor}

A GraphBLAS {\em descriptor} modifies the behavior of a GraphBLAS operation.
If the descriptor is \verb'GrB_NULL', defaults are used.

The access to these parameters and their values is governed
by two \verb'enum' types, \verb'GrB_Desc_Field' and \verb'GrB_Desc_Value':

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
#define GxB_NTHREADS 5  // for both GrB_Desc_field and GxB_Option_field
#define GxB_CHUNK 7
typedef enum
{
    GrB_OUTP = 0,   // descriptor for output of a method
    GrB_MASK = 1,   // descriptor for the mask input of a method
    GrB_INP0 = 2,   // descriptor for the first input of a method
    GrB_INP1 = 3,   // descriptor for the second input of a method
    GxB_DESCRIPTOR_NTHREADS = GxB_NTHREADS,   // number of threads to use
    GxB_DESCRIPTOR_CHUNK = GxB_CHUNK,   // chunk size for small problems
    GxB_AxB_METHOD = 1000, // descriptor for selecting C=A*B algorithm
    GxB_SORT = 35   // control sort in GrB_mxm
    GxB_COMPRESSION = 36,   // select compression for serialize
    GxB_IMPORT = 37,        // secure vs fast pack
}
GrB_Desc_Field ;

typedef enum
{
    // for all GrB_Descriptor fields:
    GxB_DEFAULT = 0,    // default behavior of the method
    // for GrB_OUTP only:
    GrB_REPLACE = 1,    // clear the output before assigning new values to it
    // for GrB_MASK only:
    GrB_COMP = 2,       // use the complement of the mask
    GrB_STRUCTURE = 4,  // use the structure of the mask
    // for GrB_INP0 and GrB_INP1 only:
    GrB_TRAN = 3,       // use the transpose of the input
    // for GxB_AxB_METHOD only:
    GxB_AxB_GUSTAVSON = 1001,   // gather-scatter saxpy method
    GxB_AxB_DOT       = 1003,   // dot product
    GxB_AxB_HASH      = 1004,   // hash-based saxpy method
    GxB_AxB_SAXPY     = 1005    // saxpy method (any kind)
    // for GxB_IMPORT only:
    GxB_SECURE_IMPORT = 502     // GxB*_pack* methods trust their input data
}
GrB_Desc_Value ;
\end{verbatim} } \end{mdframed}

\newpage

\begin{itemize}
\item \verb'GrB_OUTP' is a parameter that modifies the output of a
    GraphBLAS operation.  In the default case, the output is not cleared, and
    ${\bf Z = C \odot T}$ then ${\bf C \langle M \rangle = Z}$ are computed
    as-is, where ${\bf T}$ is the results of the particular GraphBLAS
    operation.

    In the non-default case, ${\bf Z = C \odot T}$ is first computed, using the
    results of ${\bf T}$ and the accumulator $\odot$.  After this is done, if
    the \verb'GrB_OUTP' descriptor field is set to \verb'GrB_REPLACE', then the
    output is cleared of its entries.  Next, the assignment ${\bf C \langle M
    \rangle = Z}$ is performed.

\item \verb'GrB_MASK' is a parameter that modifies the \verb'Mask',
    even if the mask is not present.

    If this parameter is set to its default value, and if the mask is not
    present (\verb'Mask==NULL') then implicitly \verb'Mask(i,j)=1' for all
    \verb'i' and \verb'j'.  If the mask is present then \verb'Mask(i,j)=1'
    means that \verb'C(i,j)' is to be modified by the ${\bf C \langle M \rangle
    = Z}$ update.  Otherwise, if \verb'Mask(i,j)=0', then \verb'C(i,j)' is not
    modified, even if \verb'Z(i,j)' is an entry with a different value; that
    value is simply discarded.

    If the \verb'GrB_MASK' parameter is set to \verb'GrB_COMP', then the
    use of the mask is complemented.  In this case, if the mask is not present
    (\verb'Mask==NULL') then implicitly \verb'Mask(i,j)=0' for all \verb'i' and
    \verb'j'.  This means that none of ${\bf C}$ is modified and the entire
    computation of ${\bf Z}$ might as well have been skipped.  That is, a
    complemented empty mask means no modifications are made to the output
    object at all, except perhaps to clear it in accordance with the
    \verb'GrB_OUTP' descriptor.  With a complemented mask, if the mask is
    present then \verb'Mask(i,j)=0' means that \verb'C(i,j)' is to be modified
    by the ${\bf C \langle M \rangle = Z}$ update.  Otherwise, if
    \verb'Mask(i,j)=1', then \verb'C(i,j)' is not modified, even if
    \verb'Z(i,j)' is an entry with a different value; that value is simply
    discarded.

    If the \verb'GrB_MASK' parameter is set to \verb'GrB_STRUCTURE',
    then the values of the mask are ignored, and just the pattern of the
    entries is used.  Any entry \verb'M(i,j)' in the pattern is treated as if
    it were true.

    The \verb'GrB_COMP' and \verb'GrB_STRUCTURE' settings can be combined,
    either by setting the mask option twice (once with each value), or by
    setting the mask option to \verb'GrB_COMP+GrB_STRUCTURE' (the latter is an
    extension to the specification).

    Using a parameter to complement the \verb'Mask' is very useful because
    constructing the actual complement of a very sparse mask is impossible
    since it has too many entries.  If the number of places in \verb'C'
    that should be modified is very small, then use a sparse mask without
    complementing it.  If the number of places in \verb'C' that should
    be protected from modification is very small, then use a sparse mask
    to indicate those places, and use a descriptor \verb'GrB_MASK' that
    complements the use of the mask.

\item \verb'GrB_INP0' and \verb'GrB_INP1' modify the use of the
    first and second input matrices \verb'A' and \verb'B' of the GraphBLAS
    operation.

    If the \verb'GrB_INP0' is set to \verb'GrB_TRAN', then \verb'A' is
    transposed before using it in the operation.  Likewise, if
    \verb'GrB_INP1' is set to \verb'GrB_TRAN', then the second input,
    typically called \verb'B', is transposed.

    Vectors and scalars are never transposed via the descriptor.  If a method's
    first parameter is a matrix and the second a vector or scalar, then
    \verb'GrB_INP0' modifies the matrix parameter and
    \verb'GrB_INP1' is ignored.  If a method's first parameter is a
    vector or scalar and the second a matrix, then \verb'GrB_INP1'
    modifies the matrix parameter and \verb'GrB_INP0' is ignored.

    To clarify this in each function, the inputs are labeled as
    \verb'first input:' and \verb'second input:' in the function signatures.

\item \verb'GxB_AxB_METHOD' suggests the method that should be
    used to compute \verb'C=A*B'.  All the methods compute the same result,
    except they may have different floating-point roundoff errors.  This
    descriptor should be considered as a hint; SuiteSparse:GraphBLAS is
    free to ignore it.

    \begin{itemize}

    \item \verb'GxB_DEFAULT' means that a method is selected automatically.

    \item \verb'GxB_AxB_SAXPY': select any saxpy-based method:
        \verb'GxB_AxB_GUSTAVSON', and/or
        \verb'GxB_AxB_HASH', or any mix of the two,
        in contrast to the dot-product method.

    \item \verb'GxB_AxB_GUSTAVSON':  an extended version of Gustavson's method
    \cite{Gustavson78}, which is a very good general-purpose method, but
    sometimes the workspace can be too large.  Assuming all matrices are stored
    by column, it computes \verb'C(:,j)=A*B(:,j)' with a sequence of {\em
    saxpy} operations (\verb'C(:,j)+=A(:,k)*B(k:,j)' for each nonzero
    \verb'B(k,j)').  In the {\em coarse Gustavson} method, each internal thread
    requires workspace of size $m$, to the number of rows of \verb'C', which is
    not suitable if the matrices are extremely sparse or if there are many
    threads.  For the {\em fine Gustavson} method, threads can share workspace
    and update it via atomic operations.  If all matrices are stored by row,
    then it computes \verb'C(i,:)=A(i,:)*B' in a sequence of sparse {\em saxpy}
    operations, and using workspace of size $n$ per thread, or group of
    threads, corresponding to the number of columns of \verb'C'.

    \item \verb'GxB_AxB_HASH':  a hash-based method, based on
        \cite{10.1145/3229710.3229720}.  It is very efficient for hypersparse
        matrices, matrix-vector-multiply, and when $|{\bf B}|$ is small.
        SuiteSparse:GraphBLAS includes a {\em coarse hash} method, in which
        each thread has its own hash workspace, and a {\em fine hash}
        method, in which groups of threads share a single hash workspace,
        as concurrent data structure, using atomics.

% [2] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Buluc. 2018.
% High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore
% Architectures. In Proc. 47th Intl. Conf. on Parallel Processing (ICPP '18).
% Association for Computing Machinery, New York, NY, USA, Article 34, 1–10.
% DOI:https://doi.org/10.1145/3229710.3229720

\item \verb'GxB_AxB_DOT': computes \verb"C(i,j)=A(i,:)*B(j,:)'", for each
    entry \verb'C(i,j)'.  If the mask is present and not complemented, only
    entries for which \verb'M(i,j)=1' are computed.  This is a very specialized
    method that works well only if the mask is present, very sparse, and not
    complemented, when \verb'C' is small, or when \verb'C' is bitmap or full.
    For example, it works very well
    when \verb'A' and \verb'B' are tall and thin, and \verb"C<M>=A*B'" or
    \verb"C=A*B'" are computed.  These expressions assume all matrices are in
    CSR format.  If in CSC format, then the dot-product method used for
    \verb"A'*B".  The method is impossibly slow if \verb'C' is large and the
    mask is not present, since it takes $\Omega(mn)$ time if \verb'C' is
    $m$-by-$n$ in that case.  It does not use any workspace at all.  Since it
    uses no workspace, it can work very well for extremely sparse or
    hypersparse matrices, when the mask is present and not complemented.

    \end{itemize}

\item \verb'GxB_NTHREADS' controls how many threads a method uses.
    By default (if set to zero, or \verb'GxB_DEFAULT'), all available threads
    are used.  The maximum available threads is controlled by the global
    setting, which is \verb'omp_get_max_threads ( )' by default.  If set to
    some positive integer \verb'nthreads' less than this maximum, at most
    \verb'nthreads' threads will be used.  See Section~\ref{omp_parallelism}
    for details.

\item \verb'GxB_CHUNK' is a \verb'double' value that controls how many threads
    a method uses for small problems.  See Section~\ref{omp_parallelism} for
    details.

\item \verb'GxB_SORT' provides a hint to \verb'GrB_mxm', \verb'GrB_mxv',
    \verb'GrB_vxm', and \verb'GrB_reduce' (to vector).  These methods can leave
    the output matrix or vector in a jumbled state, where the final sort is
    left as pending work.  This is typically fastest, since some algorithms can
    tolerate jumbled matrices on input, and sometimes the sort can be skipped
    entirely.  However, if the matrix or vector will be immediately exported in
    unjumbled form, or provided as input to a method that requires it to not be
    jumbled, then sorting it during the matrix multiplication is faster.
    By default, these methods leave the result in jumbled form (a {\em lazy
    sort}), if \verb'GxB_SORT' is set to zero (\verb'GxB_DEFAULT').  A nonzero
    value will inform the matrix multiplication to sort its result, instead.

\item \verb'GxB_COMPRESSION' selects the compression method for serialization.
    The default is ZSTD (level 1).  See Section~\ref{serialize_deserialize} for
    other options.

\item \verb'GxB_IMPORT' informs the \verb'GxB' pack methods
    that they can trust their input data, or not.  The default is to trust
    the input, for faster packing.  If the data is being packed from an
    untrusted source, then additional checks should be made, and the 
    following descriptor setting should be used:

    {\footnotesize
    \begin{verbatim}
    GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ; \end{verbatim}}

\end{itemize}

The next sections describe the methods for a \verb'GrB_Descriptor':

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Descriptor_new'        & create a descriptor                  & \ref{descriptor_new} \\
\verb'GrB_Descriptor_wait'       & wait for a descriptor                & \ref{descriptor_wait} \\
\verb'GrB_Descriptor_set'        & set a parameter in a descriptor      & \ref{descriptor_set} \\
\verb'GxB_Desc_set'              & set a parameter in a descriptor      & \ref{desc_set}  \\
\verb'GxB_Desc_get'              & get a parameter from a descriptor    & \ref{desc_get}  \\
\verb'GrB_Descriptor_free'       & free a descriptor                    & \ref{descriptor_free} \\
\hline
\end{tabular}
}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_new:}  create a new descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_new     // create a new descriptor
(
    GrB_Descriptor *descriptor  // handle of descriptor to create
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Descriptor_new' creates a new descriptor, with all fields set to
their defaults (output is not replaced, the mask is not complemented, the mask
is valued not structural, neither input matrix is transposed, the method
used in \verb'C=A*B' is selected automatically, and \verb'GrB_mxm' leaves
the final sort as pending work).

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_wait:} wait for a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait                   // wait for a descriptor
(
    GrB_Descriptor descriptor,      // descriptor to wait for
    GrB_WaitMode mode               // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined descriptor, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation.  Currently,
SuiteSparse:GraphBLAS does nothing except to ensure that \verb'd' is valid.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_set:}  set a parameter in a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_set}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_set     // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    GrB_Desc_Field field,       // parameter to change
    GrB_Desc_Value val          // value to change it to
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Descriptor_set' sets a descriptor field (\verb'GrB_OUTP',
\verb'GrB_MASK', \verb'GrB_INP0', \verb'GrB_INP1', or \verb'GxB_AxB_METHOD') to
a particular value.  Use \verb'GxB_Dec_set' to set the value of
\verb'GxB_NTHREADS', \verb'GxB_CHUNK', and \verb'GxB_SORT'.
If an error occurs, \verb'GrB_error(&err,desc)' returns details about the error.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{|l|p{2.4in}|p{2.2in}|}
\hline
Descriptor & Default   & Non-default \\
field      & &  \\
\hline

\verb'GrB_OUTP'
    & \verb'GxB_DEFAULT':
    The output matrix is not cleared.  The operation computes
    ${\bf C \langle M \rangle = C \odot T}$.
    & \verb'GrB_REPLACE':
    After computing ${\bf Z=C\odot T}$,
    the output {\bf C} is cleared of all entries.
    Then ${\bf C \langle M \rangle = Z}$ is performed. \\

\hline

\verb'GrB_MASK'
    & \verb'GxB_DEFAULT':
    The Mask is not complemented.  \verb'Mask(i,j)=1' means the value $C_{ij}$
    can be modified by the operation, while \verb'Mask(i,j)=0' means the value
    $C_{ij}$ shall not be modified by the operation.
    & \verb'GrB_COMP':
    The Mask is complemented.  \verb'Mask(i,j)=0' means the value $C_{ij}$
    can be modified by the operation, while \verb'Mask(i,j)=1' means the value
    $C_{ij}$ shall not be modified by the operation. \\
    &
    & \verb'GrB_STRUCTURE':
    The values of the Mask are ignored.  If \verb'Mask(i,j)' is an entry
    in the \verb'Mask' matrix, it is treated as if \verb'Mask(i,j)=1'.
    The two options \verb'GrB_COMP' and \verb'GrB_STRUCTURE' can be
    combined, with two subsequent calls, or with a single call with the setting
    \verb'GrB_COMP+GrB_STRUCTURE'.  \\

\hline

\verb'GrB_INP0'
    & \verb'GxB_DEFAULT':
    The first input is not transposed prior to using it in the operation.
    & \verb'GrB_TRAN':
    The first input is transposed prior to using it in the operation.  Only
    matrices are transposed, never vectors. \\

\hline

\verb'GrB_INP1'
    & \verb'GxB_DEFAULT':
    The second input is not transposed prior to using it in the operation.
    & \verb'GrB_TRAN':
    The second input is transposed prior to using it in the operation.  Only
    matrices are transposed, never vectors. \\

\hline

\verb'GrB_AxB_METHOD'
    & \verb'GxB_DEFAULT':
    The method for \verb'C=A*B' is selected automatically.
    & \verb'GxB_AxB_'{\em method}: The selected method is used to compute
    \verb'C=A*B'.  \\

\hline
\end{tabular}
}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Desc\_set:}  set a parameter in a descriptor}
%-------------------------------------------------------------------------------
\label{desc_set}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Desc_set           // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    GrB_Desc_Field field,       // parameter to change
    ...                         // value to change it to
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Desc_set' is like \verb'GrB_Descriptor_set', except that the type of
the third parameter can vary with the field.   This function can modify all
descriptor settings, including those that do not have the type
\verb'GrB_Desc_Value'.  See also \verb'GxB_set' described in
Section~\ref{options}.  If an error occurs, \verb'GrB_error(&err,desc)' returns
details about the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Desc\_get:}  get a parameter from a descriptor}
%-------------------------------------------------------------------------------
\label{desc_get}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Desc_get           // get a parameter from a descriptor
(
    GrB_Descriptor desc,        // descriptor to query; NULL means defaults
    GrB_Desc_Field field,       // parameter to query
    ...                         // value of the parameter
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Desc_get' returns the value of a single field in a descriptor.  The
type of the third parameter is a pointer to a variable type, whose type depends
on the field.  See also \verb'GxB_get' described in Section~\ref{options}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_free:} free a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free               // free a descriptor
(
    GrB_Descriptor *descriptor  // handle of descriptor to free
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Descriptor_free' frees a descriptor.
Either usage:

    {\small
    \begin{verbatim}
    GrB_Descriptor_free (&descriptor) ;
    GrB_free (&descriptor) ; \end{verbatim}}

\noindent
frees the \verb'descriptor' and sets \verb'descriptor' to \verb'NULL'.  It
safely does nothing if passed a \verb'NULL' handle, or if
\verb'descriptor == NULL' on input.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_DESC\_*:}  built-in descriptors}
%-------------------------------------------------------------------------------
\label{descriptor_predefined}

Built-in descriptors are listed in the table below.  A dash in the table
indicates the default.  These descriptors may not be modified or freed.
Attempts to modify them result in an error (\verb'GrB_INVALID_VALUE'); attempts
to free them are silently ignored. 

% \verb'GrB_NULL' is the default descriptor, with all settings at their defaults:
% \verb'OUTP': do not replace the output,
% \verb'MASK': mask is valued and not complemented,
% \verb'INP0': first input not transposed, and
% \verb'INP1': second input not transposed.
% For these pre-defined descriptors, the
% \verb'GxB_NTHREADS',
% \verb'GxB_CHUNK', and
% \verb'GxB_SORT' settings are at their default values.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{|l|lllll|}
\hline
Descriptor              &  \verb'OUTP'          & \verb'MASK'           & \verb'MASK'       & \verb'INP0'       & \verb'INP1'       \\
                        &                       & structural            & complement        & & \\
\hline
\verb'GrB_NULL'         &   -                   & -                     & -                 & -                 & -                 \\
\verb'GrB_DESC_T1'      &   -                   & -                     & -                 & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_T0'      &   -                   & -                     & -                 & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_T0T1'    &   -                   & -                     & -                 & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_C'       &   -                   & -                     & \verb'GrB_COMP'   & -                 & -                 \\
\verb'GrB_DESC_CT1'     &   -                   & -                     & \verb'GrB_COMP'   & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_CT0'     &   -                   & -                     & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_CT0T1'   &   -                   & -                     & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_S'       &   -                   & \verb'GrB_STRUCTURE'  & -                 & -                 & -                 \\
\verb'GrB_DESC_ST1'     &   -                   & \verb'GrB_STRUCTURE'  & -                 & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_ST0'     &   -                   & \verb'GrB_STRUCTURE'  & -                 & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_ST0T1'   &   -                   & \verb'GrB_STRUCTURE'  & -                 & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_SC'      &   -                   & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & -                 & -                 \\
\verb'GrB_DESC_SCT1'    &   -                   & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_SCT0'    &   -                   & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_SCT0T1'  &   -                   & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_R'       &   \verb'GrB_REPLACE'  & -                     & -                 & -                 & -                 \\
\verb'GrB_DESC_RT1'     &   \verb'GrB_REPLACE'  & -                     & -                 & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_RT0'     &   \verb'GrB_REPLACE'  & -                     & -                 & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_RT0T1'   &   \verb'GrB_REPLACE'  & -                     & -                 & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_RC'      &   \verb'GrB_REPLACE'  & -                     & \verb'GrB_COMP'   & -                 & -                 \\
\verb'GrB_DESC_RCT1'    &   \verb'GrB_REPLACE'  & -                     & \verb'GrB_COMP'   & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_RCT0'    &   \verb'GrB_REPLACE'  & -                     & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_RCT0T1'  &   \verb'GrB_REPLACE'  & -                     & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_RS'      &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & -                 & -                 & -                 \\
\verb'GrB_DESC_RST1'    &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & -                 & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_RST0'    &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & -                 & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_RST0T1'  &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & -                 & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\verb'GrB_DESC_RSC'     &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & -                 & -                 \\
\verb'GrB_DESC_RSCT1'   &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & -                 & \verb'GrB_TRAN'   \\
\verb'GrB_DESC_RSCT0'   &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & -                 \\
\verb'GrB_DESC_RSCT0T1' &   \verb'GrB_REPLACE'  & \verb'GrB_STRUCTURE'  & \verb'GrB_COMP'   & \verb'GrB_TRAN'   & \verb'GrB_TRAN'   \\
\hline
\end{tabular}}

\newpage
%===============================================================================
\subsection{{\sf GrB\_free:} free any GraphBLAS object} %=======================
%===============================================================================
\label{free}

Each of the ten objects has \verb'GrB_*_new' and \verb'GrB_*_free' methods
that are specific to each object.  They can also be accessed by a generic
function, \verb'GrB_free', that works for all ten objects.  If \verb'G' is any
of the ten objects, the statement

    {\footnotesize
    \begin{verbatim}
    GrB_free (&G) ; \end{verbatim} }

\noindent
frees the object and sets the variable \verb'G' to \verb'NULL'.  It is safe to
pass in a \verb'NULL' handle, or to free an object twice:

    {\footnotesize
    \begin{verbatim}
    GrB_free (NULL) ;       // SuiteSparse:GraphBLAS safely does nothing
    GrB_free (&G) ;         // the object G is freed and G set to NULL
    GrB_free (&G) ;         // SuiteSparse:GraphBLAS safely does nothing \end{verbatim} }

\noindent
However, the following sequence of operations is not safe.  The first two are
valid but the last statement will lead to undefined behavior.

    {\footnotesize
    \begin{verbatim}
    H = G ;                 // valid; creates a 2nd handle of the same object
    GrB_free (&G) ;         // valid; G is freed and set to NULL; H now undefined
    GrB_some_method (H) ;   // not valid; H is undefined \end{verbatim}}

Some objects are predefined, such as the built-in types.  If a user application
attempts to free a built-in object, SuiteSparse:GraphBLAS will safely do
nothing.  The \verb'GrB_free' function in SuiteSparse:GraphBLAS always
returns \verb'GrB_SUCCESS'.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The mask, accumulator, and replace option} %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:maskaccum}

After a GraphBLAS operation computes a result ${\bf T}$, (for example, ${\bf
T=AB}$ for \verb'GrB_mxm'), the results are assigned to an output matrix ${\bf
C}$ via the mask/ accumulator phase, written as ${\bf C \langle M \rangle = C
\odot T}$.  This phase is affected by the \verb'GrB_REPLACE' option in the
descriptor, the presence of an optional binary accumulator operator ($\odot$),
the presence of the optional mask matrix ${\bf M}$, and the status of the mask
descriptor.  The interplay of these options is summarized in
Table~\ref{tab:maskaccum}.

The mask ${\bf M}$ may be present, or not.  It may be structural or valued, and
it may be complemented, or not.  These options may be combined, for a total of
8 cases, although the structural/valued option as no effect if ${\bf M}$ is not
present.  If ${\bf M}$ is not present and not complemented, then $m_{ij}$ is
implicitly true.  If not present yet complemented, then all $m_{ij}$ entries are
implicitly zero; in this case, ${\bf T}$ need not be computed at all.  Either
${\bf C}$ is not modified, or all its entries are cleared if the replace option
is enabled.  If ${\bf M}$ is present, and the structural option is used, then
$m_{ij}$ is treated as true if it is an entry in the matrix (its value is
ignored).  Otherwise, the value of $m_{ij}$ is used.  In both cases, entries
not present are implicitly zero.  These values are negated if the mask is
complemented.  All of these various cases are combined to give a single
effective value of the mask at position ${ij}$.

The combination of all these options are presented in the
Table~\ref{tab:maskaccum}.  The first column is the \verb'GrB_REPLACE' option.
The second column lists whether or not the accumulator operator is present.
The third column lists whether or not $c_{ij}$ exists on input to the
mask/accumulator phase (a dash means that it does not exist).  The fourth
column lists whether or not the entry $t_{ij}$ is present in the result matrix
${\bf T}$.  The mask column is the final effective value of $m_{ij}$, after
accounting for the presence of ${\bf M}$ and the mask options.  Finally, the
last column states the result of the mask/accum step; if no action is listed in
this column, then $c_{ij}$ is not modified.

Several important observations can be made from this table.  First,
if no mask is present (and the mask-complement descriptor option is not used),
then only the first half of the table is used.  In this case, the \verb'GrB_REPLACE'
option has no effect.  The entire matrix ${\bf C}$ is modified.

Consider the cases when $c_{ij}$ is present but $t_{ij}$ is not, and there is no
mask or the effective value of the mask is true for this ${ij}$ position.  With
no accumulator operator, $c_{ij}$ is deleted.  If the accumulator operator is
present and the replace option is not used, $c_{ij}$ remains unchanged.

\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf T}$ & mask & action taken by ${\bf C \langle M \rangle = C \odot T}$ \\
\hline
    -  &-   & $c_{ij}$ & $t_{ij}$  & 1    &  $c_{ij} = t_{ij}$, update \\
    -  &-   &  -       & $t_{ij}$  & 1    &  $c_{ij} = t_{ij}$, insert \\
    -  &-   & $c_{ij}$ &  -        & 1    &  delete $c_{ij}$ because $t_{ij}$ not present \\
    -  &-   &  -       &  -        & 1    &   \\
    -  &-   & $c_{ij}$ & $t_{ij}$  & 0    &   \\
    -  &-   &  -       & $t_{ij}$  & 0    &   \\
    -  &-   & $c_{ij}$ &  -        & 0    &   \\
    -  &-   &  -       &  -        & 0    &   \\
\hline
    yes&-   & $c_{ij}$ & $t_{ij}$  & 1    &  $c_{ij} = t_{ij}$, update \\
    yes&-   &  -       & $t_{ij}$  & 1    &  $c_{ij} = t_{ij}$, insert \\
    yes&-   & $c_{ij}$ &  -        & 1    &  delete $c_{ij}$ because $t_{ij}$ not present \\
    yes&-   &  -       &  -        & 1    &   \\
    yes&-   & $c_{ij}$ & $t_{ij}$  & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&-   &  -       & $t_{ij}$  & 0    &   \\
    yes&-   & $c_{ij}$ &  -        & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&-   &  -       &  -        & 0    &   \\
\hline
    -  &yes & $c_{ij}$ & $t_{ij}$  & 1    &  $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
    -  &yes &  -       & $t_{ij}$  & 1    &  $c_{ij} = t_{ij}$, insert \\
    -  &yes & $c_{ij}$ &  -        & 1    &   \\
    -  &yes &  -       &  -        & 1    &   \\
    -  &yes & $c_{ij}$ & $t_{ij}$  & 0    &   \\
    -  &yes &  -       & $t_{ij}$  & 0    &   \\
    -  &yes & $c_{ij}$ &  -        & 0    &   \\
    -  &yes &  -       &  -        & 0    &   \\
\hline
    yes&yes & $c_{ij}$ & $t_{ij}$  & 1    &  $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
    yes&yes &  -       & $t_{ij}$  & 1    &  $c_{ij} = t_{ij}$, insert \\
    yes&yes & $c_{ij}$ &  -        & 1    &   \\
    yes&yes &  -       &  -        & 1    &   \\
    yes&yes & $c_{ij}$ & $t_{ij}$  & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&yes &  -       & $t_{ij}$  & 0    &   \\
    yes&yes & $c_{ij}$ &  -        & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&yes &  -       &  -        & 0    &   \\
\hline
\end{tabular}
}
\caption{Results of the mask/accumulator phase. \label{tab:maskaccum}}
\end{table}

When there is no mask and the mask \verb'GrB_COMP' option is not selected, the
table simplifies (Table~\ref{tab:maskaccum_nomask}).  The \verb'GrB_REPLACE'
option no longer has any effect.  The \verb'GrB_SECOND_T' binary operator when
used as the accumulator unifies the first cases, shown in
Table~\ref{tab:maskaccum_nomask_2nd}.  The only difference now is the behavior
when $c_{ij}$ is present but $t_{ij}$ is not.  Finally, the effect of
\verb'GrB_FIRST_T' as the accumulator is shown in
Table~\ref{tab:maskaccum_nomask_1st}. 

\begin{table}[h]
\begin{center}
{\small
\begin{tabular}{lll|l}
\hline
       accum & ${\bf C}$ & ${\bf T}$        & action taken by ${\bf C = C \odot T}$ \\
\hline
        -   & $c_{ij}$ & $t_{ij}$         &  $c_{ij} = t_{ij}$, update \\
        -   &  -       & $t_{ij}$         &  $c_{ij} = t_{ij}$, insert \\
        -   & $c_{ij}$ &  -               &  delete $c_{ij}$ because $t_{ij}$ not present \\
        -   &  -       &  -               &   \\
\hline
        yes & $c_{ij}$ & $t_{ij}$         &  $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
        yes &  -       & $t_{ij}$         &  $c_{ij} = t_{ij}$, insert \\
        yes & $c_{ij}$ &  -               &   \\
        yes &  -       &  -               &   \\
\hline
\end{tabular}
}
\caption{When no mask is present (and not complemented).
\label{tab:maskaccum_nomask}}
\end{center}
\end{table}

\begin{table}[h]
\begin{center}
{\small
\begin{tabular}{lll|l}
\hline
       accum & ${\bf C}$ & ${\bf T}$        & action taken by ${\bf C = C \odot T}$ \\
\hline
        yes & $c_{ij}$ & $t_{ij}$         &  $c_{ij} = t_{ij}$, apply \verb'GrB_SECOND' accumulator \\
        yes &  -       & $t_{ij}$         &  $c_{ij} = t_{ij}$, insert \\
        yes & $c_{ij}$ &  -               &   \\
        yes &  -       &  -               &   \\
\hline
\end{tabular}
}
\caption{No mask, with the SECOND operator as the accumulator.
\label{tab:maskaccum_nomask_2nd}}
\end{center}
\end{table}

\begin{table}[h]
\begin{center}
{\small
\begin{tabular}{lll|l}
\hline
       accum & ${\bf C}$ & ${\bf T}$        & action taken by ${\bf C = C \odot T}$ \\
\hline
        yes & $c_{ij}$ & $t_{ij}$         &  \\ 
        yes &  -       & $t_{ij}$         &  $c_{ij} = t_{ij}$, insert \\
        yes & $c_{ij}$ &  -               &   \\
        yes &  -       &  -               &   \\
\hline
\end{tabular}
}
\caption{No Mask, with the FIRST operator as the accumulator.
\label{tab:maskaccum_nomask_1st}}
\end{center}
\end{table}

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{SuiteSparse:GraphBLAS Options} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{options}

SuiteSparse:GraphBLAS includes two type-generic methods, \verb'GxB_set' and
\verb'GxB_get', that set and query various options and parameters settings,
including a generic way to set values in the \verb'GrB_Descriptor' object.
Using these methods, the user application can provide hints to
SuiteSparse:GraphBLAS on how it should store and operate on its matrices.
These hints have no effect on the results of any GraphBLAS operation (except
perhaps floating-point roundoff differences), but they can have a great impact
on the amount of time or memory taken.

\begin{itemize}

\item \verb'GxB_set (field, value)' sets global options.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GxB_HYPER_SWITCH'     & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH'    & \verb'double [8]' & bitmap control \\
\verb'GxB_FORMAT'           & \verb'int'    & \verb'GxB_BY_ROW'
                                              or \verb'GxB_BY_COL' \\
\verb'GxB_GLOBAL_NTHREADS'  & \verb'int'    & number of threads to use \\
\verb'GxB_NTHREADS'         & \verb'int'    & number of threads to use \\
\verb'GxB_GLOBAL_CHUNK'     & \verb'double' & chunk size \\
\verb'GxB_CHUNK'            & \verb'double' & chunk size \\
\verb'GxB_BURBLE'           & \verb'int'    & diagnostic output \\
\verb'GxB_PRINTF'           & see below     & diagnostic output \\
\verb'GxB_FLUSH'            & see below     & diagnostic output \\
\verb'GxB_MEMORY_POOL'      & \verb'int64_t [64]' & memory pool control \\
\verb'GxB_PRINT_1BASED'     & \verb'int'    & for printing matrices/vectors \\
\hline
\end{tabular}
}

\item \verb'GxB_set (GrB_Matrix A, field, value)' provides hints to
    SuiteSparse: GraphBLAS on how to store a particular matrix.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GxB_HYPER_SWITCH'     & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH'    & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_FORMAT'           & \verb'int'    & \verb'GxB_BY_ROW'
                                              or \verb'GxB_BY_COL' \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int'    & 0 to 15 \\
\hline
\end{tabular}
}

\item \verb'GxB_set (GrB_Vector v, field, value)' provides hints to
    SuiteSparse: GraphBLAS on how to store a particular vector.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GxB_BITMAP_SWITCH'    & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int'    & 0 to 15 \\
\hline
\end{tabular}
}

\item \verb'GxB_set (GrB_Descriptor desc, field, value)' sets
    the value of a field in a \verb'GrB_Descriptor'.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GrB_OUTP'     & \verb'GrB_Desc_Value' & replace option \\
\verb'GrB_MASK'     & \verb'GrB_Desc_Value' & mask option \\
\verb'GrB_INP0'     & \verb'GrB_Desc_Value' & transpose input 0 \\
\verb'GrB_INP1'     & \verb'GrB_Desc_Value' & transpose input 1 \\
\verb'GxB_DESCRIPTOR_NTHREADS'  & \verb'int' & number of threads to use \\
\verb'GxB_NTHREADS'             & \verb'int' & number of threads to use \\
\verb'GxB_DESCRIPTOR_CHUNK'     & \verb'double' & chunk size \\
\verb'GxB_CHUNK'                & \verb'double' & chunk size \\
\verb'GxB_AxB_METHOD'           & \verb'int' & method for matrix multiply \\
\verb'GxB_SORT'                 & \verb'int' & lazy vs aggressive sort \\
\verb'GxB_COMPRESSION'          & \verb'int' & compression for serialization \\
\verb'GxB_IMPORT'    & \verb'GrB_Desc_Value' & trust data on import/pack \\
\hline
\end{tabular}
}

\end{itemize}

\verb'GxB_get' queries a \verb'GrB_Descriptor', a \verb'GrB_Matrix',
a \verb'GrB_Vector', or the global options.

\begin{itemize}

\item \verb'GxB_get (field, &value)' retrieves the value of a global option.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GxB_HYPER_SWITCH'     & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH'    & \verb'double [8]' & bitmap control \\
\verb'GxB_FORMAT'           & \verb'int'    & \verb'GxB_BY_ROW' or \verb'GxB_BY_COL' \\
\verb'GxB_GLOBAL_NTHREADS'  & \verb'int'    & number of threads to use \\
\verb'GxB_NTHREADS'         & \verb'int'    & number of threads to use \\
\verb'GxB_GLOBAL_CHUNK'     & \verb'double' & chunk size \\
\verb'GxB_CHUNK'            & \verb'double' & chunk size \\
\verb'GxB_BURBLE'           & \verb'int'    & diagnostic output \\
\verb'GxB_PRINTF'           & see below     & diagnostic output \\
\verb'GxB_FLUSH'            & see below     & diagnostic output \\
\verb'GxB_MEMORY_POOL'      & \verb'int64_t [64]' & memory pool control \\
\verb'GxB_PRINT_1BASED'     & \verb'int'    & for printing matrices/vectors \\
\verb'GxB_MODE'                 & \verb'int'    & blocking/non-blocking \\
\verb'GxB_LIBRARY_NAME'         & \verb'char *' & name of library \\
\verb'GxB_LIBRARY_VERSION'      & \verb'int [3]' & library version \\
\verb'GxB_LIBRARY_DATE'         & \verb'char *' & release date \\
\verb'GxB_LIBRARY_ABOUT'        & \verb'char *' & about the library \\
\verb'GxB_LIBRARY_LICENSE'      & \verb'char *' & license \\
\verb'GxB_LIBRARY_COMPILE_DATE' & \verb'char *' & date of compilation \\
\verb'GxB_LIBRARY_COMPILE_TIME' & \verb'char *' & time of compilation \\
\verb'GxB_LIBRARY_OPENMP'       & \verb'bool'   & true if compiled with OpenMP\\
\verb'GxB_LIBRARY_URL'          & \verb'char *' & url of library \\
\verb'GxB_API_VERSION'          & \verb'int [3]' & C API version \\
\verb'GxB_API_DATE'             & \verb'char *' & C API date \\
\verb'GxB_API_ABOUT'            & \verb'char *' & about the C API \\
\verb'GxB_API_URL'              & \verb'char *' & \verb'http://graphblas.org' \\
\verb'GxB_COMPILER_NAME'        & \verb'char *' & C compiler name \\
\verb'GxB_COMPILER_VERSION'     & \verb'int [3]' & C compiler version \\
\hline
\end{tabular}
}

\item \verb'GxB_get (GrB_Matrix A, field, &value)' retrieves the current
    value of an option from a particular matrix \verb'A'.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GxB_HYPER_SWITCH'     & \verb'double' & hypersparsity control (0 to 1) \\
\verb'GxB_BITMAP_SWITCH'    & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_FORMAT'           & \verb'int'    & \verb'GxB_BY_ROW'
                                              or \verb'GxB_BY_COL' \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int'    & 0 to 15 \\
\verb'GxB_SPARSITY_STATUS'  & \verb'int'    & 1, 2, 4, or 8 \\
\hline
\end{tabular}
}

\item \verb'GxB_get (GrB_Vector A, field, &value)' retrieves the current
    value of an option from a particular vector \verb'v'.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GxB_BITMAP_SWITCH'    & \verb'double' & bitmap control (0 to 1) \\
\verb'GxB_FORMAT'           & \verb'int'    & \verb'GxB_BY_ROW'
                                              or \verb'GxB_BY_COL' \\
\verb'GxB_SPARSITY_CONTROL' & \verb'int'    & 0 to 15 \\
\verb'GxB_SPARSITY_STATUS'  & \verb'int'    & 1, 2, 4, or 8 \\
\hline
\end{tabular}
}

\item \verb'GxB_get (GrB_Descriptor desc, field, &value)' retrieves the value
    of a field in a descriptor.

{\footnotesize
\begin{tabular}{lll}
field                       & value         & description \\
\hline
\verb'GrB_OUTP'     & \verb'GrB_Desc_Value' & replace option \\
\verb'GrB_MASK'     & \verb'GrB_Desc_Value' & mask option \\
\verb'GrB_INP0'     & \verb'GrB_Desc_Value' & transpose input 0 \\
\verb'GrB_INP1'     & \verb'GrB_Desc_Value' & transpose input 1 \\
\verb'GxB_DESCRIPTOR_NTHREADS'  & \verb'int' & number of threads to use \\
\verb'GxB_NTHREADS'             & \verb'int' & number of threads to use \\
\verb'GxB_DESCRIPTOR_CHUNK'     & \verb'double' & chunk size \\
\verb'GxB_CHUNK'                & \verb'double' & chunk size \\
\verb'GxB_AxB_METHOD'           & \verb'int' & method for matrix multiply \\
\verb'GxB_SORT'                 & \verb'int' & lazy vs aggressive sort \\
\verb'GxB_COMPRESSION'          & \verb'int' & compression for serialization \\
\verb'GxB_IMPORT'    & \verb'GrB_Desc_Value' & trust data on import/pack \\
\hline
\end{tabular}
}

\end{itemize}

%-------------------------------------------------------------------------------
\subsection{OpenMP parallelism}
%-------------------------------------------------------------------------------
\label{omp_parallelism}

SuiteSparse:GraphBLAS is a parallel library, based on OpenMP.  By
default, all GraphBLAS operations will use up to the maximum number of threads
specified by the \verb'omp_get_max_threads' OpenMP function.  For small
problems, GraphBLAS may choose to use fewer threads, using two parameters: the
maximum number of threads to use (which may differ from the
\verb'omp_get_max_threads' value), and a parameter called the \verb'chunk'.
Suppose \verb'work' is a measure of the work an operation needs to perform (say
the number of entries in the two input matrices for \verb'GrB_eWiseAdd').  No
more than \verb'floor(work/chunk)' threads will be used (or one thread if the
ratio is less than 1).

The default \verb'chunk' value is 65,536, but this may change in future versions,
or it may be modified when GraphBLAS is installed on a particular machine.

Both parameters can be set in two ways:

\begin{itemize}

\item Globally:  If the following methods are used, then all subsequent
GraphBLAS operations will use these settings.  Note the typecast,
\verb'(double)' \verb'chunk'.  This is necessary if a literal constant such as
\verb'20000' is passed as this argument.  The type of the constant must be
\verb'double'.

    {\footnotesize
    \begin{verbatim}
    int nthreads_max = 40 ;
    GxB_set (GxB_NTHREADS, nthreads_max) ;
    GxB_set (GxB_CHUNK, (double) 20000) ; \end{verbatim} }

\item Per operation:  Most GraphBLAS operations take a \verb'GrB_Descriptor'
input, and this can be modified to set the number of threads and chunk
size for the operation that uses this descriptor.  Note that \verb'chunk'
is a \verb'double'.

    {\footnotesize
    \begin{verbatim}
    GrB_Descriptor desc ;
    GrB_Descriptor_new (&desc)
    int nthreads_max = 40 ;
    GxB_set (desc, GxB_NTHREADS, nthreads_max) ;
    double chunk = 20000 ;
    GxB_set (desc, GxB_CHUNK, chunk) ; \end{verbatim} }

\end{itemize}

The smaller of \verb'nthreads_max' and \verb'floor(work/chunk)' is used for any
given GraphBLAS operation, except that a single thread is used if this value is
zero or less.

If either parameter is set to \verb'GxB_DEFAULT', then default values are used.
The default for \verb'nthreads_max' is the return value from
\verb'omp_get_max_threads', and the default chunk size is currently 65,536.

If a descriptor value for either parameter is left at its default, or set to
\verb'GxB_DEFAULT', then the global setting is used.  This global setting may
have been modified from its default, and this modified value will be used.

For example, suppose \verb'omp_get_max_threads' reports 8 threads.  If \newline
\verb'GxB_set (GxB_NTHREADS, 4)' is used, then the global setting is four
threads, not eight.  If a descriptor is used but its \verb'GxB_NTHREADS' is not
set, or set to \verb'GxB_DEFAULT', then any operation that uses this descriptor
will use 4 threads.

GraphBLAS may be compiled without OpenMP, by setting \verb'-DNOPENMP=1'.
The library will be thread-safe, with one exception.  \verb'GrB_wait' is
intended to provide thread-safety by flushing the cache of one user thread
so the object can be safely read by another thread.  This is accomplished
with \verb'pragma omp flush', but if OpenMP is not available, this does
nothing.  If OpenMP is not available or \verb'-DNOPEMP=1' is used, then
user applications need to ensure their own thread safety when one user thread
computes a result that is then read by another thread.

You can query GraphBLAS at run time to ask if it was compiled with OpenMP:

\begin{verbatim}
    bool have_openmp ;
    GxB_get (GxB_LIBRARY_OPENMP, &have_openmp) ;
    if (!have_openmp) printf ("GraphBLAS not compiled with OpenMP\n") :
\end{verbatim}

Compiling GraphBLAS without OpenMP is not recommended for installation in a
package manager (Linux, conda-forge, spack, brew, vcpkg, etc).

%-------------------------------------------------------------------------------
\subsection{Storing a matrix by row or by column}
%-------------------------------------------------------------------------------

The GraphBLAS \verb'GrB_Matrix' is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored.  However,
choices made in how the matrix is represented in a particular implementation,
such as SuiteSparse:GraphBLAS, can have a large impact on performance.

Many graph algorithms are just as fast in any format, but some algorithms are
much faster in one format or the other.  For example, suppose the user
application stores a directed graph as a matrix \verb'A', with the edge $(i,j)$
represented as the value \verb'A(i,j)', and the application makes many accesses
to the $i$th row of the matrix, with \verb'GrB_Col_extract'
\verb'(w,...,A,GrB_ALL,...,i,desc)' with the transposed descriptor
(\verb'GrB_INP0' set to \verb'GrB_TRAN').  If the matrix is stored by column
this can be extremely slow, just like the expression \verb'w=A(i,:)' in MATLAB,
where \verb'i' is a scalar.  Since this is a typical use-case in graph
algorithms, the default format in SuiteSparse:GraphBLAS is to store its
matrices by row, in Compressed Sparse Row format (CSR).

MATLAB stores its sparse matrices by column, in ``non-hypersparse'' format, in
what is called the Compressed Sparse Column format, or CSC for short.  An
\verb'm'-by-\verb'n' matrix in MATLAB is represented as a set of \verb'n'
column vectors, each with a sorted list of row indices and values of the
nonzero entries in that column.  As a result, \verb'w=A(:,j)' is very fast in
MATLAB, since the result is already held in the data structure a single list,
the $j$th column vector.  However, \verb'w=A(i,:)' is very slow in MATLAB,
since every column in the matrix has to be searched to see if it contains row
\verb'i'.  In MATLAB, if many such accesses are made, it is much better to
transpose the matrix (say \verb"AT=A'") and then use \verb"w=AT(:,i)" instead.
This can have a dramatic impact on the performance of MATLAB.

Likewise, if \verb'u' is a very sparse column vector and \verb'A' is stored by
column, then \verb"w=u'*A" (via \verb'GrB_vxm') is slower than \verb'w=A*u'
(via \verb'GrB_mxv').  The opposite is true if the matrix is stored by row.

SuiteSparse:GraphBLAS stores its matrices by row, by default (with one
exception described below).  However, it can also be instructed to store any
selected matrices, or all matrices, by column instead (just like MATLAB), so
that \verb'w=A(:,j)' (via \verb'GrB_Col_extract') is very fast.  The change in
data format has no effect on the result, just the time and memory usage.  To
use a column-oriented format by default, the following can be done in a user
application that tends to access its matrices by column.

    {\footnotesize
    \begin{verbatim}
    GrB_init (...) ;
    // just after GrB_init: do the following:
    #ifdef GxB_SUITESPARSE_GRAPHBLAS
    GxB_set (GxB_FORMAT, GxB_BY_COL) ;
    #endif \end{verbatim} }

If this is done, and no other \verb'GxB_set' calls are made with
\verb'GxB_FORMAT', all matrices will be stored by column.
The default format is \verb'GxB_BY_ROW'.

All vectors (\verb'GrB_Vector') are held by column, and this cannot be changed.

By default, matrices of size \verb'm-by-1' are held by column, regardless of
the global setting described above.  Matrices of size \verb'1-by-n' with
\verb'n' not equal to 1 are held by row, regardless of the global setting.
The global setting only affects matrices with both \verb'm > 1' and \verb'n > 1'.
Empty matrices (\verb'0-by-0') are also controlled by the global setting.

After creating a matrix with \verb'GrB_Matrix_new (&A, ...)',
its format can be changed arbitrarily with \verb'GxB_set (A, GxB_FORMAT, ...)'.
So even an \verb'm-by-1' matrix can then be changed to be held by row, for
example.  Likewise, once a \verb'1-by-n' matrix is created, it can be converted
to column-oriented format.

%-------------------------------------------------------------------------------
\subsection{Hypersparse matrices}
\label{hypersparse}
%-------------------------------------------------------------------------------

MATLAB can store an \verb'm'-by-\verb'n' matrix with a very large value of
\verb'm', since a CSC data structure takes $O(n+|{\bf A}|)$ memory, independent
of \verb'm', where $|{\bf A}|$ is the number of nonzeros in the matrix.  It
cannot store a matrix with a huge \verb'n', and this structure is also
inefficient when $|{\bf A}|$ is much smaller than \verb'n'.  In contrast,
SuiteSparse:GraphBLAS can store its matrices in {\em hypersparse} format,
taking only $O(|{\bf A}|)$ memory, independent of how it is stored (by row or
by column) and independent of both \verb'm' and \verb'n'
\cite{BulucGilbert08,BulucGilbert12}.

In both the CSR and CSC formats, the matrix is held as a set of sparse vectors.
In non-hypersparse format, the set of sparse vectors is itself dense; all
vectors are present, even if they are empty.  For example, an
\verb'm'-by-\verb'n' matrix in non-hypersparse CSC format contains \verb'n'
sparse vectors.  Each column vector takes at least one integer to represent,
even for a column with no entries.  This allows for quick lookup for a
particular vector, but the memory required is $O(n+|{\bf A}|)$.  With a
hypersparse CSC format, the set of vectors itself is sparse, and columns with
no entries take no memory at all.  The drawback of the hypersparse format is
that finding an arbitrary column vector \verb'j', such as for the computation
\verb'C=A(:,j)', takes $O(\log k)$ time if there $k \le n$ vectors in the data
structure.  One advantage of the hypersparse structure is the memory required
for an \verb'm'-by-\verb'n' hypersparse CSC matrix is only $O(|{\bf A}|)$,
independent of \verb'm' and \verb'n'.  Algorithms that must visit all non-empty
columns of a matrix are much faster when working with hypersparse matrices,
since empty columns can be skipped.

The \verb'hyper_switch' parameter controls the hypersparsity of the internal
data structure for a matrix.  The parameter is typically in the range 0 to 1.
The default is \verb'hyper_switch' = \verb'GxB_HYPER_DEFAULT', which is an
\verb'extern' \verb'const' \verb'double' value, currently set to 0.0625, or
1/16.  This default ratio may change in the future.

The \verb'hyper_switch' determines how the matrix is converted between the
hypersparse and non-hypersparse formats.  Let $n$ be the number of columns of a
CSC matrix, or the number of rows of a CSR matrix.  The matrix can have at most
$n$ non-empty vectors.

Let $k$ be the actual number of non-empty vectors.  That is, for the CSC
format, $k \le n$ is the number of columns that have at least one entry.  Let
$h$ be the value of \verb'hyper_switch'.

If a matrix is currently hypersparse, it can be converted to non-hypersparse if
the either condition $n \le 1$ or $k > 2nh$ holds, or both.  Otherwise, it
stays hypersparse.  Note that if $n \le 1$ the matrix is always stored as
non-hypersparse.

If currently non-hypersparse, it can be converted to hypersparse if
both conditions $n > 1$ and $k \le nh$ hold.  Otherwise, it stays
non-hypersparse.  Note that if $n \le 1$ the matrix always remains
non-hypersparse.

The default value of \verb'hyper_switch' is assigned at startup by
\verb'GrB_init', and can then be modified globally with \verb'GxB_set'.  All
new matrices are created with the same \verb'hyper_switch', determined by the
global value.  Once a particular matrix \verb'A' has been constructed, its
hypersparsity ratio can be modified from the default with:

    {\footnotesize
    \begin{verbatim}
    double hyper_switch = 0.2 ;
    GxB_set (A, GxB_HYPER_SWITCH, hyper_switch) ; \end{verbatim}}

To force a matrix to always be non-hypersparse, use \verb'hyper_switch' equal to
\verb'GxB_NEVER_HYPER'.  To force a matrix to always stay hypersparse, set
\verb'hyper_switch' to \verb'GxB_ALWAYS_HYPER'.

A \verb'GrB_Matrix' can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC.  All \verb'GrB_Vector' objects are always stored
in non-hypersparse CSC format.

A new matrix created via \verb'GrB_Matrix_new' starts with $k=0$ and is created
in hypersparse form by default unless $n \le 1$ or if $h<0$, where $h$ is the
global \verb'hyper_switch' value.  The matrix is created in either
\verb'GxB_BY_ROW' or \verb'GxB_BY_COL' format, as determined by the last call
to \verb'GxB_set(GxB_FORMAT,...)' or \verb'GrB_init'.

A new matrix \verb'C' created via \verb'GrB_dup (&C,A)' inherits the CSR/CSC
format, hypersparsity format, and \verb'hyper_switch' from \verb'A'.

%-------------------------------------------------------------------------------
\subsection{Bitmap matrices}
\label{bitmap_switch}
%-------------------------------------------------------------------------------

By default, SuiteSparse:GraphBLAS switches between all four formats
(hypersparse, sparse, bitmap, and full) automatically.  Let $d = |{\bf A}|/mn$
for an $m$-by-$n$ matrix $\bf A$ with $|{\bf A}|$ entries.  If the matrix is
currently in sparse or hypersparse format, and is modified so that $d$ exceeds
a given threshold, it is converted into bitmap format.  The default threshold
is controlled by the \verb'GxB_BITMAP_SWITCH' setting, which can be set
globally, or for a particular matrix or vector.

The default value of the switch to bitmap format depends on $\min(m,n)$, for a
matrix of size $m$-by-$n$.  For the global setting, the bitmap switch is a
\verb'double' array of size \verb'GxB_NBITMAP_SWITCH'.  The defaults are given
below:

\vspace{0.2in}
{\small
\begin{tabular}{lll}
parameter & default & matrix sizes \\
\hline
\verb'bitmap_switch [0]' & 0.04 & $\min(m,n) = 1$ (and all vectors) \\
\verb'bitmap_switch [1]' & 0.05 & $\min(m,n) = 2$ \\
\verb'bitmap_switch [2]' & 0.06 & $\min(m,n) = 3$ to 4 \\
\verb'bitmap_switch [3]' & 0.08 & $\min(m,n) = 5$ to 8 \\
\verb'bitmap_switch [4]' & 0.10 & $\min(m,n) = 9$ to 16\\
\verb'bitmap_switch [5]' & 0.20 & $\min(m,n) = 17$ to 32\\
\verb'bitmap_switch [6]' & 0.30 & $\min(m,n) = 33$ to 64 \\
\verb'bitmap_switch [7]' & 0.40 & $\min(m,n) > 64$ \\
\end{tabular}
}
\vspace{0.2in}

That is, by default a \verb'GrB_Vector' is held in bitmap format if its density
exceeds 4\%.  To change the global settings, do the following:

{\footnotesize
\begin{verbatim}
    double bswitch [GxB_NBITMAP_SWITCH] = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 } ;
    GxB_set (GxB_BITMAP_SWITCH, bswitch) ;
\end{verbatim}
}

If the matrix is currently in bitmap format, it is converted to full if all
entries are present, or to sparse/hypersparse if $d$ drops below $b/2$, if its
bitmap switch is $b$.  A matrix or vector with $d$ between $b/2$ and $b$
remains in its current format.

%-------------------------------------------------------------------------------
\subsection{Parameter types}
%-------------------------------------------------------------------------------
The \verb'GxB_Option_Field' enumerated type gives the type of the \verb'field'
parameter for the second argument of \verb'GxB_set' and \verb'GxB_get',
for setting global options or matrix options.

{\footnotesize
\begin{verbatim}
typedef enum
{
    // for matrix/vector get/set and global get/set:
    GxB_HYPER_SWITCH = 0,    // defines switch to hypersparse (double value)
    GxB_BITMAP_SWITCH = 34,  // defines switch to hypersparse (double value)
    GxB_FORMAT = 1,     // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL
    GxB_SPARSITY_CONTROL = 32,  // control the sparsity of a matrix or vector

    // for global get/set only:
    GxB_GLOBAL_NTHREADS = GxB_NTHREADS, // max number of threads to use
    GxB_GLOBAL_CHUNK = GxB_CHUNK,       // chunk size for small problems
    GxB_BURBLE = 99,                    // diagnositic output
    GxB_PRINTF = 101,               // printf function for diagnostic output
    GxB_FLUSH = 102,                // flush function for diagnostic output
    GxB_MEMORY_POOL = 103,  // memory pool control
    GxB_PRINT_1BASED = 104, // print matrices as 0-based or 1-based

    // for matrix/vector get only:
    GxB_SPARSITY_STATUS = 33,   // query the sparsity of a matrix or vector

    // for global get only:
    GxB_MODE = 2,       // mode passed to GrB_init (blocking or non-blocking)
    GxB_LIBRARY_NAME = 8,           // name of the library (char *)
    GxB_LIBRARY_VERSION = 9,        // library version (3 int's)
    GxB_LIBRARY_DATE = 10,          // date of the library (char *)
    GxB_LIBRARY_ABOUT = 11,         // about the library (char *)
    GxB_LIBRARY_URL = 12,           // URL for the library (char *)
    GxB_LIBRARY_LICENSE = 13,       // license of the library (char *)
    GxB_LIBRARY_COMPILE_DATE = 14,  // date library was compiled (char *)
    GxB_LIBRARY_COMPILE_TIME = 15,  // time library was compiled (char *)
    GxB_LIBRARY_OPENMP = 25,        // library compiled with OpenMP
    GxB_API_VERSION = 16,           // API version (3 int's)
    GxB_API_DATE = 17,              // date of the API (char *)
    GxB_API_ABOUT = 18,             // about the API (char *)
    GxB_API_URL = 19,               // URL for the API (char *)
}
GxB_Option_Field ;
\end{verbatim} }

The \verb'GxB_FORMAT' field can be by row or by column, set to a value
with the type \verb'GxB_Format_Value':

{\footnotesize
\begin{verbatim}
typedef enum
{
    GxB_BY_ROW = 0,     // CSR: compressed sparse row format
    GxB_BY_COL = 1      // CSC: compressed sparse column format
}
GxB_Format_Value ;
\end{verbatim} }

The default format is given by the predefined value \verb'GxB_FORMAT_DEFAULT',
which is equal to \verb'GxB_BY_ROW'.
The default hypersparsity
ratio is 0.0625 (1/16), but this value may change in the future.

Setting the \verb'GxB_HYPER_SWITCH' field to \verb'GxB_ALWAYS_HYPER' ensures a matrix
always stays hypersparse.  If set to \verb'GxB_NEVER_HYPER', it always stays
non-hypersparse.  At startup, \verb'GrB_init' defines the following initial
settings:

{\footnotesize
\begin{verbatim}
    GxB_set (GxB_HYPER_SWITCH, GxB_HYPER_DEFAULT) ;
    GxB_set (GxB_FORMAT, GxB_BY_ROW) ;
\end{verbatim} }

That is, by default, all new matrices are held by row in CSR format (except
for \verb'n-by-1' matrices; see \verb'GrB_Matrix_new').
If a matrix has fewer than $n/16$
columns, it can be converted to hypersparse format.  If it has more than $n/8$
columns, it can be converted to non-hypersparse format.  These options can be
changed for all future matrices with \verb'GxB_set'.  For example, to change
all future matrices to be in non-hypersparse CSC when created, use:

{\footnotesize
\begin{verbatim}
    GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
    GxB_set (GxB_FORMAT, GxB_BY_COL) ;
\end{verbatim} }

Then if a particular matrix needs a different format, then (as an example):

{\footnotesize
\begin{verbatim}
    GxB_set (A, GxB_HYPER_SWITCH, 0.1) ;
    GxB_set (A, GxB_FORMAT, GxB_BY_ROW) ;
\end{verbatim} }

This changes the matrix \verb'A' so that it is stored by row, and it is
converted from non-hypersparse to hypersparse format if it has fewer than 10\%
non-empty columns.  If it is hypersparse, it is a candidate for conversion to
non-hypersparse if has 20\% or more non-empty columns.  If it has between 10\%
and 20\% non-empty columns, it remains in its current format.
MATLAB only supports a non-hypersparse CSC format.  The format in
SuiteSparse:GraphBLAS that is equivalent to the MATLAB format is:

{\footnotesize
\begin{verbatim}
    GrB_init (...) ;
    GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
    GxB_set (GxB_FORMAT, GxB_BY_COL) ;
    // no subsequent use of GxB_HYPER_SWITCH or GxB_FORMAT
\end{verbatim} }

The \verb'GxB_HYPER_SWITCH' and \verb'GxB_FORMAT' options should be considered as
suggestions from the user application as to how SuiteSparse:GraphBLAS can
obtain the best performance for a particular application.
SuiteSparse:GraphBLAS is free to ignore any of these suggestions, both now and
in the future, and the available options and formats may be augmented in the
future.  Any prior options no longer needed in future versions of
SuiteSparse:GraphBLAS will be silently ignored, so the use these options is
safe for future updates.

The sparsity status of a matrix can be queried with the following, which
returns a value of \verb'GxB_HYPERSPARSE' \verb'GxB_SPARSE' \verb'GxB_BITMAP'
or \verb'GxB_FULL'.

{\footnotesize
\begin{verbatim}
    int sparsity ;
    GxB_get (A, GxB_SPARSITY_STATUS, &sparsity) ; \end{verbatim}}

The sparsity format of a matrix can be controlled with \verb'GxB_set', which
can be any mix (a sum or bitwise or) of \verb'GxB_HYPERSPARSE'
\verb'GxB_SPARSE' \verb'GxB_BITMAP', and \verb'GxB_FULL'.  By default, a matrix
or vector can be held in any format, with the default setting
\verb'GxB_AUTO_SPARSITY', which is equal to \verb'GxB_HYPERSPARSE' +
\verb'GxB_SPARSE' + \verb'GxB_BITMAP' + \verb'GxB_FULL'.  To enable a matrix to
take on just \verb'GxB_SPARSE' or \verb'GxB_FULL' formats, but not
\verb'GxB_HYPERSPARSE' or \verb'GxB_BITMAP', for example, use the following:

{\footnotesize
\begin{verbatim}
    GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_FULL) ; \end{verbatim}}

In this case, SuiteSparse:GraphBLAS will hold the matrix in sparse format
(\verb'CSC' or \verb'CSC', depending on its \verb'GxB_FORMAT'), unless all
entries are present, in which case it will be converted to full format.

Only the least 4 bits of the sparsity control are considered, so the
formats can be bitwise negated.  For example, to allow for any format
except full:

{\footnotesize
\begin{verbatim}
    GxB_set (A, GxB_SPARSITY_CONTROL, ~GxB_FULL) ; \end{verbatim}}

%-------------------------------------------------------------------------------
\subsection{{\sf GxB\_BURBLE}, {\sf GxB\_PRINTF}, {\sf GxB\_FLUSH}: diagnostics}
%-------------------------------------------------------------------------------

\verb'GxB_set (GxB_BURBLE, ...)' controls the burble setting.  It can also be
controlled via \verb'GrB.burble(b)' in the MATLAB/Octave interface.

{\footnotesize
\begin{verbatim}
     GxB_set (GxB_BURBLE, true) ;   // enable burble
     GxB_set (GxB_BURBLE, false) ;  // disable burble \end{verbatim}}

If enabled, SuiteSparse:GraphBLAS reports which internal kernels it uses, and
how much time is spent.  If you see the word \verb'generic', it means that
SuiteSparse:GraphBLAS was unable to use is faster kernels in
\verb'Source/Generated2', but used a generic kernel that relies on function
pointers.  This is done for user-defined types and operators, and when
typecasting is performed, and it is typically slower than the kernels in
\verb'Source/Generated2'.

If you see a lot of \verb'wait' statements, it may mean that a lot of time is
spent finishing a matrix or vector.  This may be the result of an inefficient
use of the \verb'setElement' and \verb'assign' methods.  If this occurs you
might try changing the sparsity format of a vector or matrix to
\verb'GxB_BITMAP', assuming there's enough space for it.

\verb'GxB_set (GxB_PRINTF, printf)' allows the user application to change the
function used to print diagnostic output.  This also controls the output of the
\verb'GxB_*print' functions.  By default this parameter is \verb'NULL', in
which case the ANSI C11 \verb'printf' function is used.  The parameter is a
function pointer with the same signature as the ANSI C11 \verb'printf'
function.  The MATLAB/Octave interface to GraphBLAS uses the following so that
GraphBLAS can print to the MATLAB/Octave Command Window:

{\footnotesize
\begin{verbatim}
    GxB_set (GxB_PRINTF, mexPrintf) \end{verbatim}}

After each call to the \verb'printf' function, an optional
\verb'flush' function is called, which is \verb'NULL' by default.  If
\verb'NULL', the function is not used.  This can be changed with
\verb'GxB_set (GxB_FLUSH, flush)'.  The \verb'flush' function takes no
arguments, and returns an \verb'int' which is 0 if successful, or any nonzero
value on failure (the same output as the ANSI C11 \verb'fflush' function,
except that \verb'flush' has no inputs).

%-------------------------------------------------------------------------------
\subsection{Other global options}
%-------------------------------------------------------------------------------

\verb'GxB_MODE' can only be
queried by \verb'GxB_get'; it cannot be modified by \verb'GxB_set'.  The mode
is the value passed to \verb'GrB_init' (blocking or non-blocking).

All threads in the same user application share the same global options,
including hypersparsity, bitmap options, and CSR/CSC format determined by
\verb'GxB_set', and the blocking mode determined by \verb'GrB_init'.
Specific format and hypersparsity parameters of each matrix are specific to
that matrix and can be independently changed.

The \verb'GxB_LIBRARY_*' options can be used with \verb'GxB_get' to query the
current implementation.  For all of these, \verb'GxB_get' returns a string
(\verb'char *'), except for \verb'GxB_LIBRARY_VERSION', which takes as input an
\verb'int' array of size three.  The \verb'GxB_API_*' options can be used with
\verb'GxB_get' to query the current GraphBLAS C API Specification.  For all of
these, \verb'GxB_get' returns a string (\verb'char *'), except for
\verb'GxB_API_VERSION', which takes as input an \verb'int' array of size three.  

%===============================================================================
\subsection{{\sf GxB\_Global\_Option\_set:} set a global option}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set                    // set a global default option
(
    const GxB_Option_Field field,   // option to change
    ...                             // value to change it to
) ;
\end{verbatim} } \end{mdframed}

This usage of \verb'GxB_set' sets the value of a global option.
The \verb'field' parameter can be
\verb'GxB_HYPER_SWITCH',
\verb'GxB_BITMAP_SWITCH',
\verb'GxB_FORMAT',
\verb'GxB_NTHREADS',
\verb'GxB_CHUNK',
\verb'GxB_BURBLE',
\verb'GxB_PRINTF',
\verb'GxB_FLUSH',
\verb'GxB_MEMORY_POOL',
or
\verb'GxB_PRINT_1BASED'.

For example, the following usage sets the global hypersparsity ratio to 0.2,
the format of future matrices to \verb'GxB_BY_COL', the maximum number
of threads to 4, the chunk size to 10000, and enables the burble.
No existing matrices are changed.

{\footnotesize
\begin{verbatim}
    GxB_set (GxB_HYPER_SWITCH, 0.2) ;
    GxB_set (GxB_FORMAT, GxB_BY_COL) ;
    GxB_set (GxB_NTHREADS, 4) ;
    GxB_set (GxB_CHUNK, (double) 10000) ;
    GxB_set (GxB_BURBLE, true) ;
    GxB_set (GxB_PRINTF, mexPrintf) ;
\end{verbatim} }

The memory pool parameter sets an upper bound on the number of freed blocks of
memory that SuiteSparse:GraphBLAS keeps in its internal memory pool for future
allocations.   \verb'free_pool_limit'  is an \verb'int64_t' array of size 64,
and \verb'free_pool_limit [k]' is the upper bound on the number of blocks
of size $2^k$ that are kept in the pool.  Passing in a \verb'NULL' pointer
sets the defaults.  Passing in an array of size 64 whose entries are all zero
disables the memory pool entirely.

%===============================================================================
\subsection{{\sf GxB\_Matrix\_Option\_set:} set a matrix option}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set                    // set an option in a matrix
(
    GrB_Matrix A,                   // matrix to modify
    const GxB_Option_Field field,   // option to change
    ...                             // value to change it to
) ;
\end{verbatim} } \end{mdframed}

This usage of \verb'GxB_set' sets the value of a matrix option, for a
particular matrix.
The \verb'field' parameter can be
\verb'GxB_HYPER_SWITCH',
\verb'GxB_BITMAP_SWITCH',
\verb'GxB_SPARSITY_CONTROL', or
\verb'GxB_FORMAT'.

For example, the following usage sets the hypersparsity ratio to 0.2, and the
format of \verb'GxB_BY_COL', for a particular matrix \verb'A', and sets the
sparsity control to \verb'GxB_SPARSE+GxB_FULL' (allowing the matrix to be held
in CSC or FullC formats, but not BitmapC or HyperCSC).  SuiteSparse:GraphBLAS
currently applies these changes immediately, but since they are simply hints,
future versions of SuiteSparse:GraphBLAS may delay the change in format if it
can obtain better performance.

If the setting is just \verb'GxB_FULL' and some entries are missing, then
the matrix is held in bitmap format.

{\footnotesize
\begin{verbatim}
    GxB_set (A, GxB_HYPER_SWITCH, 0.2) ;
    GxB_set (A, GxB_FORMAT, GxB_BY_COL) ;
    GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_FULL) ;
\end{verbatim} }

For performance, the matrix option should be set as soon as it is created with
\verb'GrB_Matrix_new', so the internal transformation takes less time.

If an error occurs, \verb'GrB_error(&err,A)' returns details about the error.

%===============================================================================
\subsection{{\sf GxB\_Desc\_set:} set a {\sf GrB\_Descriptor} value}
%===============================================================================
\label{gxbset}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set                // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    const GrB_Desc_Field field, // parameter to change
    ...                         // value to change it to
) ;
\end{verbatim} } \end{mdframed}

This usage is similar to \verb'GrB_Descriptor_set', just with a name that is
consistent with the other usages of this generic function.  Unlike
\verb'GrB_Descriptor_set', the \verb'field' may also be \verb'GxB_NTHREADS',
\verb'GxB_CHUNK', \verb'GxB_SORT', \verb'GxB_COMPRESSION', or
\verb'GxB_IMPORT'.  Refer to Sections~\ref{descriptor_set}~and~\ref{desc_set}
for details.  If an error occurs, \verb'GrB_error(&err,desc)' returns details
about the error.

\newpage
%===============================================================================
\subsection{{\sf GxB\_Global\_Option\_get:} retrieve a global option}
%===============================================================================
\label{gxbget}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get                    // gets the current global default option
(
    const GxB_Option_Field field,   // option to query
    ...                             // return value of the global option
) ;
\end{verbatim} } \end{mdframed}

This usage of \verb'GxB_get' retrieves the value of a global option.  The
\verb'field' parameter can be one of the following:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
        \hline
        \verb'GxB_HYPER_SWITCH'         & sparse/hyper setting \\
        \verb'GxB_BITMAP_SWITCH'        & bitmap/sparse setting \\
        \verb'GxB_FORMAT'               & by row/col setting \\
        \verb'GxB_MODE'                 & blocking / non-blocking \\
        \verb'GxB_NTHREADS'             & default number of threads \\
        \verb'GxB_CHUNK'                & default chunk size \\
        \verb'GxB_BURBLE'       & burble setting \\
        \verb'GxB_PRINTF'       & printf function \\
        \verb'GxB_FLUSH'        & flush function \\
        \verb'GxB_MEMORY_POOL'  & memory pool control \\
        \verb'GxB_PRINT_1BASED' & for printing matrices/vectors \\
        \hline
        \verb'GxB_LIBRARY_NAME'         & the string
                                        \verb'"SuiteSparse:GraphBLAS"' \\
        \verb'GxB_LIBRARY_VERSION'      & \verb'int' array of size 3 \\
        \verb'GxB_LIBRARY_DATE'         & date of release \\
        \verb'GxB_LIBRARY_ABOUT'        & author, copyright \\
        \verb'GxB_LIBRARY_LICENSE'      & license for the library \\
        \verb'GxB_LIBRARY_COMPILE_DATE' & date of compilation \\
        \verb'GxB_LIBRARY_COMPILE_TIME' & time of compilation \\
        \verb'GxB_LIBRARY_OPENMP'       & library compiled with OpenMP\\
        \verb'GxB_LIBRARY_URL'          & URL of the library \\
        \hline
        \verb'GxB_API_VERSION'  & GraphBLAS C API Specification Version \\
        \verb'GxB_API_DATE'     & date of the C API Spec.  \\
        \verb'GxB_API_ABOUT'    & about of the C API Spec. \\
        \verb'GxB_API_URL'      & URL of the specification \\
        \hline
\end{tabular}
}
\vspace{0.2in}

For example:

{\footnotesize
\begin{verbatim}
    double h ;
    GxB_get (GxB_HYPER_SWITCH, &h) ;
    printf ("hyper_switch = %g for all new matrices\n", h) ;

    double b [GxB_BITMAP_SWITCH] ;
    GxB_get (GxB_BITMAP_SWITCH, b) ;
    for (int k = 0 ; k < GxB_NBITMAP_SWITCH ; k++)
    {
        printf ("bitmap_switch [%d] = %g ", k, b [k]) ;
        if (k == 0)
        {
            printf ("for vectors and matrices with 1 row or column\n") ;
        }
        else if (k == GxB_NBITMAP_SWITCH - 1) 
        {
            printf ("for matrices with min dimension > %d\n", 1 << (k-1)) ;
        }
        else
        {
            printf ("for matrices with min dimension %d to %d\n",
                (1 << (k-1)) + 1, 1 << k) ;
        }
    }

    GxB_Format_Value s ;
    GxB_get (GxB_FORMAT, &s) ;
    if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") ;
    else printf ("all new matrices are stored by row\n") ;

    GrB_mode mode ;
    GxB_get (GxB_MODE, &mode) ;
    if (mode == GrB_BLOCKING) printf ("GrB_init(GrB_BLOCKING) was called.\n") ;
    else printf ("GrB_init(GrB_NONBLOCKING) was called.\n") ;

    int nthreads_max ;
    GxB_get (GxB_NTHREADS, &nthreads_max) ;
    printf ("max # of threads to use: %d\n", nthreads_max) ;

    double chunk ;
    GxB_get (GxB_CHUNK, &chunk) ;
    printf ("chunk size: %g\n", chunk) ;

    int64_t free_pool_limit [64] ;
    GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;
    for (int k = 0 ; k < 64 ; k++)
        printf ("pool %d: limit %ld\n", free_pool_limit [k]) ;

    char *name ;
    int ver [3] ;
    GxB_get (GxB_LIBRARY_NAME, &name) ;
    GxB_get (GxB_LIBRARY_VERSION, ver) ;
    printf ("Library %s, version %d.%d.%d\n", name, ver [0], ver [1], ver [2]) ; \end{verbatim} }

%===============================================================================
\subsection{{\sf GxB\_Matrix\_Option\_get:} retrieve a matrix option}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get                    // gets the current option of a matrix
(
    GrB_Matrix A,                   // matrix to query
    GxB_Option_Field field,         // option to query
    ...                             // return value of the matrix option
) ;
\end{verbatim} } \end{mdframed}

This usage of \verb'GxB_get' retrieves the value of a matrix option.  The
\verb'field' parameter can be
\verb'GxB_HYPER_SWITCH',
\verb'GxB_BITMAP_SWITCH',
\verb'GxB_SPARSITY_CONTROL',
\verb'GxB_SPARSITY_STATUS',
or
\verb'GxB_FORMAT'.
For example:

\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
    double h, b  ;
    int sparsity, scontrol ;
    GxB_get (A, GxB_SPARSITY_STATUS, &sparsity) ;
    GxB_get (A, GxB_HYPER_SWITCH, &h) ;
    printf ("matrix A has hyper_switch = %g\n", h) ;
    GxB_get (A, GxB_BITMAP_SWITCH, &b) ;
    printf ("matrix A has bitmap_switch = %g\n", b) ;
    switch (sparsity)
    {
        case GxB_HYPERSPARSE: printf ("matrix A is hypersparse\n") ; break ;
        case GxB_SPARSE:      printf ("matrix A is sparse\n"     ) ; break ;
        case GxB_BITMAP:      printf ("matrix A is bitmap\n"     ) ; break ;
        case GxB_FULL:        printf ("matrix A is full\n"       ) ; break ;
    }
    GxB_Format_Value s ;
    GxB_get (A, GxB_FORMAT, &s) ;
    printf ("matrix A is stored by %s\n", (s == GxB_BY_COL) ? "col" : "row") ;
    GxB_get (A, GxB_SPARSITY_CONTROL, &scontrol) ;
    if (scontrol & GxB_HYPERSPARSE) printf ("A may become hypersparse\n") ;
    if (scontrol & GxB_SPARSE     ) printf ("A may become sparse\n") ;
    if (scontrol & GxB_BITMAP     ) printf ("A may become bitmap\n") ;
    if (scontrol & GxB_FULL       ) printf ("A may become full\n") ; \end{verbatim} }

\newpage
%===============================================================================
\subsection{{\sf GxB\_Desc\_get:} retrieve a {\sf GrB\_Descriptor} value}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get                // get a parameter from a descriptor
(
    GrB_Descriptor desc,        // descriptor to query; NULL means defaults
    GrB_Desc_Field field,       // parameter to query
    ...                         // value of the parameter
) ;
\end{verbatim} } \end{mdframed}

This usage is the same as \verb'GxB_Desc_get'.  The \verb'field' parameter can
be \verb'GrB_OUTP', \verb'GrB_MASK', \verb'GrB_INP0', \verb'GrB_INP1',
\verb'GxB_AxB_METHOD',
\verb'GxB_NTHREADS',
\verb'GxB_CHUNK',
\verb'GxB_SORT',
\verb'GxB_COMPRESSION', or
\verb'GxB_IMPORT'.
Refer to Section~\ref{desc_get} for details.

%===============================================================================
\subsection{Summary of usage of {\sf GxB\_set} and {\sf GxB\_get}}
%===============================================================================

The different usages of \verb'GxB_set' and \verb'GxB_get' are summarized below.

\noindent
To set/get the global options:

    {\footnotesize
    \begin{verbatim}
    GxB_set (GxB_HYPER_SWITCH, double h) ;
    GxB_set (GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;
    GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
    GxB_get (GxB_HYPER_SWITCH, double *h) ;
    double b [GxB_NBITMAP_SWITCH] ;
    GxB_set (GxB_BITMAP_SWITCH, b) ;
    GxB_set (GxB_BITMAP_SWITCH, NULL) ;     // set defaults
    GxB_get (GxB_BITMAP_SWITCH, b) ;
    GxB_set (GxB_FORMAT, GxB_BY_ROW) ;
    GxB_set (GxB_FORMAT, GxB_BY_COL) ;
    GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;
    GxB_set (GxB_NTHREADS, int nthreads_max) ;
    GxB_get (GxB_NTHREADS, int *nthreads_max) ;
    GxB_set (GxB_CHUNK, double chunk) ;
    GxB_get (GxB_CHUNK, double *chunk) ;
    GxB_set (GxB_BURBLE, bool burble) ;
    GxB_get (GxB_BURBLE, bool *burble) ;
    GxB_set (GxB_PRINTF, void *printf_function) ;
    GxB_get (GxB_PRINTF, void **printf_function) ;
    GxB_set (GxB_FLUSH, void *flush_function) ;
    GxB_get (GxB_FLUSH, void **flush_function) ;
    int64_t free_pool_limit [64] ;
    GxB_set (GxB_MEMORY_POOL, free_pool_limit) ;
    GxB_set (GxB_MEMORY_POOL, NULL) ;     // set defaults
    GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;
    GxB_set (GxB_PRINT_1BASED, bool onebased) ;
    GxB_get (GxB_PRINT_1BASED, bool *onebased) ; \end{verbatim} }

\noindent
To get global options that can be queried but not modified:

    {\footnotesize
    \begin{verbatim}
    GxB_get (GxB_MODE,                 GrB_Mode *mode) ;
    GxB_get (GxB_LIBRARY_NAME,         char **) ;
    GxB_get (GxB_LIBRARY_VERSION,      int *) ;
    GxB_get (GxB_LIBRARY_DATE,         char **) ;
    GxB_get (GxB_LIBRARY_ABOUT,        char **) ;
    GxB_get (GxB_LIBRARY_LICENSE,      char **) ;
    GxB_get (GxB_LIBRARY_COMPILE_DATE, char **) ;
    GxB_get (GxB_LIBRARY_COMPILE_TIME, char **) ;
    GxB_get (GxB_LIBRARY_OPENMP,       bool *) ;
    GxB_get (GxB_LIBRARY_URL,          char **) ;
    GxB_get (GxB_API_VERSION,          int *) ;
    GxB_get (GxB_API_DATE,             char **) ;
    GxB_get (GxB_API_ABOUT,            char **) ;
    GxB_get (GxB_API_URL,              char **) ; \end{verbatim} }

\noindent
To set/get a matrix option or status

    {\footnotesize
    \begin{verbatim}
    GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, double h) ;
    GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;
    GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
    GxB_get (GrB_Matrix A, GxB_HYPER_SWITCH, double *h) ;
    GxB_set (GrB_Matrix A, GxB_BITMAP_SWITCH, double b) ;
    GxB_get (GrB_Matrix A, GxB_BITMAP_SWITCH, double *b) ;
    GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;
    GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;
    GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ;
    GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;
    GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, scontrol) ;
    GxB_get (GrB_Matrix A, GxB_SPARSITY_CONTROL, int *scontrol) ;
    GxB_get (GrB_Matrix A, GxB_SPARSITY_STATUS, int *sparsity) ; \end{verbatim} }

\noindent
To set/get a vector option or status:

    {\footnotesize
    \begin{verbatim}
    GxB_set (GrB_Vector v, GxB_BITMAP_SWITCH, double b) ;
    GxB_get (GrB_Vector v, GxB_BITMAP_SWITCH, double *b) ;
    GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_ROW) ;
    GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_COL) ;
    GxB_get (GrB_Vector v, GxB_FORMAT, GxB_Format_Value *s) ;
    GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;
    GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, scontrol) ;
    GxB_get (GrB_Vector v, GxB_SPARSITY_CONTROL, int *scontrol) ;
    GxB_get (GrB_Vector v, GxB_SPARSITY_STATUS, int *sparsity) ; \end{verbatim} }

\noindent
To set/get a descriptor field:

    {\footnotesize
    \begin{verbatim}
    GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;
    GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;
    GxB_get (GrB_Descriptor d, GrB_OUTP, GrB_Desc_Value *v) ;
    GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;
    GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP) ;
    GxB_set (GrB_Descriptor d, GrB_MASK, GrB_STRUCTURE) ;
    GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP+GrB_STRUCTURE) ;
    GxB_get (GrB_Descriptor d, GrB_MASK, GrB_Desc_Value *v) ;
    GxB_set (GrB_Descriptor d, GrB_INP0, GxB_DEFAULT) ;
    GxB_set (GrB_Descriptor d, GrB_INP0, GrB_TRAN) ;
    GxB_get (GrB_Descriptor d, GrB_INP0, GrB_Desc_Value *v) ;
    GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;
    GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN) ;
    GxB_get (GrB_Descriptor d, GrB_INP1, GrB_Desc_Value *v) ;
    GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_DEFAULT) ;
    GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;
    GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HASH) ;
    GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_SAXPY) ;
    GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_DOT) ;
    GxB_get (GrB_Descriptor d, GrB_AxB_METHOD, GrB_Desc_Value *v) ;
    GxB_set (GrB_Descriptor d, GxB_NTHREADS, int nthreads) ;
    GxB_get (GrB_Descriptor d, GxB_NTHREADS, int *nthreads) ;
    GxB_set (GrB_Descriptor d, GxB_CHUNK, double chunk) ;
    GxB_get (GrB_Descriptor d, GxB_CHUNK, double *chunk) ;
    GxB_set (GrB_Descriptor d, GxB_SORT, sort) ;
    GxB_get (GrB_Descriptor d, GxB_SORT, int *sort) ;
    GxB_set (GrB_Descriptor d, GxB_COMPRESSION, GxB_FAST_IMPORT) ;
    GxB_set (GrB_Descriptor d, GxB_COMPRESSION, GxB_SECURE_IMPORT) ;
    GxB_get (GrB_Descriptor d, GxB_COMPRESSION, GrB_Desc_Value *method) ;
    GxB_set (GrB_Descriptor d, GxB_IMPORT, int method) ;
    GxB_get (GrB_Descriptor d, GxB_IMPORT, int *method) ; \end{verbatim} }

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{SuiteSparse:GraphBLAS Colon and Index Notation} %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{colon}

MATLAB/Octave uses a colon notation to index into matrices, such as
\verb'C=A(2:4,3:8)', which extracts \verb'C' as 3-by-6 submatrix from \verb'A',
from rows 2 through 4 and columns 3 to 8 of the matrix \verb'A'.  A single
colon is used to denote all rows, \verb'C=A(:,9)', or all columns,
\verb'C=A(12,:)', which refers to the 9th column and 12th row of \verb'A',
respectively.  An arbitrary integer list can be given as well, such as the
MATLAB/Octave statements:

    {\footnotesize
    \begin{verbatim}
    I = [2 1 4] ;
    J = [3 5] ;
    C = A (I,J) ; \end{verbatim} }
\noindent
which creates the 3-by-2 matrix \verb'C' as follows:
\[
C =
\left[
\begin{array}{cc}
a_{2,3} & a_{2,5} \\
a_{1,3} & a_{1,5} \\
a_{4,3} & a_{4,5} \\
\end{array}
\right]
\]

The GraphBLAS API can do the equivalent of \verb'C=A(I,J)',
\verb'C=A(:,J)', \verb'C=A(I,:)', and \verb'C=A(:,:)', by passing a parameter
\verb'const GrB_Index *I' as either an array of size \verb'ni', or as the
special value \verb'GrB_ALL', which corresponds to the stand-alone colon
\verb'C=A(:,J)', and the same can be done for \verb'J'..  To compute
\verb'C=A(2:4,3:8)' in GraphBLAS requires the user application to create two
explicit integer arrays \verb'I' and \verb'J' of size 3 and 5, respectively,
and then fill them with the explicit values \verb'[2,3,4]' and
\verb'[3,4,5,6,7,8]'.  This works well if the lists are small, or if the matrix
has more entries than rows or columns.

However, particularly with hypersparse matrices, the size of the explicit
arrays \verb'I' and \verb'J' can vastly exceed the number of entries in the
matrix.  When using its hypersparse format, SuiteSparse:GraphBLAS allows the
user application to create a \verb'GrB_Matrix' with dimensions up to $2^{60}$,
with no memory constraints.  The only constraint on memory usage in a
hypersparse matrix is the number of entries in the matrix.

For example, creating a $n$-by-$n$ matrix \verb'A' of type \verb'GrB_FP64' with
$n=2^{60}$ and one million entries is trivial to do in Version 2.1 (and later)
of SuiteSparse:GraphBLAS, taking at most 24MB of space.  SuiteSparse:GraphBLAS
Version 2.1 (or later) could do this on an old smartphone.  However, using just
the pure GraphBLAS API, constructing \verb'C=A(0:(n/2),0:(n/2))'
in SuiteSparse Version 2.0 would require the creation of an integer array
\verb'I' of size $2^{59}$, containing the sequence 0, 1, 2, 3, ...., requiring
about 4 ExaBytes of memory (4 million terabytes).  This is roughly 1000 times
larger than the memory size of the world's largest computer in 2018.

SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS API with a
full implementation of the MATLAB colon notation for integers,
\verb'I=begin:inc:end'.  This extension allows the construction of the matrix
\verb'C=A(0:(n/2),0:(n/2))' in this example, with dimension $2^{59}$, probably
taking just milliseconds on an old smartphone.

The \verb'GrB_extract', \verb'GrB_assign', and \verb'GxB_subassign' operations
(described in the Section~\ref{operations}) each have parameters that define a
list of integer indices, using two parameters:

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    const GrB_Index *I ;    // an array, or a special value GrB_ALL
    GrB_Index ni ;          // the size of I, or a special value \end{verbatim}}

\vspace{-0.05in}
These two parameters define five kinds of index lists, which can be used to
specify either an explicit or implicit list of row indices and/or column
indices.  The length of the list of indices is denoted \verb'|I|'.  This
discussion applies equally to the row indices \verb'I' and the column indices
\verb'J'.  The five kinds are listed below.

\begin{enumerate}
\item
    An explicit list of indices, such as \verb'I = [2 1 4 7 2]' in MATLAB
    notation, is handled by passing in \verb'I' as a pointer to an array of
    size 5, and passing \verb'ni=5' as the size of the list.
    The length of the explicit list is \verb'ni=|I|'.
    Duplicates may appear, except that for some uses of \verb'GrB_assign'
    and \verb'GxB_subassign', duplicates lead to undefined behavior
    according to the GraphBLAS C API Specification.
    SuiteSparse:GraphBLAS specifies how duplicates are handled in all cases,
    as an addition to the specification.
    See Section~\ref{duplicates} for details.

\item To specify all rows of a matrix, use \verb'I = GrB_ALL'.  The
    parameter \verb'ni' is ignored.  This is equivalent to \verb'C=A(:,J)'
    in MATLAB.  In GraphBLAS, this is the sequence \verb'0:(m-1)' if \verb'A'
    has \verb'm' rows, with length \verb'|I|=m'.  If \verb'J' is used the
    columns of an \verb'm'-by-\verb'n' matrix, then \verb'J=GrB_ALL' refers to
    all columns, and is the sequence \verb'0:(n-1)', of length \verb'|J|=n'.

    \begin{alert}
    {\bf SPEC:} If \verb'I' or \verb'J' are \verb'GrB_ALL', the specification
    requires that \verb'ni' be passed in as \verb'm' (the number of rows)
    and \verb'nj' be passed in as \verb'n'.  Any other value is an error.
    SuiteSparse:GraphBLAS ignores these scalar inputs and treats them as if
    they are equal to their only possible correct value.
    \end{alert}

\item To specify a contiguous range of indices, such as \verb'I=10:20'
    in MATLAB, the array \verb'I' has size 2, and \verb'ni' is passed to
    SuiteSparse:GraphBLAS as the special value \verb'ni = GxB_RANGE'.  The
    beginning index is \verb'I[GxB_BEGIN]' and the ending index is
    \verb'I[GxB_END]'.   Both values must be non-negative since
    \verb'GrB_Index' is an unsigned integer (\verb'uint64_t').  The value of
    \verb'I[GxB_INC]' is ignored.

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    // to specify I = 10:20
    GrB_Index I [2], ni = GxB_RANGE ;
    I [GxB_BEGIN] = 10 ;      // the start of the sequence
    I [GxB_END  ] = 20 ;      // the end of the sequence \end{verbatim}}

    \vspace{-0.05in}
    Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]',
    The sequence has length zero if $b > e$; otherwise the length is
    $|I| = (e-b) + 1$.

\item To specify a strided range of indices with a non-negative stride,
    such as \verb'I=3:2:10', the array \verb'I' has size 3, and \verb'ni' has
    the special value \verb'GxB_STRIDE'.  This is the sequence 3, 5, 7, 9, of
    length 4.  Note that 10 does not appear in the list.  The end point need
    not appear if the increment goes past it.

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    // to specify I = 3:2:10
    GrB_Index I [3], ni = GxB_STRIDE ;
    I [GxB_BEGIN ] = 3 ;      // the start of the sequence
    I [GxB_INC   ] = 2 ;      // the increment
    I [GxB_END   ] = 10 ;     // the end of the sequence \end{verbatim}}

    \vspace{-0.05in}
    The \verb'GxB_STRIDE' sequence is the same as the \verb'List' generated by
    the following for loop:

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    int64_t k = 0 ;
    GrB_Index *List = (a pointer to an array of large enough size)
    for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])
    {
        // i is the kth entry in the sequence
        List [k++] = i ;
    } \end{verbatim}}

    \vspace{-0.05in}
    Then passing the explicit array \verb'List' and its length \verb'ni=k' has
    the same effect as passing in the array \verb'I' of size 3, with
    \verb'ni=GxB_STRIDE'.  The latter is simply much faster to produce, and
    much more efficient for SuiteSparse:GraphBLAS to process.

    Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]', and let
    $\Delta$ = \verb'I[GxB_INC]'.  The sequence has length zero if $b > e$ or
    $\Delta=0$.  Otherwise, the length of the sequence is
    \[
    |I| = \Bigl\lfloor\dfrac{e-b}{\Delta}\Bigr\rfloor + 1
    \]

\item
    In MATLAB notation, if the stride is negative, the sequence is decreasing.
    For example, \verb'10:-2:1' is the sequence 10, 8, 6, 4, 2, in that order.
    In SuiteSparse:GraphBLAS, use \verb'ni = GxB_BACKWARDS', with an array
    \verb'I' of size 3.  The following example specifies defines the equivalent
    of the MATLAB expression \verb'10:-2:1' in SuiteSparse:GraphBLAS:

    \vspace{-0.1in}
    {\footnotesize
    \begin{verbatim}
    // to specify I = 10:-2:1
    GrB_Index I [3], ni = GxB_BACKWARDS ;
    I [GxB_BEGIN ] = 10 ;     // the start of the sequence
    I [GxB_INC   ] = 2 ;      // the magnitude of the increment
    I [GxB_END   ] = 1 ;      // the end of the sequence \end{verbatim}}

    \vspace{-0.1in}
    The value -2 cannot be assigned to the \verb'GrB_Index' array \verb'I',
    since that is an unsigned type.  The signed increment is represented
    instead with the special value \verb'ni = GxB_BACKWARDS'.
    The \verb'GxB_BACKWARDS' sequence is the same as generated by the following
    for loop:

    \vspace{-0.1in}
    {\footnotesize
    \begin{verbatim}
    int64_t k = 0 ;
    GrB_Index *List = (a pointer to an array of large enough size)
    for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])
    {
        // i is the kth entry in the sequence
        List [k++] = i ;
    } \end{verbatim}}

    \vspace{-0.1in}
    Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]', and let
    $\Delta$ = \verb'I[GxB_INC]' (note that $\Delta$ is not negative).  The
    sequence has length zero if $b < e$ or $\Delta=0$.  Otherwise, the length
    of the sequence is
    \[
    |I| = \Bigl\lfloor\dfrac{b-e}{\Delta}\Bigr\rfloor + 1
    \]

\end{enumerate}

Since \verb'GrB_Index' is an unsigned integer, all three values
\verb'I[GxB_BEGIN]', \verb'I[GxB_INC]', and \verb'I[GxB_END]' must
be non-negative.

Just as in MATLAB, it is valid to specify an empty sequence of length zero.
For example, \verb'I = 5:3' has length zero in MATLAB and the same is
true for a \verb'GxB_RANGE' sequence in SuiteSparse:GraphBLAS, with
\verb'I[GxB_BEGIN]=5' and \verb'I[GxB_END]=3'.  This has the same
effect as array \verb'I' with \verb'ni=0'.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Operations} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{operations}

The next sections define each of the GraphBLAS operations, also listed in the
table below.

\vspace{0.2in}
{\small
\begin{tabular}{lll}
\hline
\verb'GrB_mxm'       & matrix-matrix multiply  & ${\bf C \langle M \rangle = C \odot AB}$ \\
\verb'GrB_vxm'       & vector-matrix multiply  & ${\bf w^{\sf T}\langle m^{\sf T}\rangle = w^{\sf T}\odot u^{\sf T}A}$ \\
\verb'GrB_mxv'       & matrix-vector multiply  & ${\bf w \langle m \rangle = w \odot Au}$ \\
\hline
\verb'GrB_eWiseMult' & element-wise,           & ${\bf C \langle M \rangle = C \odot (A \otimes B)}$ \\
                     & set intersection        & ${\bf w \langle m \rangle = w \odot (u \otimes v)}$ \\
\hline
\verb'GrB_eWiseAdd'  & element-wise,           & ${\bf C \langle M \rangle = C \odot (A \oplus  B)}$ \\
                     & set union               & ${\bf w \langle m \rangle = w \odot (u \oplus  v)}$ \\
\hline
\verb'GxB_eWiseUnion'& element-wise,           & ${\bf C \langle M \rangle = C \odot (A \oplus  B)}$ \\
                     & set union               & ${\bf w \langle m \rangle = w \odot (u \oplus  v)}$ \\
\hline
\verb'GrB_extract'   & extract submatrix       & ${\bf C \langle M \rangle = C \odot A(I,J)}$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot u(i)}$ \\
\hline
\verb'GxB_subassign' & assign submatrix,       & ${\bf C (I,J) \langle M \rangle = C(I,J) \odot A}$ \\
                     & with submask for ${\bf C(I,J)}$
                                               & ${\bf w (i)   \langle m \rangle = w(i)   \odot u}$ \\
\hline
\verb'GrB_assign'    & assign submatrix        & ${\bf C \langle M \rangle (I,J) = C(I,J) \odot A}$ \\
                     & with submask for ${\bf C}$
                                               & ${\bf w \langle m \rangle (i)   = w(i)   \odot u}$ \\
\hline
\verb'GrB_apply'     & apply unary operator    & ${\bf C \langle M \rangle = C \odot} f{\bf (A)}$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f{\bf (u)}$ \\
                     & apply binary operator   & ${\bf C \langle M \rangle = C \odot} f(x,{\bf A})$ \\
                     &                         & ${\bf C \langle M \rangle = C \odot} f({\bf A},y)$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f(x,{\bf x})$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f({\bf u},y)$ \\
                     & apply index-unary op    & ${\bf C \langle M \rangle = C \odot} f({\bf A},i,j,k)$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} f({\bf u},i,0,k)$ \\
\hline
\verb'GrB_select'    & select entries          & ${\bf C \langle M \rangle = C \odot} \mbox{select}({\bf A},i,j,k)$ \\
                     &                         & ${\bf w \langle m \rangle = w \odot} \mbox{select}({\bf u},i,0,k)$ \\
\hline
\verb'GrB_reduce'    & reduce to vector        & ${\bf w \langle m \rangle = w \odot} [{\oplus}_j {\bf A}(:,j)]$ \\
                     & reduce to scalar        & $s = s \odot [{\oplus}_{ij}  {\bf A}(I,J)]$ \\
\hline
\verb'GrB_transpose' & transpose               & ${\bf C \langle M \rangle = C \odot A^{\sf T}}$ \\
\hline
\verb'GrB_kronecker' & Kronecker product       & ${\bf C \langle M \rangle = C \odot \mbox{kron}(A, B)}$ \\
\hline
\end{tabular}
}
\vspace{0.2in}

If an error occurs, \verb'GrB_error(&err,C)' or \verb'GrB_error(&err,w)'
returns details about the error, for operations that return a modified matrix
\verb'C' or vector \verb'w'.  The only operation that cannot return an error
string is reduction to a scalar with \verb'GrB_reduce'.

\newpage
%===============================================================================
\subsection{{\sf GrB\_mxm:} matrix-matrix multiply} %===========================
%===============================================================================
\label{mxm}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_mxm                    // C<Mask> = accum (C, A*B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Semiring semiring,    // defines '+' and '*' for A*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_mxm' multiplies two sparse matrices \verb'A' and \verb'B' using the
\verb'semiring'.  The input matrices \verb'A' and \verb'B' may be transposed
according to the descriptor, \verb'desc' (which may be \verb'NULL') and then
typecasted to match the multiply operator of the \verb'semiring'.  Next,
\verb'T=A*B' is computed on the \verb'semiring', precisely defined in the
\verb'GB_spec_mxm.m' script in \verb'GraphBLAS/Test'.  The actual algorithm
exploits sparsity and does not take $O(n^3)$ time, but it computes the
following:

{\footnotesize
\begin{verbatim}
[m s] = size (A.matrix) ;
[s n] = size (B.matrix) ;
T.matrix  = zeros (m, n, multiply.ztype) ;
T.pattern = zeros (m, n, 'logical') ;
T.matrix (:,:) = identity ;             % the identity of the semiring's monoid
T.class = multiply.ztype ;              % the ztype of the semiring's multiply op
A = cast (A.matrix, multiply.xtype) ;   % the xtype of the semiring's multiply op
B = cast (B.matrix, multiply.ytype) ;   % the ytype of the semiring's multiply op
for j = 1:n
    for i = 1:m
        for k = 1:s
            % T (i,j) += A (i,k) * B (k,j), using the semiring
            if (A.pattern (i,k) && B.pattern (k,j))
                z = multiply (A (i,k), B (k,j)) ;
                T.matrix  (i,j) = add (T.matrix (i,j),  z) ;
                T.pattern (i,j) = true ;
            end
        end
    end
end \end{verbatim}}

Finally, \verb'T' is typecasted into the type of \verb'C', and the results are
written back into \verb'C' via the \verb'accum' and \verb'Mask', ${\bf C
\langle M \rangle  = C \odot T}$.  The latter step is reflected in the MATLAB
function \verb'GB_spec_accum_mask.m', discussed in Section~\ref{accummask}.

\paragraph{\bf Performance considerations:}
Suppose all matrices are in \verb'GxB_BY_COL' format, and \verb'B' is extremely
sparse but \verb'A' is not as sparse.  Then computing \verb'C=A*B' is very
fast, and much faster than when \verb'A' is extremely sparse.  For example, if
\verb'A' is square and \verb'B' is a column vector that is all nonzero except
for one entry \verb'B(j,0)=1', then \verb'C=A*B' is the same as extracting
column \verb'A(:,j)'.  This is very fast if \verb'A' is stored by column but
slow if \verb'A' is stored by row.  If \verb'A' is a sparse row with a single
entry \verb'A(0,i)=1', then \verb'C=A*B' is the same as extracting row
\verb'B(i,:)'.  This is fast if \verb'B' is stored by row but slow if \verb'B'
is stored by column.

If the user application needs to repeatedly extract rows and columns from a
matrix, whether by matrix multiplication or by \verb'GrB_extract', then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.

By default, \verb'GrB_mxm', \verb'GrB_mxv', \verb'GrB_vxm', and
\verb'GrB_reduce' (to vector) can return their result in a jumbled state, with
the sort left pending.  It can sometimes be faster for these methods to do the
sort as they compute their result.  Use the \verb'GxB_SORT' descriptor setting
to select this option.  Refer to Section~\ref{descriptor} for details.

\newpage
%===============================================================================
\subsection{{\sf GrB\_vxm:} vector-matrix multiply} %===========================
%===============================================================================
\label{vxm}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_vxm                    // w'<mask> = accum (w, u'*A)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Semiring semiring,    // defines '+' and '*' for u'*A
    const GrB_Vector u,             // first input:  vector u
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_vxm' multiplies a row vector \verb"u'" times a matrix \verb'A'.  The
matrix \verb'A' may be first transposed according to \verb'desc' (as the second
input, \verb'GrB_INP1'); the column vector \verb'u' is never transposed via the
descriptor.  The inputs \verb'u' and \verb'A' are typecasted to match the
\verb'xtype' and \verb'ytype' inputs, respectively, of the multiply operator of
the \verb'semiring'.  Next, an intermediate column vector \verb"t=A'*u" is
computed on the \verb'semiring' using the same method as \verb'GrB_mxm'.
Finally, the column vector \verb't' is typecasted from the \verb'ztype' of the
multiply operator of the \verb'semiring' into the type of \verb'w', and the
results are written back into \verb'w' using the optional accumulator
\verb'accum' and \verb'mask'.

The last step is ${\bf w \langle m \rangle  = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.

\paragraph{\bf Performance considerations:} % u'=u'*A
If the \verb'GxB_FORMAT' of \verb'A' is \verb'GxB_BY_ROW', and the default
descriptor is used (\verb'A' is not transposed), then \verb'GrB_vxm' is faster
than than \verb'GrB_mxv' with its default descriptor, when the vector \verb'u'
is very sparse.
However, if the \verb'GxB_FORMAT' of \verb'A' is \verb'GxB_BY_COL', then
\verb'GrB_mxv' with its default descriptor is faster than \verb'GrB_vxm' with
its default descriptor, when the vector \verb'u' is very sparse.
Using the non-default \verb'GrB_TRAN' descriptor for \verb'A' makes the
\verb'GrB_vxm' operation equivalent to \verb'GrB_mxv' with its default
descriptor (with the operands reversed in the multiplier, as well).  The
reverse is true as well; \verb'GrB_mxv' with \verb'GrB_TRAN' is the same as
\verb'GrB_vxm' with a default descriptor.

\newpage
%===============================================================================
\subsection{{\sf GrB\_mxv:} matrix-vector multiply} %===========================
%===============================================================================
\label{mxv}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_mxv                    // w<mask> = accum (w, A*u)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Semiring semiring,    // defines '+' and '*' for A*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_mxv' multiplies a matrix \verb'A' times a column vector \verb'u'.
The matrix \verb'A' may be first transposed according to \verb'desc' (as the
first input); the column vector \verb'u' is never transposed via the
descriptor.  The inputs \verb'A' and \verb'u' are typecasted to match the
\verb'xtype' and \verb'ytype' inputs, respectively, of the multiply operator of
the \verb'semiring'. Next, an intermediate column vector \verb't=A*u' is
computed on the \verb'semiring' using the same method as \verb'GrB_mxm'.
Finally, the column vector \verb't' is typecasted from the \verb'ztype' of the
multiply operator of the \verb'semiring' into the type of \verb'w', and the
results are written back into \verb'w' using the optional accumulator
\verb'accum' and \verb'mask'.

The last step is ${\bf w \langle m \rangle  = w \odot t}$, as described
in Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.

\paragraph{\bf Performance considerations:} % u=A*u
Refer to the discussion of \verb'GrB_vxm'.  In SuiteSparse:GraphBLAS,
\verb'GrB_mxv' is very efficient when \verb'u' is sparse or dense, when the
default descriptor is used, and when the matrix is \verb'GxB_BY_COL'.  When
\verb'u' is very sparse and \verb'GrB_INP0' is set to its non-default
\verb'GrB_TRAN', then this method is not efficient if the matrix is in
\verb'GxB_BY_COL' format.  If an application needs to perform \verb"A'*u"
repeatedly where \verb'u' is very sparse, then use the \verb'GxB_BY_ROW' format
for \verb'A' instead.

\newpage
%===============================================================================
\subsection{{\sf GrB\_eWiseMult:} element-wise operations, set intersection} %==
%===============================================================================
\label{eWiseMult}

Element-wise ``multiplication'' is shorthand for applying a binary operator
element-wise on two matrices or vectors \verb'A' and \verb'B', for all entries
that appear in the set intersection of the patterns of \verb'A' and \verb'B'.
This is like \verb'A.*B' for two sparse matrices in MATLAB, except that in
GraphBLAS any binary operator can be used, not just multiplication.

The pattern of the result of the element-wise ``multiplication'' is exactly
this set intersection.  Entries in \verb'A' but not \verb'B', or visa versa, do
not appear in the result.

Let $\otimes$ denote the binary operator to be used.  The computation ${\bf T =
A \otimes B}$ is given below.  Entries not in the intersection of ${\bf A}$ and
${\bf B}$ do not appear in the pattern of ${\bf T}$.  That is:
    \vspace{-0.2in}
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
    \> \> $t_{ij} = a_{ij} \otimes b_{ij}$ \\
    \end{tabbing} }
    \vspace{-0.2in}

Depending on what kind of operator is used and what the implicit value is
assumed to be, this can give the Hadamard product.  This is the case for
\verb'A.*B' in MATLAB since the implicit value is zero.  However, computing a
Hadamard product is not necessarily the goal of the \verb'eWiseMult' operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of \verb'A' and \verb'B', and discards any entry outside this
intersection.  Its usefulness in a user's application does not depend upon it
computing a Hadamard product in all cases.  The operator need not be
associative, commutative, nor have any particular property except for type
compatibility with \verb'A' and \verb'B', and the output matrix \verb'C'.

The generic name for this operation is \verb'GrB_eWiseMult', which can be used
for both matrices and vectors.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_eWiseMult:} element-wise vector multiply}
%-------------------------------------------------------------------------------
\label{eWiseMult_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseMult              // w<mask> = accum (w, u.*v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const <operator> multiply,      // defines '.*' for t=u.*v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_eWiseMult' computes the element-wise ``multiplication'' of two
vectors \verb'u' and \verb'v', element-wise using any binary operator (not just
times).  The vectors are not transposed via the descriptor.  The vectors
\verb'u' and \verb'v' are first typecasted into the first and second inputs of
the \verb'multiply' operator.  Next, a column vector \verb't' is computed,
denoted ${\bf t = u \otimes v}$.  The pattern of \verb't' is the set
intersection of \verb'u' and \verb'v'.  The result \verb't' has the type of the
output \verb'ztype' of the \verb'multiply' operator.

The \verb'operator' is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter.  If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'multiply' binary operator.
If given a semiring (\verb'GrB_Semiring'), the multiply operator of the
semiring is used as the \verb'multiply' binary operator.

The next and final step is ${\bf w \langle m \rangle  = w \odot t}$, as
described in Section~\ref{accummask}, except that all the terms are column
vectors instead of matrices.  Note for all GraphBLAS operations, including this
one, the accumulator ${\bf w \odot t}$ is always applied in a set union manner,
even though ${\bf t = u \otimes v}$ for this operation is applied in a set
intersection manner.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_eWiseMult:} element-wise matrix multiply}
%-------------------------------------------------------------------------------
\label{eWiseMult_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseMult              // C<Mask> = accum (C, A.*B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const <operator> multiply,      // defines '.*' for T=A.*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Matrix_eWiseMult' computes the element-wise ``multiplication'' of two
matrices \verb'A' and \verb'B', element-wise using any binary operator (not
just times).  The input matrices may be transposed first, according to the
descriptor \verb'desc'.  They are then typecasted into the first and second
inputs of the \verb'multiply' operator.  Next, a matrix \verb'T' is computed,
denoted ${\bf T = A \otimes B}$.  The pattern of \verb'T' is the set
intersection of \verb'A' and \verb'B'.  The result \verb'T' has the type of the
output \verb'ztype' of the \verb'multiply' operator.

The \verb'multiply' operator is typically a \verb'GrB_BinaryOp', but the method
is type-generic for this parameter.  If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'multiply' binary operator.
If given a semiring (\verb'GrB_Semiring'), the multiply operator of the
semiring is used as the \verb'multiply' binary operator.

\vspace{0.05in}
The operation can be expressed in MATLAB notation as:
    {\footnotesize
    \begin{verbatim}
    [nrows, ncols] = size (A.matrix) ;
    T.matrix = zeros (nrows, ncols, multiply.ztype) ;
    T.class = multiply.ztype ;
    p = A.pattern & B.pattern ;
    A = cast (A.matrix (p), multiply.xtype) ;
    B = cast (B.matrix (p), multiply.ytype) ;
    T.matrix (p) = multiply (A, B) ;
    T.pattern = p ; \end{verbatim} }

The final step is ${\bf C \langle M \rangle  = C \odot T}$, as described in
Section~\ref{accummask}.  Note for all GraphBLAS operations, including this
one, the accumulator ${\bf C \odot T}$ is always applied in a set union manner,
even though ${\bf T = A \otimes B}$ for this operation is applied in a set
intersection manner.

\newpage
%===============================================================================
\subsection{{\sf GrB\_eWiseAdd:} element-wise operations, set union} %==========
%===============================================================================
\label{eWiseAdd}

Element-wise ``addition'' is shorthand for applying a binary operator
element-wise on two matrices or vectors \verb'A' and \verb'B', for all entries
that appear in the set intersection of the patterns of \verb'A' and \verb'B'.
This is like \verb'A+B' for two sparse matrices in MATLAB, except that in
GraphBLAS any binary operator can be used, not just addition.  The pattern of
the result of the element-wise ``addition'' is the set union of the pattern of
\verb'A' and \verb'B'.  Entries in neither in \verb'A' nor in \verb'B' do
not appear in the result.

Let $\oplus$ denote the binary operator to be used.  The computation ${\bf T =
A \oplus B}$ is exactly the same as the computation with accumulator operator
as described in Section~\ref{accummask}.  It acts like a sparse matrix
addition, except that any operator can be used.  The pattern of ${\bf A \oplus
B}$ is the set union of the patterns of ${\bf A}$ and ${\bf B}$, and the
operator is applied only on the set intersection of ${\bf A}$ and ${\bf B}$.
Entries not in either the pattern of ${\bf A}$ or ${\bf B}$ do not appear in
the pattern of ${\bf T}$.  That is:
    \vspace{-0.2in}
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
    \> \> $t_{ij} = a_{ij} \oplus b_{ij}$ \\
    \> for all entries $(i,j)$ in ${\bf A \setminus B}$ \\
    \> \> $t_{ij} = a_{ij}$ \\
    \> for all entries $(i,j)$ in ${\bf B \setminus A}$ \\
    \> \> $t_{ij} = b_{ij}$
    \end{tabbing}
    }

The only difference between element-wise ``multiplication'' (${\bf T =A \otimes
B}$) and ``addition'' (${\bf T = A \oplus B}$) is the pattern of the result,
and what happens to entries outside the intersection.  With $\otimes$ the
pattern of ${\bf T}$ is the intersection; with $\oplus$ it is the set union.
Entries outside the set intersection are dropped for $\otimes$, and kept for
$\oplus$; in both cases the operator is only applied to those (and only those)
entries in the intersection.  Any binary operator can be used interchangeably
for either operation.

Element-wise operations do not operate on the implicit values, even implicitly,
since the operations make no assumption about the semiring.  As a result, the
results can be different from MATLAB, which can always assume the implicit
value is zero.  For example, \verb'C=A-B' is the conventional matrix
subtraction in MATLAB.  Computing \verb'A-B' in GraphBLAS with \verb'eWiseAdd'
will apply the \verb'MINUS' operator to the intersection, entries in \verb'A'
but not \verb'B' will be unchanged and appear in \verb'C', and entries in
neither \verb'A' nor \verb'B' do not appear in \verb'C'.  For these cases, the
results matches the MATLAB \verb'C=A-B'.  Entries in \verb'B' but not \verb'A'
do appear in \verb'C' but they are not negated; they cannot be subtracted from
an implicit value in \verb'A'.  This is by design.  If conventional matrix
subtraction of two sparse matrices is required, and the implicit value is known
to be zero, use \verb'GrB_apply' to negate the values in \verb'B', and then
use \verb'eWiseAdd' with the \verb'PLUS' operator, to compute \verb'A+(-B)'.

The generic name for this operation is \verb'GrB_eWiseAdd', which can be used
for both matrices and vectors.

There is another minor difference in two variants of the element-wise
functions.  If given a \verb'semiring', the \verb'eWiseAdd' functions use the
binary operator of the semiring's monoid, while the \verb'eWiseMult' functions
use the multiplicative operator of the semiring.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_eWiseAdd:} element-wise vector addition}
%-------------------------------------------------------------------------------
\label{eWiseAdd_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseAdd               // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const <operator> add,           // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_eWiseAdd' computes the element-wise ``addition'' of two
vectors \verb'u' and \verb'v', element-wise using any binary operator (not just
plus).  The vectors are not transposed via the descriptor.  Entries in the
intersection of \verb'u' and \verb'v' are first typecasted into the first and
second inputs of the \verb'add' operator.  Next, a column vector \verb't' is
computed, denoted ${\bf t = u \oplus v}$.  The pattern of \verb't' is the set
union of \verb'u' and \verb'v'.  The result \verb't' has the type of the output
\verb'ztype' of the \verb'add' operator.

The \verb'add' operator is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter.  If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'add' binary operator.  If
given a semiring (\verb'GrB_Semiring'), the additive operator of the monoid of
the semiring is used as the \verb'add' binary operator.

The final step is ${\bf w \langle m \rangle  = w \odot t}$, as described in
Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_eWiseAdd:} element-wise matrix addition}
%-------------------------------------------------------------------------------
\label{eWiseAdd_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseAdd               // C<Mask> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const <operator> add,           // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_eWiseAdd' computes the element-wise ``addition'' of two
matrices \verb'A' and \verb'B', element-wise using any binary operator (not
just plus).  The input matrices may be transposed first, according to the
descriptor \verb'desc'.  Entries in the intersection then typecasted into the
first and second inputs of the \verb'add' operator.  Next, a matrix \verb'T' is
computed, denoted ${\bf T = A \oplus B}$.  The pattern of \verb'T' is the set
union of \verb'A' and \verb'B'.  The result \verb'T' has the type of the output
\verb'ztype' of the \verb'add' operator.

The \verb'add' operator is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter.  If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'add' binary operator.  If
given a semiring (\verb'GrB_Semiring'), the additive operator of the monoid of
the semiring is used as the \verb'add' binary operator.

\vspace{0.05in}
The operation can be expressed in MATLAB notation as:
    {\footnotesize
    \begin{verbatim}
    [nrows, ncols] = size (A.matrix) ;
    T.matrix = zeros (nrows, ncols, add.ztype) ;
    p = A.pattern & B.pattern ;
    A = GB_mex_cast (A.matrix (p), add.xtype) ;
    B = GB_mex_cast (B.matrix (p), add.ytype) ;
    T.matrix (p) = add (A, B) ;
    p =  A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;
    p = ~A.pattern &  B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;
    T.pattern = A.pattern | B.pattern ;
    T.class = add.ztype ; \end{verbatim} }
Except for when typecasting is performed, this is identical to how the
\verb'accum' operator is applied in Figure~\ref{fig_accummask}.

The final step is ${\bf C \langle M \rangle  = C \odot T}$, as described in
Section~\ref{accummask}.

\newpage
%===============================================================================
\subsection{{\sf GxB\_eWiseUnion:} element-wise operations, set union} %========
%===============================================================================
\label{eWiseUnion}

\verb'GxB_eWiseUnion' computes a result with the same pattern
\verb'GrB_eWiseAdd', namely, a set union of its two inputs.  It differs in how
the binary operator is applied.

Let $\oplus$ denote the binary operator to be used.  The operator is applied to
every entry in $\bf A$ and $\bf B$.  A pair of scalars, $\alpha$ and $\beta$
(\verb'alpha' and \verb'beta' in the API, respectively) define the
inputs to the operator when entries are present in one matrix but not the
other.

    \vspace{-0.2in}
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
    \> \> $t_{ij} = a_{ij} \oplus b_{ij}$ \\
    \> for all entries $(i,j)$ in ${\bf A \setminus B}$ \\
    \> \> $t_{ij} = a_{ij} \oplus \beta $ \\
    \> for all entries $(i,j)$ in ${\bf B \setminus A}$ \\
    \> \> $t_{ij} = \alpha \oplus b_{ij}$
    \end{tabbing}
    }

\verb'GxB_eWiseUnion' is useful in contexts where \verb'GrB_eWiseAdd' cannot be
used because of the typecasting rules of GraphBLAS.  In particular, suppose
\verb'A' and \verb'B' are matrices with a user-defined type, and suppose
\verb'<' is a user-defined operator that compares two entries of this type and
returns a Boolean value.  Then \verb'C=A<B' can be computed with
\verb'GxB_eWiseUnion' but not with \verb'GrB_eWiseAdd'.  In the latter, if
\verb'A(i,j)' is present but \verb'B(i,j)' is not, then \verb'A(i,j)' must
typecasted to the type of \verb'C' (\verb'GrB_BOOL' in this case), and the
assigment \verb'C(i,j) = (bool) A(i,j)' would be performed.  This is not
possible because user-defined types cannot be typecasted to any other type.

Another advantage of \verb'GxB_eWiseUnion' is its performance.  For example,
the MATLAB/Octave expression \verb'C=A-B' computes \verb'C(i,j)=-B(i,j)' when
\verb'A(i,j)' is not present.  This cannot be done with a single call
\verb'GrB_eWiseAdd', but it can be done with a single call to
\verb'GxB_eWiseUnion', with the \verb'GrB_MINUS_FP64' operator, and with both
\verb'alpha' and \verb'beta' scalars equal to zero.  It is possible to
compute this result with a temporary matrix, \verb'E=-B', computed with
\verb'GrB_apply' and \verb'GrB_AINV_FP64', followed by a call to
\verb'GrB_eWiseAdd' to compute \verb'C=A+E', but this is slower than a single
call to \verb'GxB_eWiseUnion', and uses more memory.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_eWiseUnion:} element-wise vector addition}
%-------------------------------------------------------------------------------
\label{eWiseUnion_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_eWiseUnion             // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp add,         // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar alpha,
    const GrB_Vector v,             // second input: vector v
    const GrB_Scalar beta,
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

Identical to \verb'GrB_Vector_eWiseAdd' except that two scalars are used
to define how to compute the result when entries are present in one of
the two input vectors (\verb'u' and \verb'v'), but not the other.
Each of the two input scalars, \verb'alpha' and \verb'beta'
must contain an entry.
When computing the result \verb't=u+v',
if \verb'u(i)' is present but \verb'v(i)' is not, then \verb't(i)=u(i)+beta'.
Likewise,
if \verb'v(i)' is present but \verb'u(i)' is not, then \verb't(i)=alpha+v(i)',
where \verb'+' denotes the binary operator, \verb'add'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_eWiseUnion:} element-wise matrix addition}
%-------------------------------------------------------------------------------
\label{eWiseUnion_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_eWiseUnion             // C<M> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp add,         // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar alpha,
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Scalar beta,
    const GrB_Descriptor desc       // descriptor for C, M, A, and B
) ;
\end{verbatim} } \end{mdframed}

Identical to \verb'GrB_Matrix_eWiseAdd' except that two scalars are used
to define how to compute the result when entries are present in one of
the two input matrices (\verb'A' and \verb'B'), but not the other.
Each of the two input scalars, \verb'alpha' and \verb'beta'
must contain an entry.
When computing the result \verb'T=A+B',
if \verb'A(i,j)' is present but \verb'B(i,j))' is not, then \verb'T(i,j)=A(i,j)+beta'.
Likewise,
if \verb'B(i,j)' is present but \verb'A(i,j)' is not, then \verb'T(i,j)=alpha+B(i,j)',
where \verb'+' denotes the binary operator, \verb'add'.

\newpage
%===============================================================================
\subsection{{\sf GrB\_extract:} submatrix extraction } %========================
%===============================================================================
\label{extract}

The \verb'GrB_extract' function is a generic name for three specific functions:
\verb'GrB_Vector_extract', \verb'GrB_Col_extract', and
\verb'GrB_Matrix_extract'.  The generic name appears in the function signature,
but the specific function name is used when describing what each variation
does.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extract:} extract subvector from vector}
%-------------------------------------------------------------------------------
\label{extract_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract                // w<mask> = accum (w, u(I))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Vector u,             // first input:  vector u
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_extract' extracts a subvector from another vector, identical
to \verb't = u (I)' in MATLAB where \verb'I' is an integer vector of row
indices.  Refer to \verb'GrB_Matrix_extract' for further details; vector
extraction is the same as matrix extraction with \verb'n'-by-1 matrices.
See Section~\ref{colon} for a description of \verb'I' and \verb'ni'.
The final step is ${\bf w \langle m \rangle  = w \odot
t}$, as described in Section~\ref{accummask}, except that all the terms are
column vectors instead of matrices.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extract:} extract submatrix from matrix}
%-------------------------------------------------------------------------------
\label{extract_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract                // C<Mask> = accum (C, A(I,J))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_extract' extracts a submatrix from another matrix, identical
to \verb'T = A(I,J)' in MATLAB where \verb'I' and \verb'J' are integer vectors
of row and column indices, respectively, except that indices are zero-based in
GraphBLAS and one-based in MATLAB.  The input matrix \verb'A' may be transposed
first, via the descriptor.  The type of \verb'T' and \verb'A' are the same.
The size of \verb'C' is \verb'|I|'-by-\verb'|J|'.
Entries outside \verb'A(I,J)' are not accessed and do not take part in the
computation.  More precisely, assuming the matrix \verb'A' is not transposed,
the matrix \verb'T' is defined as follows:

    \vspace{-0.1in}
    {\footnotesize
    \begin{verbatim}
    T.matrix  = zeros (ni, nj) ;    % a matrix of size ni-by-nj
    T.pattern = false (ni, nj) ;
    for i = 1:ni
        for j = 1:nj
            if (A (I(i),J(j)).pattern)
                T (i,j).matrix  = A (I(i),J(j)).matrix ;
                T (i,j).pattern = true ;
            end
        end
    end \end{verbatim}}

\vspace{-0.1in}
If duplicate indices are present in \verb'I' or \verb'J', the above method
defines the result in \verb'T'.  Duplicates result in the same values of
\verb'A' being copied into different places in \verb'T'.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.
The final step is ${\bf C \langle M \rangle  = C \odot
T}$, as described in Section~\ref{accummask}.

\paragraph{\bf Performance considerations:} % C=A(I,J)
If \verb'A' is not transposed via input descriptor: if \verb'|I|' is small,
then it is fastest if \verb'A' is \verb'GxB_BY_ROW'; if
\verb'|J|' is small, then it is fastest if \verb'A' is
\verb'GxB_BY_COL'.  The opposite is true if \verb'A' is transposed.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Col\_extract:} extract column vector from matrix}
%-------------------------------------------------------------------------------
\label{extract_column}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract                // w<mask> = accum (w, A(I,j))
(
    GrB_Vector w,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index j,              // column index
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Col_extract' extracts a subvector from a matrix, identical to
\verb't = A (I,j)' in MATLAB where \verb'I' is an integer vector of row indices
and where \verb'j' is a single column index.  The input matrix \verb'A' may be
transposed first, via the descriptor, which results in the extraction of a
single row \verb'j' from the matrix \verb'A', the result of which is a column
vector \verb'w'.  The type of \verb't' and \verb'A' are the same.
The size of \verb'w' is \verb'|I|'-by-1.

See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni'.
The final step is ${\bf w \langle m
\rangle  = w \odot t}$, as described in Section~\ref{accummask}, except that
all the terms are column vectors instead of matrices.

\paragraph{\bf Performance considerations:} % w = A(I,j)
If \verb'A' is not transposed: it is fastest if the format of \verb'A' is
\verb'GxB_BY_COL'.  The opposite is true if \verb'A' is transposed.

\newpage
%===============================================================================
\subsection{{\sf GxB\_subassign:} submatrix assignment} %=======================
%===============================================================================
\label{subassign}

The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'.  All
methods can be used in their generic form with the single name
\verb'GxB_subassign'.  This is reflected in the prototypes.  However, to avoid
confusion between the different kinds of assignment, the name of the specific
function is used when describing each variation.  If the discussion applies to
all variations, the simple name \verb'GxB_subassign' is used.

See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.

\verb'GxB_subassign' is very similar to \verb'GrB_assign', described in
Section~\ref{assign}.  The two operations are compared and contrasted in
Section~\ref{compare_assign}.  For a discussion of how duplicate indices
are handled in \verb'I' and \verb'J', see Section~\ref{duplicates}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{subassign_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign              // w(I)<mask> = accum (w(I),u)
(
    GrB_Vector w,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),t)
    const GrB_Vector u,             // first input:  vector u
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_subassign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'.  The method is identical to
\verb'GxB_Matrix_subassign' described in Section~\ref{subassign_matrix}, where
all matrices have a single column each.  The \verb'mask' has the same size as
\verb'w(I)' and \verb'u'.  The only other difference is that the input \verb'u'
in this method is not transposed via the \verb'GrB_INP0' descriptor.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{subassign_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign              // C(I,J)<Mask> = accum (C(I,J),A)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J), Mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_subassign' operates only on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'.   For this operation, the result is not
the entire matrix \verb'C', but a submatrix \verb'S=C(I,J)' of \verb'C'.  The
steps taken are as follows, except that ${\bf A}$ may be optionally transposed
via the \verb'GrB_INP0' descriptor option.

\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
     & notation  & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$                             & extract the ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$  & apply the accumulator/mask to the submatrix ${\bf S}$\\
3 & ${\bf C(I,J)}= {\bf S}$                              & put the submatrix ${\bf S}$ back into ${\bf C(I,J)}$ \\
\hline
\end{tabular}
\vspace{0.1in}

The accumulator/mask step in Step 2 is the same as for all other GraphBLAS
operations, described in Section~\ref{accummask}, except that for
\verb'GxB_subassign', it is applied to just the submatrix ${\bf S} = {\bf
C(I,J)}$, and thus the \verb'Mask' has the same size as ${\bf A}$,
${\bf S}$, and ${\bf C(I,J)}$.

The \verb'GxB_subassign' operation is the reverse of matrix extraction:

\begin{itemize}
\item
For submatrix extraction, \verb'GrB_Matrix_extract',
the submatrix \verb'A(I,J)' appears on the right-hand side of the assignment,
\verb'C=A(I,J)', and entries outside of the submatrix are not accessed and do
not take part in the computation.

\item
For submatrix assignment, \verb'GxB_Matrix_subassign',
the submatrix \verb'C(I,J)' appears on the left-hand-side of the assignment,
\verb'C(I,J)=A', and entries outside of the submatrix are not accessed and do
not take part in the computation.

\end{itemize}

In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on.  In both cases, if the \verb'Mask' matrix is present it is the same
size as the submatrix:

\begin{itemize}

\item
For submatrix extraction,
${\bf C \langle M \rangle = C \odot A(I,J)}$ is computed,
where the submatrix is on the right.
The mask ${\bf M}$ has the same size as the submatrix ${\bf A(I,J)}$.

\item
For submatrix assignment,
${\bf C(I,J) \langle M \rangle = C(I,J) \odot A}$ is computed,
where the submatrix is on the left.
The mask ${\bf M}$ has the same size as the submatrix ${\bf C(I,J)}$.

\end{itemize}

In Step 1, the submatrix \verb'S' is first computed by the
\verb'GrB_Matrix_extract' operation, \verb'S=C(I,J)'.

Step 2 accumulates the results ${\bf S \langle M \rangle  = S \odot T}$,
exactly as described in Section~\ref{accummask}, but operating on the submatrix
${\bf S}$, not ${\bf C}$, using the optional \verb'Mask' and \verb'accum'
operator.  The matrix ${\bf T}$ is simply ${\bf T}={\bf A}$, or ${\bf T}={\bf
A}^{\sf T}$ if ${\bf A}$ is transposed via the \verb'desc' descriptor,
\verb'GrB_INP0'.  The \verb'GrB_REPLACE' option in the descriptor clears ${\bf
S}$ after computing ${\bf Z = T}$ or ${\bf Z = C \odot T}$, not all of ${\bf
C}$ since this operation can only modify the specified submatrix of ${\bf C}$.

Finally, Step 3 writes the result (which is the modified submatrix \verb'S' and
not all of \verb'C') back into the \verb'C' matrix that contains it, via the
assignment \verb'C(I,J)=S', using the reverse operation from the method
described for matrix extraction:

    {\footnotesize
    \begin{verbatim}
    for i = 1:ni
        for j = 1:nj
            if (S (i,j).pattern)
                C (I(i),J(j)).matrix = S (i,j).matrix ;
                C (I(i),J(j)).pattern = true ;
            end
        end
    end \end{verbatim}}

\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'.  The opposite is true
if \verb'A' is transposed.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Col\_subassign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_column}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign              // C(I,j)<mask> = accum (C(I,j),u)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(I,j), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(I,j),t)
    const GrB_Vector u,             // input vector
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index j,              // column index
    const GrB_Descriptor desc       // descriptor for C(I,j) and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Col_subassign' modifies a single sub-column of a matrix \verb'C'.  It
is the same as \verb'GxB_Matrix_subassign' where the index vector \verb'J[0]=j'
is a single column index (and thus \verb'nj=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single column.  The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'.  The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed.  Refer to \verb'GxB_Matrix_subassign' for
further details.

\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GxB_BY_COL'.  \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GxB_BY_ROW'.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Row\_subassign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_row}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign              // C(i,J)<mask'> = accum (C(i,J),u')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(i,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(i,J),t)
    const GrB_Vector u,             // input vector
    const GrB_Index i,              // row index
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C(i,J) and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Row_subassign' modifies a single sub-row of a matrix \verb'C'.  It is
the same as \verb'GxB_Matrix_subassign' where the index vector \verb'I[0]=i' is
a single row index (and thus \verb'ni=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single row.  The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'.  The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed.  Refer to \verb'GxB_Matrix_subassign' for
further details.

\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GxB_BY_COL'.  \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GxB_BY_ROW'.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{subassign_vector_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign              // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),x)
    const <type> x,                 // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_subassign_<type>' assigns a single scalar to an entire
subvector of the vector \verb'w'.  The operation is exactly like setting a
single entry in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column
index for a vector is implicitly \verb'j=0'.  For further details of this
function, see \verb'GxB_Matrix_subassign_<type>' in
Section~\ref{subassign_matrix_scalar}.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{subassign_matrix_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign              // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    const <type> x,                 // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_subassign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB.  The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', with all entries present and equal to \verb'x',
and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GxB_Matrix_subassign'.  Refer
to that function in Section~\ref{subassign_matrix} for further details.
For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.

The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}).  Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of ANSI C11.  For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.

If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined.  No error status will be returned since GraphBLAS has no way of
catching this error.
If \verb'x' is a \verb'GrB_Scalar' with no entry, then it is implicitly
expanded into a matrix \verb'A' of size \verb'ni' by \verb'nj', with no entries
present.

\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'.  The opposite is true
if \verb'A' is transposed.

\newpage
%===============================================================================
\subsection{{\sf GrB\_assign:} submatrix assignment} %==========================
%===============================================================================
\label{assign}

The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'.  All
methods can be used in their generic form with the single name
\verb'GrB_assign'.  These methods are very similar to their
\verb'GxB_subassign' counterparts in Section~\ref{subassign}.  They differ
primarily in the size of the \verb'Mask', and how the \verb'GrB_REPLACE' option
works.  Section~\ref{compare_assign} compares
\verb'GxB_subassign' and \verb'GrB_assign'.

See Section~\ref{colon} for a description of
\verb'I', \verb'ni', \verb'J', and \verb'nj'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_assign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{assign_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign                 // w<mask>(I) = accum (w(I),u)
(
    GrB_Vector w,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),t)
    const GrB_Vector u,             // first input:  vector u
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_assign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'.  The \verb'mask' vector has the same
size as \verb'w'.  The method is identical to \verb'GrB_Matrix_assign'
described in Section~\ref{assign_matrix}, where all matrices have a single
column each.  The only other difference is that the input \verb'u' in this
method is not transposed via the \verb'GrB_INP0' descriptor.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_assign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{assign_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign                 // C<Mask>(I,J) = accum (C(I,J),A)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_assign' operates on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'.  It may also modify all of \verb'C',
depending on the input descriptor \verb'desc' and the \verb'Mask'.

\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
     & notation  & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$                & extract ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S} = {\bf S} \odot {\bf A}$       & apply the accumulator (but not the mask) to ${\bf S}$\\
3 & ${\bf Z} = {\bf C}$                     & make a copy of ${\bf C}$ \\
4 & ${\bf Z(I,J)} = {\bf S}$                & put the submatrix into ${\bf Z(I,J)}$ \\
5 & ${\bf C \langle M \rangle = Z}$         & apply the mask/replace phase to all of ${\bf C}$ \\
\hline
\end{tabular}
\vspace{0.1in}

In contrast to \verb'GxB_subassign', the \verb'Mask' has the same as \verb'C'.

Step 1 extracts the submatrix and then Step 2 applies the accumulator
(or ${\bf S}={\bf A}$ if \verb'accum' is \verb'NULL').  The \verb'Mask' is
not yet applied.

Step 3 makes a copy of the ${\bf C}$ matrix, and then Step 4 writes the
submatrix ${\bf S}$ into ${\bf Z}$.  This is the same as Step 3 of
\verb'GxB_subassign', except that it operates on a temporary matrix ${\bf Z}$.

Finally, Step 5 writes ${\bf Z}$ back into ${\bf C}$ via the \verb'Mask', using
the Mask/Replace Phase described in Section~\ref{accummask}.  If
\verb'GrB_REPLACE' is enabled, then all of ${\bf C}$ is cleared prior to
writing ${\bf Z}$ via the mask.  As a result, the \verb'GrB_REPLACE' option can
delete entries outside the ${\bf C(I,J)}$ submatrix.

\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'.  The opposite is true
if \verb'A' is transposed.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Col\_assign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{assign_column}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign                 // C<mask>(I,j) = accum (C(I,j),u)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(:,j), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(I,j),t)
    const GrB_Vector u,             // input vector
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index j,              // column index
    const GrB_Descriptor desc       // descriptor for C(:,j) and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Col_assign' modifies a single sub-column of a matrix \verb'C'.  It is
the same as \verb'GrB_Matrix_assign' where the index vector \verb'J[0]=j' is a
single column index, and where all matrices in \verb'GrB_Matrix_assign' (except
\verb'C') consist of a single column.

Unlike \verb'GrB_Matrix_assign', the \verb'mask' is a vector with the same size
as a single column of \verb'C'.

The input descriptor \verb'GrB_INP0' is ignored; the input vector \verb'u' is
not transposed.  Refer to \verb'GrB_Matrix_assign' for further details.

\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GrB_Col_assign' is much faster than \verb'GrB_Row_assign' if the format
of \verb'C' is \verb'GxB_BY_COL'.  \verb'GrB_Row_assign' is much faster than
\verb'GrB_Col_assign' if the format of \verb'C' is \verb'GxB_BY_ROW'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Row\_assign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{assign_row}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign                 // C<mask'>(i,J) = accum (C(i,J),u')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(i,:), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(i,J),t)
    const GrB_Vector u,             // input vector
    const GrB_Index i,              // row index
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C(i,:) and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Row_assign' modifies a single sub-row of a matrix \verb'C'.  It is
the same as \verb'GrB_Matrix_assign' where the index vector \verb'I[0]=i' is
a single row index, and where all matrices in \verb'GrB_Matrix_assign'
(except \verb'C') consist of a single row.

Unlike \verb'GrB_Matrix_assign', the \verb'mask' is a vector with the same size
as a single row of \verb'C'.

The input descriptor \verb'GrB_INP0' is ignored; the input vector \verb'u' is
not transposed.  Refer to \verb'GrB_Matrix_assign' for further details.

\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GrB_Col_assign' is much faster than \verb'GrB_Row_assign' if the format
of \verb'C' is \verb'GxB_BY_COL'.  \verb'GrB_Row_assign' is much faster than
\verb'GrB_Col_assign' if the format of \verb'C' is \verb'GxB_BY_ROW'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_assign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{assign_vector_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign                 // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),x)
    const <type> x,                 // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_assign_<type>' assigns a single scalar to an entire subvector
of the vector \verb'w'.  The operation is exactly like setting a single entry
in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column index for a
vector is implicitly \verb'j=0'.  The \verb'mask' vector has the same size as
\verb'w'.  For further details of this function, see
\verb'GrB_Matrix_assign_<type>' in the next section
(\ref{assign_matrix_scalar}).

Following the C API Specification, results are well-defined if \verb'I'
contains duplicate indices.  Duplicate indices are simply ignored.  See
Section~\ref{duplicates} for more details.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_assign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{assign_matrix_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign                 // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    const <type> x,                 // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    const GrB_Index ni,             // number of row indices
    const GrB_Index *J,             // column indices
    const GrB_Index nj,             // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_assign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB.  The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GrB_Matrix_assign'.  Refer
to that function in Section~\ref{assign_matrix} for further details.

The \verb'Mask' has the same size as \verb'C'.

For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.

The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}).  Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of ANSI C11.  For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.

If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined.  No error status will be returned since GraphBLAS has no way of
catching this error.

If \verb'x' is a \verb'GrB_Scalar' with no entry, then it is implicitly
expanded into a matrix \verb'A' of size \verb'ni' by \verb'nj', with no entries
present.

Following the C API Specification, results are well-defined if \verb'I' or
\verb'J' contain duplicate indices.  Duplicate indices are simply ignored.  See
Section~\ref{duplicates} for more details.

\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'.  The opposite is true
if \verb'A' is transposed.

\newpage
%===============================================================================
\subsection{Duplicate indices in {\sf GrB\_assign} and {\sf GxB\_subassign}}
%===============================================================================
\label{duplicates}

According to the GraphBLAS C API Specification if the index vectors \verb'I' or
\verb'J' contain duplicate indices, the results are undefined for
\verb'GrB_Matrix_assign', \verb'GrB_Matrix_assign', \verb'GrB_Col_assign', and
\verb'GrB_Row_assign'.  Only the scalar assignment operations
(\verb'GrB_Matrix_assign_TYPE' and \verb'GrB_Matrix_assign_TYPE') are
well-defined when duplicates appear in \verb'I' and \verb'J'.  In those two
functions, duplicate indices are ignored.

As an extension to the specification, SuiteSparse:GraphBLAS provides a
definition of how duplicate indices are handled in all cases.  If \verb'I' has
duplicate indices, they are ignored and the last unique entry in the list is
used.  When no mask and no accumulator is present, the results are identical to
how MATLAB handles duplicate indices in the built-in expression
\verb'C(I,J)=A'.  Details of how this is done is shown below.

{\small
\begin{verbatim}
    function C = subassign (C, I, J, A)
    % submatrix assignment with pre-sort of I and J; and remove duplicates

    % delete duplicates from I, keeping the last one seen
    [I2 I2k] = sort (I) ;
    Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;
    I2  = I2  (~Idupl) ;
    I2k = I2k (~Idupl) ;
    assert (isequal (I2, unique (I)))

    % delete duplicates from J, keeping the last one seen
    [J2 J2k] = sort (J) ;
    Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;
    J2  = J2  (~Jdupl) ;
    J2k = J2k (~Jdupl) ;
    assert (isequal (J2, unique (J)))

    % do the submatrix assignment, with no duplicates in I2 or J2
    C (I2,J2) = A (I2k,J2k) ;
\end{verbatim}}

If a mask is present, then it is replaced with \verb'M = M (I2k, J2k)' for
\verb'GxB_subassign', or with \verb'M = M (I2, J2)' for \verb'GrB_assign'.
If an accumulator operator is present, it is applied after the duplicates
are removed, as (for example):

{\small
\begin{verbatim}
    C (I2,J2) = C (I2,J2) + A (I2k,J2k) ;
\end{verbatim}}

These definitions allow the MATLAB/Octave interface to GraphBLAS to return the same
results for \verb'C(I,J)=A' for a \verb'GrB' object as they do for built-in
MATLAB/Octave matrices.  They also allow the assignment to be done in parallel.

Results are always well-defined in SuiteSparse:GraphBLAS, but they might not be
what you expect.  For example, suppose the \verb'MIN' operator is being used
the following assigment to the vector \verb'x', and suppose \verb'I' contains
the entries \verb'[0 0]'.  Suppose \verb'x' is initially empty, of length 1,
and suppose \verb'y' is a vector of length 2 with the values \verb'[5 7]'.

{\small
\begin{verbatim}
    #include "GraphBLAS.h"
    #include <stdio.h>
    int main (void)
    {
        GrB_init (GrB_NONBLOCKING) ;
        GrB_Vector x, y ;
        GrB_Vector_new (&x, GrB_INT32, 1) ;
        GrB_Vector_new (&y, GrB_INT32, 2) ;
        GrB_Index I [2] = {0, 0} ;
        GrB_Vector_setElement (y, 5, 0) ;
        GrB_Vector_setElement (y, 7, 1) ;
        GrB_Vector_wait (&y) ;
        GxB_print (x, 3) ;
        GxB_print (y, 3) ;
        GrB_assign (x, NULL, GrB_MIN_INT32, y, I, 2, NULL) ;
        GrB_Vector_wait (&y) ;
        GxB_print (x, 3) ;
        GrB_finalize ( ) ;
    }
\end{verbatim}}

You might (wrongly) expect the result to be the vector \verb'x(0)=5', since
two entries seem to be assigned, and the min operator might be expected to
take the minimum of the two.  This is not how SuiteSparse:GraphBLAS handles
duplicates.

Instead, the first duplicate index of \verb'I' is discarded
(\verb'I [0] = 0', and \verb'y(0)=5').
and only the second entry is used
(\verb'I [1] = 0', and \verb'y(1)=7').
The output of the above program is:

{\small
\begin{verbatim}

  1x1 GraphBLAS int32_t vector, sparse by col:
  x, no entries


  2x1 GraphBLAS int32_t vector, sparse by col:
  y, 2 entries

    (0,0)   5
    (1,0)   7


  1x1 GraphBLAS int32_t vector, sparse by col:
  x, 1 entry

    (0,0)   7

\end{verbatim}}

You see that the result is \verb'x(0)=7', since the \verb'y(0)=5' entry
has been ignored because of the duplicate indices in \verb'I'.

\begin{alert}
{\bf SPEC:} Providing a well-defined behavior for duplicate
indices with matrix and vector assignment is an extension to the specification.
The specification only defines the behavior when assigning a scalar into a matrix
or vector, and states that duplicate indices otherwise lead to undefined
results.
\end{alert}


\newpage
%===============================================================================
\subsection{Comparing {\sf GrB\_assign} and {\sf GxB\_subassign}} %=============
%===============================================================================
\label{compare_assign}

The \verb'GxB_subassign' and \verb'GrB_assign' operations are very similar, but
they differ in two ways:

\begin{enumerate}
\item {\bf The Mask has a different size:}
    The mask in \verb'GxB_subassign' has the same dimensions as \verb'w(I)' for
    vectors and \verb'C(I,J)' for matrices.  In \verb'GrB_assign', the mask is
    the same size as \verb'w' or \verb'C', respectively (except for the row/col
    variants).  The two masks are related.  If \verb'M' is the mask for
    \verb'GrB_assign', then \verb'M(I,J)' is the mask for \verb'GxB_subassign'.
    If there is no mask, or if \verb'I' and \verb'J' are both \verb'GrB_ALL',
    the two masks are the same.
    For \verb'GrB_Row_assign' and \verb'GrB_Col_assign', the \verb'mask' vector
    is the same size as a row or column of \verb'C', respectively.  For the
    corresponding \verb'GxB_Row_subassign' and \verb'GxB_Col_subassign'
    operations, the \verb'mask' is the same size as the sub-row \verb'C(i,J)' or
    subcolumn \verb'C(I,j)', respectively.

\item {\bf \verb'GrB_REPLACE' is different:}
    They differ in how \verb'C' is affected in areas outside the \verb'C(I,J)'
    submatrix.  In \verb'GxB_subassign', the \verb'C(I,J)' submatrix is the
    only part of \verb'C' that can be modified, and no part of \verb'C' outside
    the submatrix is ever modified.  In \verb'GrB_assign', it is possible to
    delete entries in \verb'C' outside the submatrix, but only in one specific
    manner.  Suppose the mask \verb'M' is present (or, suppose it is not
    present but \verb'GrB_COMP' is true).  After (optionally) complementing the
    mask, the value of \verb'M(i,j)' can be 0 for some entry outside the
    \verb'C(I,J)' submatrix.  If the \verb'GrB_REPLACE' descriptor is
    true, \verb'GrB_assign' deletes this entry.

\end{enumerate}

\verb'GxB_subassign' and \verb'GrB_assign' are identical if \verb'GrB_REPLACE'
is set to its default value of false, and if the masks happen to be the same.
The two masks can be the same in two cases:  either the \verb'Mask' input is
\verb'NULL' (and it is not complemented via \verb'GrB_COMP'), or \verb'I' and
\verb'J' are both \verb'GrB_ALL'.
If all these conditions hold,
the two algorithms are identical and have the same performance.  Otherwise,
\verb'GxB_subassign' is much faster than \verb'GrB_assign' when the latter
must examine the entire matrix \verb'C' to delete entries (when
\verb'GrB_REPLACE' is true), and if it must deal with a much larger \verb'Mask'
matrix.  However, both methods have specific uses.

Consider using \verb'C(I,J)+=F' for many submatrices \verb'F' (for example,
when assembling a finite-element matrix).  If the \verb'Mask' is meant as a
specification for which entries of \verb'C' should appear in the final result,
then use \verb'GrB_assign'.

If instead the \verb'Mask' is meant to control which entries of the submatrix
\verb'C(I,J)' are modified by the finite-element \verb'F', then use
\verb'GxB_subassign'.  This is particularly useful is the \verb'Mask' is a
template that follows along with the finite-element \verb'F', independent of
where it is applied to \verb'C'.  Using \verb'GrB_assign' would be very
difficult in this case since a new \verb'Mask', the same size as \verb'C',
would need to be constructed for each finite-element \verb'F'.

In GraphBLAS notation, the two methods can be described as follows:

\vspace{0.05in}
\begin{tabular}{ll}
\hline
matrix and vector subassign & ${\bf C(I,J) \langle M \rangle}  = {\bf C(I,J)} \odot {\bf A}$ \\
matrix and vector    assign & ${\bf C \langle M \rangle (I,J)} = {\bf C(I,J)} \odot {\bf A}$ \\
\hline
\end{tabular}
\vspace{0.05in}

This notation does not include the details of the \verb'GrB_COMP' and
\verb'GrB_REPLACE' descriptors, but it does illustrate the difference in the
\verb'Mask'.  In the subassign, \verb'Mask' is the same size as \verb'C(I,J)'
and \verb'A'.  If \verb'I[0]=i' and \verb'J[0]=j', Then \verb'Mask(0,0)'
controls how \verb'C(i,j)' is modified by the subassign, from the value
\verb'A(0,0)'.  In the assign, \verb'Mask' is the same size as \verb'C', and
\verb'Mask(i,j)' controls how \verb'C(i,j)' is modified.

The \verb'GxB_subassign' and \verb'GrB_assign' functions have the same
signatures; they differ only in how they consider the \verb'Mask' and the
\verb'GrB_REPLACE' descriptor

Details of each step of the two operations are listed below:

\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & \verb'GrB_Matrix_assign'                & \verb'GxB_Matrix_subassign'                        \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$                & ${\bf S} = {\bf C(I,J)}$                              \\
2 & ${\bf S} = {\bf S} \odot {\bf A}$       & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$   \\
3 & ${\bf Z} = {\bf C}$                     & ${\bf C(I,J)}= {\bf S}$                               \\
4 & ${\bf Z(I,J)} = {\bf S}$                &                                                       \\
5 & ${\bf C \langle M \rangle = Z}$         &                                                       \\
\hline
\end{tabular}
\vspace{0.1in}

Step 1 is the same.  In the Accumulator Phase (Step 2), the expression
${\bf S} \odot {\bf A}$,
described in Section~\ref{accummask}, is the same in both
operations.  The result is simply ${\bf A}$ if \verb'accum' is \verb'NULL'.  It
only applies to the submatrix ${\bf S}$, not the whole matrix.
The result ${\bf S} \odot {\bf A}$ is used differently in the Mask/Replace
phase.

The Mask/Replace Phase, described in Section~\ref{accummask} is different:
\begin{itemize}
\item
    For \verb'GrB_assign' (Step 5), the mask is applied to all of ${\bf
    C}$.  The mask has the same size as ${\bf C}$.  Just prior to making the
    assignment via the mask, the \verb'GrB_REPLACE' option can be used to clear
    all of ${\bf C}$ first.  This is the only way in which entries in ${\bf C}$ that
    are outside the ${\bf C(I,J)}$ submatrix can be modified by this operation.

\item
    For \verb'GxB_subassign' (Step 2b), the mask is applied to just
    ${\bf S}$.  The mask has the same size as ${\bf C(I,J)}$, ${\bf S}$, and
    ${\bf A}$.  Just prior to making the assignment via the mask, the
    \verb'GrB_REPLACE' option can be used to clear ${\bf S}$ first.  No entries
    in ${\bf C}$ that are outside the ${\bf C(I,J)}$ can be modified by this
    operation.  Thus, \verb'GrB_REPLACE' has no effect on entries in ${\bf C}$
    outside the ${\bf C(I,J)}$ submatrix.

\end{itemize}

The differences between \verb'GrB_assign' and
\verb'GxB_subassign' can be seen in Tables~\ref{insubmatrix} and
\ref{outsubmatrix}.  The first table considers the case when the entry $c_{ij}$
is in the ${\bf C(I,J)}$ submatrix, and it describes what is computed for both
\verb'GrB_assign' and \verb'GxB_subassign'.  They perform the
exact same computation; the only difference is how the value of the mask is
specified.  Compare Table~\ref{insubmatrix} with Table~\ref{tab:maskaccum}
in Section~\ref{sec:maskaccum}.

The first column of Table~\ref{insubmatrix} is {\em yes} if \verb'GrB_REPLACE' is enabled,
and a dash otherwise.  The second column is {\em yes} if an accumulator
operator is given, and a dash otherwise.  The third column is $c_{ij}$ if the
entry is present in ${\bf C}$, and a dash otherwise.  The fourth column is
$a_{i'j'}$ if the corresponding entry is present in ${\bf A}$, where
$i={\bf I}(i')$ and $j={\bf J}(i')$.

The {\em mask} column is 1 if the effective value of the mask mask allows ${\bf
C}$ to be modified, and 0 otherwise.  This is $m_{ij}$ for \verb'GrB_assign',
and $m_{i'j'}$ for \verb'GxB_subassign', to reflect the difference in the mask,
but this difference is not reflected in the table.  The value 1 or 0 is the
value of the entry in the mask after it is optionally complemented via the
\verb'GrB_COMP' option.

Finally, the last column is the action taken in this case.  It is left blank if
no action is taken, in which case $c_{ij}$ is not modified if present, or not
inserted into ${\bf C}$ if not present.

\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf A}$ & mask & action taken by \verb'GrB_assign' and \verb'GxB_subassign'\\
\hline
    -  &-   & $c_{ij}$ & $a_{i'j'}$  & 1    &  $c_{ij} = a_{i'j'}$, update \\
    -  &-   &  -       & $a_{i'j'}$  & 1    &  $c_{ij} = a_{i'j'}$, insert \\
    -  &-   & $c_{ij}$ &  -          & 1    &  delete $c_{ij}$ because $a_{i'j'}$ not present \\
    -  &-   &  -       &  -          & 1    &   \\
    -  &-   & $c_{ij}$ & $a_{i'j'}$  & 0    &   \\
    -  &-   &  -       & $a_{i'j'}$  & 0    &   \\
    -  &-   & $c_{ij}$ &  -          & 0    &   \\
    -  &-   &  -       &  -          & 0    &   \\
\hline
    yes&-   & $c_{ij}$ & $a_{i'j'}$  & 1    &  $c_{ij} = a_{i'j'}$, update \\
    yes&-   &  -       & $a_{i'j'}$  & 1    &  $c_{ij} = a_{i'j'}$, insert \\
    yes&-   & $c_{ij}$ &  -          & 1    &  delete $c_{ij}$ because $a_{i'j'}$ not present \\
    yes&-   &  -       &  -          & 1    &   \\
    yes&-   & $c_{ij}$ & $a_{i'j'}$  & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&-   &  -       & $a_{i'j'}$  & 0    &   \\
    yes&-   & $c_{ij}$ &  -          & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&-   &  -       &  -          & 0    &   \\
\hline
    -  &yes & $c_{ij}$ & $a_{i'j'}$  & 1    &  $c_{ij} = c_{ij} \odot a_{i'j'}$, apply accumulator \\
    -  &yes &  -       & $a_{i'j'}$  & 1    &  $c_{ij} = a_{i'j'}$, insert \\
    -  &yes & $c_{ij}$ &  -          & 1    &   \\
    -  &yes &  -       &  -          & 1    &   \\
    -  &yes & $c_{ij}$ & $a_{i'j'}$  & 0    &   \\
    -  &yes &  -       & $a_{i'j'}$  & 0    &   \\
    -  &yes & $c_{ij}$ &  -          & 0    &   \\
    -  &yes &  -       &  -          & 0    &   \\
\hline
    yes&yes & $c_{ij}$ & $a_{i'j'}$  & 1    &  $c_{ij} = c_{ij} \odot a_{i'j'}$, apply accumulator \\
    yes&yes &  -       & $a_{i'j'}$  & 1    &  $c_{ij} = a_{i'j'}$, insert \\
    yes&yes & $c_{ij}$ &  -          & 1    &   \\
    yes&yes &  -       &  -          & 1    &   \\
    yes&yes & $c_{ij}$ & $a_{i'j'}$  & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&yes &  -       & $a_{i'j'}$  & 0    &   \\
    yes&yes & $c_{ij}$ &  -          & 0    &  delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
    yes&yes &  -       &  -          & 0    &   \\
\hline
\end{tabular}
}
\caption{Results of assign and subassign for entries in the ${\bf C(I,J)}$ submatrix \label{insubmatrix}}
\end{table}

\newpage
Table~\ref{outsubmatrix} illustrates how \verb'GrB_assign' and
\verb'GxB_subassign' differ for entries outside the submatrix.
\verb'GxB_subassign' never modifies any entry outside the ${\bf C(I,J)}$
submatrix, but \verb'GrB_assign' can modify them in two cases listed in
Table~\ref{outsubmatrix}.  When the \verb'GrB_REPLACE' option is selected, and
when the \verb'Mask(i,j)' for an entry $c_{ij}$ is false (or if the
\verb'Mask(i,j)' is true and \verb'GrB_COMP' is enabled via the descriptor),
then the entry is deleted by \verb'GrB_assign'.

The fourth column of Table~\ref{outsubmatrix} differs from
Table~\ref{insubmatrix}, since entries in ${\bf A}$ never affect these entries.
Instead, for all index pairs outside the $I \times J$ submatrix, ${\bf C}$ and
${\bf Z}$ are identical (see Step 3 above).  As a result, each section of the
table includes just two cases: either $c_{ij}$ is present, or not.   This in
contrast to Table~\ref{insubmatrix}, where each section must consider four
different cases.

The \verb'GrB_Row_assign' and \verb'GrB_Col_assign' operations are slightly
different.  They only affect a single row or column of ${\bf C}$.
For \verb'GrB_Row_assign', Table~\ref{outsubmatrix} only applies to entries in
the single row \verb'C(i,J)' that are outside the list of indices, \verb'J'.
For \verb'GrB_Col_assign', Table~\ref{outsubmatrix} only applies to entries in
the single column \verb'C(I,j)' that are outside the list of indices, \verb'I'.

\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf C=Z}$ & mask & action taken by \verb'GrB_assign' \\
\hline
   -   &-     & $c_{ij}$ & $c_{ij}$ & 1 &  \\
   -   &-     &  -       & -        & 1 &  \\
   -   &-     & $c_{ij}$ & $c_{ij}$ & 0 &  \\
   -   &-     &  -       & -        & 0 &  \\
\hline
   yes &  -   & $c_{ij}$ & $c_{ij}$ & 1 &  \\
   yes &  -   &    -     &     -    & 1 &  \\
   yes &  -   & $c_{ij}$ & $c_{ij}$ & 0 & delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
   yes &  -   &    -     &  -       & 0 &  \\
\hline
   -   &yes   & $c_{ij}$ & $c_{ij}$ & 1 &  \\
   -   &yes   &    -     &  -       & 1 &  \\
   -   &yes   & $c_{ij}$ & $c_{ij}$ & 0 &  \\
   -   &yes   &    -     &  -       & 0 &  \\
\hline
   yes &  yes & $c_{ij}$ & $c_{ij}$ & 1 &  \\
   yes &  yes &   -      &  -       & 1 &  \\
   yes &  yes & $c_{ij}$ & $c_{ij}$ & 0 & delete $c_{ij}$  (because of \verb'GrB_REPLACE') \\
   yes &  yes &   -      &  -       & 0 &  \\
\hline
\end{tabular}
}
\caption{Results of assign for entries outside the
${\bf C(I,J)}$ submatrix.  Subassign has no effect on these entries. \label{outsubmatrix}}
\end{table}

%-------------------------------------------------------------------------------
\subsubsection{Example}
%-------------------------------------------------------------------------------

The difference between \verb'GxB_subassign' and \verb'GrB_assign' is
illustrated in the following example.  Consider the 2-by-2 matrix ${\bf C}$
where all entries are present.

\[
{\bf C} = \left[
    \begin{array}{rr}
    11 & 12 \\
    21 & 22 \\
    \end{array}
    \right]
\]

Suppose \verb'GrB_REPLACE' is true, and \verb'GrB_COMP' is false.  Let the
\verb'Mask' be:

\[
{\bf M} = \left[
    \begin{array}{rr}
    1 & 1 \\
    0 & 1 \\
    \end{array}
    \right].
\]

Let ${\bf A} = 100$, and let the index sets be ${\bf I}=0$ and ${\bf J}=1$.
Consider the computation
${\bf C \langle M \rangle} (0,1) = {\bf C}(0,1) + {\bf A}$,
using the \verb'GrB_assign' operation.  The result is:
\[
{\bf C} = \left[
    \begin{array}{rr}
    11 & 112 \\
     - &  22 \\
    \end{array}
    \right].
\]
The $(0,1)$ entry is updated and the $(1,0)$ entry is deleted because
its \verb'Mask' is zero.  The other two entries are not modified since ${\bf Z}
= {\bf C}$ outside the submatrix, and those two values are written back into
${\bf C}$ because their \verb'Mask' values are 1.  The $(1,0)$ entry is deleted
because the entry ${\bf Z}(1,0)=21$ is prevented from being written back into
${\bf C}$ since \verb'Mask(1,0)=0'.

Now consider the analogous \verb'GxB_subassign' operation.  The \verb'Mask' has
the same size as ${\bf A}$, namely:
\[
{\bf M} = \left[
    \begin{array}{r}
    1 \\
    \end{array}
    \right].
\]

After computing
${\bf C} (0,1) {\bf \langle M \rangle} = {\bf C}(0,1) + {\bf A}$,
the result is

\[
{\bf C} = \left[
    \begin{array}{rr}
    11 & 112 \\
    21 &  22 \\
    \end{array}
    \right].
\]

Only the ${\bf C(I,J)}$ submatrix, the single entry ${\bf C}(0,1)$, is modified
by \verb'GxB_subassign'.  The entry ${\bf C}(1,0)=21$ is unaffected by
\verb'GxB_subassign', but it is deleted by \verb'GrB_assign'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{Performance of {\sf GxB\_subassign}, {\sf GrB\_assign}
and {\sf GrB\_*\_setElement}}
%-------------------------------------------------------------------------------

When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications to a
matrix by \verb'GxB_subassign', \verb'GrB_assign', and \verb'GrB_*_setElement'
can postponed, and computed all at once later on.  This has a huge impact on
performance.

A sequence of assignments is fast if their completion can be postponed for as
long as possible, or if they do not modify the pattern at all.  Modifying the
pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.

Consider a sequence of $t$ submatrix assignments \verb'C(I,J)=C(I,J)+A' to an
$n$-by-$n$ matrix \verb'C' where each submatrix \verb'A' has size $a$-by-$a$
with $s$ entries, and where \verb'C' starts with $c$ entries.
Assume the matrices are all stored in non-hypersparse form, by row
(\verb'GxB_BY_ROW').

If blocking mode is enabled, or if the sequence requires the matrix to be
completed after each assignment, each of the $t$ assignments takes $O(a + s
\log n)$ time to process the \verb'A' matrix and then $O(n + c + s \log s)$
time to complete \verb'C'.  The latter step uses \verb'GrB_*_build' to build an
update matrix and then merge it with \verb'C'.  This step does not occur if the
sequence of assignments does not add new entries to the pattern of \verb'C',
however.  Assuming in the worst case that the pattern does change, the total
time is $O (t \left[ a + s \log n + n + c + s \log s \right] )$.

If the sequence can be computed with all updates postponed until the end of the
sequence, then the total time is no worse than $O(a + s \log n)$ to process
each \verb'A' matrix, for $t$ assignments, and then a single \verb'build' at
the end, taking $O(n + c + st \log st)$ time.
The total time is $O (t \left [a + s \log n \right] + (n + c + st \log st))$.
If no new entries appear in
\verb'C' the time drops to $O (t \left [a + s \log n \right])$, and in this
case, the time for both methods is the same; both are equally efficient.

A few simplifying assumptions are useful to compare these times.  Consider a
graph of $n$ nodes with $O(n)$ edges, and with a constant bound on the degree
of each node.  The asymptotic bounds assume a worst-case scenario where
\verb'C' has a least some dense rows (thus the $\log n$ terms).  If these
are not present, if both $t$ and $c$ are $O(n)$, and if $a$ and $s$ are
constants, then the total time with blocking mode becomes $O(n^2)$, assuming
the pattern of \verb'C' changes at each assignment.  This very high for a
sparse graph problem.  In contrast, the non-blocking time becomes $O(n \log n)$
under these same assumptions, which is asymptotically much faster.

\newpage
The difference in practice can be very dramatic, since $n$ can be many millions
for sparse graphs with $n$ nodes and $O(n)$, which can be handled on a
commodity laptop.

The following guidelines should be considered when using
\verb'GxB_subassign', \verb'GrB_assign' and \verb'GrB_*_setElement'.

\begin{enumerate}

\item A sequence of assignments that does not modify the pattern at all is
fast, taking as little as $\Omega(1)$ time per entry modified.  The worst case
time complexity is $O(\log n)$ per entry, assuming they all modify a dense
row of \verb'C' with \verb'n' entries, which can occur in practice.  It is
more common, however, that most rows of \verb'C' have a constant number of
entries, independent of \verb'n'.  No work is ever left pending when the
pattern of \verb'C' does not change.

\item A sequence of assignments that modifies the entries that already exist in
the pattern of a matrix, or adds new entries to the pattern (using the same
\verb'accum' operator), but does not delete any entries, is fast.  The matrix
is not completed until the end of the sequence.

\item Similarly, a sequence that modifies existing entries, or deletes them,
but does not add new ones, is also fast.  This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast.  The
matrix is not completed until the end of the sequence.

\item A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assignment.  The
time complexity can become quadratic in the worst case.

\item However, any single assignment takes no more than $O (a + s \log n + n +
c + s \log s )$ time, even including the time for a matrix completion, where
\verb'C' is $n$-by-$n$ with $c$ entries and \verb'A' is $a$-by-$a$ with $s$
entries.  This time is essentially linear in the size of the matrix \verb'C',
if \verb'A' is relatively small and sparse compared with \verb'C'.  In this
case, $n+c$ are the two dominant terms.

\item In general, \verb'GxB_subassign' is faster than \verb'GrB_assign'.
If \verb'GrB_REPLACE' is used with \verb'GrB_assign', the entire matrix
\verb'C' must be traversed.  This is much slower than \verb'GxB_subassign',
which only needs to examine the \verb'C(I,J)' submatrix.  Furthermore,
\verb'GrB_assign' must deal with a much larger \verb'Mask' matrix, whereas
\verb'GxB_subassign' has a smaller mask.  Since its mask is smaller,
\verb'GxB_subassign' takes less time than \verb'GrB_assign' to access the mask.

\end{enumerate}

% see GraphBLAS/Test/test46.m

Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient, even
without considering the advantages of non-blocking mode discussed in
Section~\ref{compare_assign}.  It can be up to 1000x faster than MATLAB R2019b,
or even higher depending on the kind of matrix assignment.  MATLAB logical
indexing (the mask of GraphBLAS) is extremely faster with GraphBLAS as compared
in MATLAB R2019b; differences of up to 250,000x have been observed (0.4 seconds
in GraphBLAS versus 28 hours in MATLAB).

All of the 28 variants (each with their own source code) are either
asymptotically optimal, or to within a log factor of being asymptotically
optimal.  The methods are also fully parallel.  For hypersparse matrices, the
term $n$ in the expressions in the above discussion is dropped, and is replaced
with $h \log h$, at the worst case, where $h << n$ is the number of non-empty
columns of a hypersparse matrix stored by column, or the number of non-empty
rows of a hypersparse matrix stored by row.  In many methods, $n$ is replaced
with $h$, not $h \log h$.

\newpage
%===============================================================================
\subsection{{\sf GrB\_apply:} apply a unary, binary, or index-unary operator}
%===============================================================================
\label{apply}

\verb'GrB_apply' is the generic name for 92 specific functions:

\begin{packed_itemize}
\item
\verb'GrB_Vector_apply' and \verb'GrB_Matrix_apply' apply a unary operator to
the entries of a matrix (two variants).

\item \verb'GrB_*_apply_BinaryOp1st_*' applies a binary
operator where a single scalar is provided as the $x$ input to the binary
operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').

\item \verb'GrB_*_apply_BinaryOp2nd_*' applies a binary operator where a
single scalar is provided as the $y$ input to the binary operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').

\item \verb'GrB_*_apply_IndexOp_*' applies a \verb'GrB_IndexUnaryOp',
single scalar is provided as the scalar $y$ input to the index-unary operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').

\end{packed_itemize}

The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation.  When discussing features that apply to all
versions, the simple name \verb'GrB_apply' is used.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_apply:} apply a unary operator to a vector}
%-------------------------------------------------------------------------------
\label{apply_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_UnaryOp op,           // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_apply' applies a unary operator to the entries of a vector,
analogous to \verb't = op(u)'  in MATLAB except the operator \verb'op' is only
applied to entries in the pattern of \verb'u'.  Implicit values outside the
pattern of \verb'u' are not affected.  The entries in \verb'u' are typecasted
into the \verb'xtype' of the unary operator.  The vector \verb't' has the same
type as the \verb'ztype' of the unary operator.  The final step is ${\bf w
\langle m \rangle  = w \odot t}$, as described in Section~\ref{accummask},
except that all the terms are column vectors instead of matrices.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_apply:} apply a unary operator to a matrix}
%-------------------------------------------------------------------------------
\label{apply_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // C<Mask> = accum (C, op(A)) or op(A')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_UnaryOp op,           // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_apply'
applies a unary operator to the entries of a matrix, analogous to
\verb'T = op(A)'  in MATLAB except the operator \verb'op' is only applied to
entries in the pattern of \verb'A'.  Implicit values outside the pattern of
\verb'A' are not affected.  The input matrix \verb'A' may be transposed first.
The entries in \verb'A' are typecasted into the \verb'xtype' of the unary
operator.  The matrix \verb'T' has the same type as the \verb'ztype' of the
unary operator.  The final step is ${\bf C \langle M \rangle  = C \odot T}$, as
described in Section~\ref{accummask}.

The built-in \verb'GrB_IDENTITY_'$T$ operators (one for each built-in type $T$)
are very useful when combined with this function, enabling it to compute ${\bf
C \langle M \rangle  = C \odot A}$.  This makes \verb'GrB_apply' a direct
interface to the accumulator/mask function for both matrices and vectors.
The \verb'GrB_IDENTITY_'$T$ operators also provide the fastest stand-alone
typecasting methods in SuiteSparse:GraphBLAS, with all $13 \times 13=169$
methods appearing as individual functions, to typecast between any of the 13
built-in types.

To compute ${\bf C \langle M \rangle = A}$ or ${\bf C \langle M \rangle = C
\odot A}$ for user-defined types, the user application would need to define an
identity operator for the type.  Since GraphBLAS cannot detect that it is an
identity operator, it must call the operator to make the full copy \verb'T=A'
and apply the operator to each entry of the matrix or vector.

The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is \verb'GrB_transpose', which does not require an
operator to perform this task.  As a result, \verb'GrB_transpose' can be used
as an efficient and direct interface to the accumulator/mask function for
both built-in and user-defined types.  However, it is only available for
matrices, not vectors.

\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp1st:} apply a binary operator to a vector; 1st scalar binding}
%===============================================================================
\label{vector_apply1st}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    <type> x,                       // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_apply_BinaryOp1st_<type>'  applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $x$ is bound to the first input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.

%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp2nd:} apply a binary operator to a vector; 2nd scalar binding}
%===============================================================================
\label{vector_apply2nd}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    <type> y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_apply_BinaryOp2nd_<type>'  applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $y$ is bound to the second input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.

\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_IndexOp:} apply an index-unary operator to a vector}
%===============================================================================
\label{vector_apply_idxunop}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const <type> y,                 // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_apply_IndexOp_<type>'  applies an index-unary operator
$z=f(x,i,0,y)$ to a vector.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.

%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp1st:} apply a binary operator to a matrix; 1st scalar binding}
%===============================================================================
\label{matrix_apply1st}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    <type> x,                       // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_apply_BinaryOp1st_<type>'  applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the first input of the
operator. 
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.

\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp2nd:} apply a binary operator to a matrix; 2nd scalar binding}
%===============================================================================
\label{matrix_apply2nd}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    <type> y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_apply_BinaryOp2nd_<type>'  applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the second input of the
operator.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.

%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_IndexOp:} apply an index-unary operator to a matrix}
%===============================================================================
\label{matrix_apply_idxunop}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply                  // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const <type> y,                 // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_apply_IndexOp_<type>'  applies an index-unary operator
$z=f(x,i,j,y)$ to a matrix.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.

\newpage
%===============================================================================
\subsection{{\sf GrB\_select:} select entries based on an index-unary operator}
%===============================================================================
\label{select}

The \verb'GrB_select' function is the generic name for 30 specific functions,
depending on whether it operates on a matrix or vector, and depending on the
type of the scalar \verb'y': (matrix or vector) x (13 built-in types,
\verb'void *' for user-defined types, and a \verb'GrB_Scalar').  The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation.  When discussing features that apply to both
versions, the simple name \verb'GrB_select' is used.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_select:} select entries from a vector}
%-------------------------------------------------------------------------------
\label{select_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_select                 // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const <type> y,                 // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_select_*' applies a \verb'GrB_IndexUnaryOp' operator to the
entries of a vector.  If the operator evaluates as \verb'true' for the entry
\verb'u(i)', it is copied to the vector \verb't', or not copied if the operator
evaluates to \verb'false'.   The vector \verb't' is then written to the result
\verb'w' via the mask/accumulator step.  This operation operates on vectors
just as if they were \verb'm'-by-1 matrices, except that GraphBLAS never
transposes a vector via the descriptor.  Refer to the next section
(\ref{select_matrix}) on \verb'GrB_Matrix_select' for more details.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_select:} apply a select operator to a matrix}
%-------------------------------------------------------------------------------
\label{select_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_select                 // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_select_*' applies a \verb'GrB_IndexUnaryOp' operator to the
entries of a matrix.  If the operator evaluates as \verb'true' for the entry
\verb'A(i,j)', it is copied to the matrix \verb'T', or not copied if the
operator evaluates to \verb'false'.  The input matrix \verb'A' may be
transposed first.  The entries in \verb'A' are typecasted into the \verb'xtype'
of the select operator.  The final step is ${\bf C \langle M \rangle  = C \odot
T}$, as described in Section~\ref{accummask}.

The matrix \verb'T' has the same size and type as \verb'A' (or the transpose of
\verb'A' if the input is transposed via the descriptor).  The entries of
\verb'T' are a subset of those of \verb'A'.  Each entry \verb'A(i,j)' of
\verb'A' is passed to the \verb'op', as $z=f(a_{ij},i,j,y)$.  If
\verb'A' is transposed first then the operator is applied to entries in the
transposed matrix, \verb"A'".  If $z$ is returned as true, then the entry is
copied into \verb'T', unchanged.  If it returns false, the entry does not
appear in \verb'T'.

The action of \verb'GrB_select' with the built-in index-unary operators is
described in the table below.  The MATLAB analogs are precise for \verb'tril'
and \verb'triu', but shorthand for the other operations.  The MATLAB
\verb'diag' function returns a column with the diagonal, if \verb'A' is a
matrix, whereas the matrix \verb'T' in \verb'GrB_select' always has the same
size as \verb'A' (or its transpose if the \verb'GrB_INP0' is set to
\verb'GrB_TRAN').  In the MATLAB analog column, \verb'diag' is as if it
operates like \verb'GrB_select', where \verb'T' is a matrix.

The following operators may be used on matrices with a user-defined type:
\verb'GrB_ROWINDEX_*',
\verb'GrB_COLINDEX_*',
\verb'GrB_DIAGINDEX_*',
\verb'GrB_TRIL', \newline
\verb'GrB_TRIU',
\verb'GrB_DIAG',
\verb'GrB_OFFIAG',
\verb'GrB_COLLE',
\verb'GrB_COLGT',
\verb'GrB_ROWLE',
and
\verb'GrB_ROWGT'.

For floating-point values, comparisons with \verb'NaN' always return false.
The \verb'GrB_VALUE*' operators should not be used with a scalar \verb'y' that is
equal to \verb'NaN'.  For this case, create a user-defined select operator that
performs the test with the ANSI C \verb'isnan' function instead.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS name          & MATLAB/Octave     & description \\
                        & analog            & \\
\hline
\verb'GrB_ROWINDEX_*'    & \verb'z=i+y'         & select \verb'A(i,j)' if \verb'i != -y' \\
\verb'GrB_COLINDEX_*'    & \verb'z=j+y'         & select \verb'A(i,j)' if \verb'j != -y' \\
\verb'GrB_DIAGINDEX_*'   & \verb'z=j-(i+y)'     & select \verb'A(i,j)' if \verb'j != i+y' \\
\hline
\verb'GrB_TRIL'    & \verb'z=(j<=(i+y))'  & select entries on or below the \verb'y'th diagonal \\
\verb'GrB_TRIU'    & \verb'z=(j>=(i+y))'  & select entries on or above the \verb'y'th diagonal \\
\verb'GrB_DIAG'    & \verb'z=(j==(i+y))'  & select entries on the \verb'y'th diagonal \\
\verb'GrB_OFFDIAG' & \verb'z=(j!=(i+y))'  & select entries not on the \verb'y'th diagonal \\
\verb'GrB_COLLE'   & \verb'z=(j<=y)'      & select entries in columns 0 to \verb'y' \\
\verb'GrB_COLGT'   & \verb'z=(j>y)'       & select entries in columns \verb'y+1' and above \\
\verb'GrB_ROWLE'   & \verb'z=(i<=y)'      & select entries in rows 0 to \verb'y' \\
\verb'GrB_ROWGT'   & \verb'z=(i>y)'       & select entries in rows \verb'y+1' and above \\
\hline
\verb'GrB_VALUENE_T'     & \verb'z=(aij!=y)'    & select \verb'A(i,j)' if it is not equal to \verb'y'\\
\verb'GrB_VALUEEQ_T'     & \verb'z=(aij==y)'    & select \verb'A(i,j)' is it equal to \verb'y'\\
\verb'GrB_VALUEGT_T'     & \verb'z=(aij>y)'     & select \verb'A(i,j)' is it greater than \verb'y' \\
\verb'GrB_VALUEGE_T'     & \verb'z=(aij>=y)'    & select \verb'A(i,j)' is it greater than or equal to \verb'y' \\
\verb'GrB_VALUELT_T'     & \verb'z=(aij<y)'     & select \verb'A(i,j)' is it less than \verb'y' \\
\verb'GrB_VALUELE_T'     & \verb'z=(aij<=y)'    & select \verb'A(i,j)' is it less than or equal to \verb'y' \\
%
\hline
\end{tabular}
}
\vspace{0.2in}

\newpage
%===============================================================================
\subsection{{\sf GrB\_reduce:} reduce to a vector or scalar} %==================
%===============================================================================
\label{reduce}

The generic function name \verb'GrB_reduce' may be used for all specific
functions discussed in this section.  When the details of a specific function
are discussed, the specific name is used for clarity.

\begin{alert}
{\bf SPEC:} 
All methods below use a monoid for the reduction.  The Specification also
allows reductions using an associative and commutative binary operator.
SuiteSparse:GraphBLAS permits the use of a \verb'GrB_BinaryOp' instead of a
\verb'GrB_Monoid', but only if the binary operator is built-in and corresponds
to a known built-in monoid.  For example, the binary operator
\verb'GrB_PLUS_FP64' can be used, since this is the binary operator of the
built-in \verb'GrB_PLUS_MONOID_FP64'.  For other binary ops (including any
user-defined ones), \verb'GrB_NOT_IMPLEMENTED' is returned.

\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_Monoid} reduce a matrix to a vector}
%-------------------------------------------------------------------------------
\label{reduce_to_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce                 // w<mask> = accum (w,reduce(A))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Monoid monoid,        // reduce monoid for t=reduce(A)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_reduce_Monoid'
reduces a matrix to a column vector using a monoid, roughly analogous
to \verb"t = sum (A')" in MATLAB, in the default case, where \verb't' is a
column vector.  By default, the method reduces across the rows to
obtain a column vector; use \verb'GrB_TRAN' to reduce down the columns.

The input matrix \verb'A' may be transposed first.  Its entries are then
typecast into the type of the \verb'reduce' operator or monoid.  The reduction
is applied to all entries in \verb'A (i,:)' to produce the scalar \verb't (i)'.
This is done without the use of the identity value of the monoid.  If the
\verb'i'th row \verb'A (i,:)' has no entries, then \verb'(i)' is not an entry
in \verb't' and its value is implicit.  If \verb'A (i,:)' has a single entry,
then that is the result \verb't (i)' and \verb'reduce' is not applied at all
for the \verb'i'th row.  Otherwise, multiple entries in row \verb'A (i,:)' are
reduced via the \verb'reduce' operator or monoid to obtain a single scalar,
the result \verb't (i)'.

The final step is ${\bf w \langle m \rangle  = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_reduce\_$<$type$>$:} reduce a vector to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_vector_to_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (u))
(
    <type> *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;

GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (u))
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_reduce_<type>'
reduces a vector to a scalar, analogous to \verb't = sum (u)' in MATLAB,
except that in GraphBLAS any commutative and associative monoid can be used
in the reduction.

The scalar \verb'c' can be a pointer C type: \verb'bool', \verb'int8_t', ...
\verb'float', \verb'double', or \verb'void *' for a user-defined type,
or a \verb'GrB_Scalar'.
If \verb'c' is a \verb'void *' pointer to a user-defined type,
the type must be identical to the type of the vector \verb'u'.
This cannot be checked by GraphBLAS and thus results are undefined if the
types are not the same.

If the vector \verb'u' has no entries, that identity value of the \verb'monoid'
is copied into the scalar \verb't' (unless \verb'c' is a \verb'GrB_Scalar',
in which case \verb't' is an empty \verb'GrB_Scalar', with no entry).
Otherwise, all of the entries in the
vector are reduced to a single scalar using the \verb'monoid'.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API.
This function has no mask so its accumulator/mask step differs from the other
GraphBLAS operations.  It does not use the methods described in
Section~\ref{accummask}, but uses the following method instead.

If \verb'accum' is \verb'NULL', then the scalar \verb't' is typecast into the
type of \verb'c', and \verb'c = t' is the final result.  Otherwise, the scalar
\verb't' is typecast into the \verb'ytype' of the \verb'accum' operator, and
the value of \verb'c' (on input) is typecast into the \verb'xtype' of the
\verb'accum' operator.  Next, the scalar \verb'z = accum (c,t)' is computed, of
the \verb'ztype' of the \verb'accum' operator.  Finally, \verb'z' is typecast
into the final result, \verb'c'.

If \verb'c' is a non-opaque scalar, no error message can be returned by
\verb'GrB_error'.  If \verb'c' is a \verb'GrB_Scalar', then
\verb'GrB_error(&err,c)' can be used to return an error string, if an error
occurs.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_$<$type$>$:} reduce a matrix to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_matrix_to_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (A))
(
    <type> *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;

GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (A))
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_reduce_<type>' reduces a matrix \verb'A' to a scalar, roughly
analogous to \verb't = sum (A (:))' in MATLAB.  This function is identical to
reducing a vector to a scalar, since the positions of the entries in a matrix
or vector have no effect on the result.  Refer to the reduction to scalar
described in the previous Section~\ref{reduce_vector_to_scalar}.

\newpage
%===============================================================================
\subsection{{\sf GrB\_transpose:} transpose a matrix} %=========================
%===============================================================================
\label{transpose}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_transpose              // C<Mask> = accum (C, A')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_transpose'
transposes a matrix \verb'A', just like the array transpose \verb"T = A.'" in
MATLAB.  The internal result matrix \verb"T = A'" (or merely \verb"T = A" if
\verb'A' is transposed via the descriptor) has the same type as \verb'A'.  The
final step is ${\bf C \langle M \rangle  = C \odot T}$, as described in
Section~\ref{accummask}, which typecasts \verb'T' as needed and applies the
mask and accumulator.

To be consistent with the rest of the GraphBLAS API regarding the
descriptor, the input matrix \verb'A' may be transposed first by
setting the \verb'GrB_INP0' setting to \verb'GrB_TRAN'.  This results in
a double transpose, and thus \verb'A' is not transposed is computed.

\newpage
%===============================================================================
\subsection{{\sf GrB\_kronecker:} Kronecker product} %==========================
%===============================================================================
\label{kron}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_kronecker              // C<Mask> = accum (C, kron(A,B))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const <operator> op,            // defines '*' for T=kron(A,B)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_kronecker' computes the Kronecker product,
${\bf C \langle M \rangle = C \odot \mbox{kron}(A,B)}$ where
\[
\mbox{kron}{\bf (A,B)} =
\left[
    \begin{array}{ccc}
    a_{00} \otimes {\bf B} & \ldots & a_{0,n-1} \otimes {\bf B} \\
    \vdots & \ddots & \vdots \\
    a_{m-1,0} \otimes {\bf B} & \ldots & a_{m-1,n-1} \otimes {\bf B} \\
    \end{array}
\right]
\]
The $\otimes$ operator is defined by the \verb'op' parameter.  It is applied in
an element-wise fashion (like \verb'GrB_eWiseMult'), where the pattern of the
submatrix $a_{ij} \otimes {\bf B}$ is the same as the pattern of ${\bf B}$ if
$a_{ij}$ is an entry in the matrix ${\bf A}$, or empty otherwise.  The input
matrices \verb'A' and \verb'B' can be of any dimension, and both matrices may
be transposed first via the descriptor, \verb'desc'.  Entries in \verb'A' and
\verb'B' are typecast into the input types of the \verb'op'.  The matrix
\verb'T=kron(A,B)' has the same type as the \verb'ztype' of the binary
operator, \verb'op'.  The final step is ${\bf C \langle M \rangle  = C \odot
T}$, as described in Section~\ref{accummask}.

The operator \verb'op' may be a \verb'GrB_BinaryOp', a \verb'GrB_Monoid', or a
\verb'GrB_Semiring'.  In the latter case, the multiplicative operator of
the semiring is used.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Printing GraphBLAS objects} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{fprint}

The ten different objects handled by SuiteSparse:GraphBLAS are all opaque,
although nearly all of their contents can be extracted via methods such as
\verb'GrB_Matrix_extractTuples', \verb'GrB_Matrix_extractElement',
\verb'GxB_Matrix_type', and so on.  The GraphBLAS C API has no mechanism for
printing all the contents of GraphBLAS objects, but this is helpful for
debugging.  Ten type-specific methods and two type-generic methods are
provided:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GxB_Type_fprint'         & print and check a \verb'GrB_Type' \\
\verb'GxB_UnaryOp_fprint'      & print and check a \verb'GrB_UnaryOp' \\
\verb'GxB_BinaryOp_fprint'     & print and check a \verb'GrB_BinaryOp' \\
\verb'GxB_IndexUnaryOP_fprint' & print and check a \verb'GrB_IndexUnaryOp' \\
\verb'GxB_Monoid_fprint'       & print and check a \verb'GrB_Monoid' \\
\verb'GxB_Semiring_fprint'     & print and check a \verb'GrB_Semiring' \\
\verb'GxB_Descriptor_fprint'   & print and check a \verb'GrB_Descriptor' \\
\verb'GxB_Matrix_fprint'       & print and check a \verb'GrB_Matrix' \\
\verb'GxB_Vector_fprint'       & print and check a \verb'GrB_Vector' \\
\verb'GxB_Scalar_fprint'       & print and check a \verb'GrB_Scalar' \\
\hline
\verb'GxB_fprint'             & print/check any object to a file \\
\verb'GxB_print'              & print/check any object to \verb'stdout' \\
\hline
\end{tabular}
}
\vspace{0.2in}

These methods do not modify the status of any object, and thus they
cannot return an error string for use by \verb'GrB_error'.

If a matrix or vector
has not been completed, the pending computations are guaranteed to {\em not} be
performed. The reason is simple.  It is possible for a bug in the user
application (such as accessing memory outside the bounds of an array) to mangle
the internal content of a GraphBLAS object, and the \verb'GxB_*print' methods
can be helpful tools to track down this bug.  If \verb'GxB_*print' attempted to
complete any computations prior to printing or checking the contents of the
matrix or vector, then further errors could occur, including a segfault.

By contrast, GraphBLAS methods and operations that return values into
user-provided arrays or variables might finish pending operations before the
return these values, and this would change their state.  Since they do not
change the state of any object, the \verb'GxB_*print' methods provide a useful
alternative for debugging, and for a quick understanding of what GraphBLAS is
computing while developing a user application.

Each of the methods has a parameter of type \verb'GxB_Print_Level' that
specifies the amount to print:

{\footnotesize
\begin{verbatim}
typedef enum
{
    GxB_SILENT = 0,     // nothing is printed, just check the object
    GxB_SUMMARY = 1,    // print a terse summary
    GxB_SHORT = 2,      // short description, about 30 entries of a matrix
    GxB_COMPLETE = 3,   // print the entire contents of the object
    GxB_SHORT_VERBOSE = 4,    // GxB_SHORT but with "%.15g" for doubles
    GxB_COMPLETE_VERBOSE = 5  // GxB_COMPLETE but with "%.15g" for doubles
}
GxB_Print_Level ; \end{verbatim}}

The ten type-specific functions include an additional argument, the
\verb'name' string.  The \verb'name' is printed at the beginning of the display
(assuming the print level is not \verb'GxB_SILENT') so that the object can be
more easily identified in the output.  For the type-generic methods
\verb'GxB_fprint' and \verb'GxB_print', the \verb'name' string is the variable
name of the object itself.

If the file \verb'f' is \verb'NULL', \verb'stdout' is used.
If \verb'name' is \verb'NULL', it is treated
as the empty string.  These are not error conditions.

The methods check their input objects carefully and extensively, even when
\verb'pr' is equal to \verb'GxB_SILENT'.  The following error codes can be
returned:

\begin{packed_itemize}
\item \verb'GrB_SUCCESS':               object is valid
\item \verb'GrB_UNINITIALIZED_OBJECT':  object is not initialized
\item \verb'GrB_INVALID_OBJECT':        object is not valid
\item \verb'GrB_NULL_POINTER':          object is a NULL pointer
\item \verb'GrB_INVALID_VALUE':         \verb'fprintf' returned an I/O error.
\end{packed_itemize}

The content of any GraphBLAS object is opaque, and subject to change.  As a
result, the exact content and format of what is printed is
implementation-dependent, and will change from version to version of
SuiteSparse:GraphBLAS.  Do not attempt to rely on the exact content or format
by trying to parse the resulting output via another program.  The intent of
these functions is to produce a report of an object for visual inspection.  If
the user application needs to extract content from a GraphBLAS matrix or
vector, use \verb'GrB_*_extractTuples' or the import/export methods instead.

GraphBLAS matrices and vectors are zero-based, where indices of an $n$-by-$n$
matrix are in the range 0 to $n-1$.  However, MATLAB, Octave, and Julia prefer
to print their matrices and vectors as one-based.  To enable 1-based printing,
use \verb'GxB_set (GxB_PRINT_1BASED, true)'.  Printing is done as zero-based by
default.

\newpage
%===============================================================================
\subsection{{\sf GxB\_fprint:} Print a GraphBLAS object to a file} %============
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_fprint                 // print and check a GraphBLAS object
(
    GrB_<objecttype> object,        // object to print and check
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

The \verb'GxB_fprint' function prints the contents of any of the ten GraphBLAS
objects to the file \verb'f'.  If \verb'f' is \verb'NULL', the results are
printed to \verb'stdout'.  For example, to print the entire contents of a
matrix \verb'A' to the file \verb'f', use
\verb'GxB_fprint (A, GxB_COMPLETE, f)'.

%===============================================================================
\subsection{{\sf GxB\_print:} Print a GraphBLAS object to {\sf stdout}} %=======
%===============================================================================
\label{gxb_print}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_print                  // print and check a GrB_Vector
(
    GrB_<objecttype> object,        // object to print and check
    GxB_Print_Level pr              // print level
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_print' is the same as \verb'GxB_fprint', except that it prints the
contents of the object to \verb'stdout' instead of a file \verb'f'.  For
example, to print the entire contents of a matrix \verb'A',  use
\verb'GxB_print (A, GxB_COMPLETE)'.

%===============================================================================
\subsection{{\sf GxB\_Type\_fprint:} Print a {\sf GrB\_Type}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_fprint            // print and check a GrB_Type
(
    GrB_Type type,                  // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example, \verb'GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)'
prints the contents of the \verb'GrB_BOOL' object to the file \verb'f'.

\newpage
%===============================================================================
\subsection{{\sf GxB\_UnaryOp\_fprint:} Print a {\sf GrB\_UnaryOp}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_fprint         // print and check a GrB_UnaryOp
(
    GrB_UnaryOp unaryop,            // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example,
\verb'GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)'
prints the \verb'GrB_LNOT' unary operator to the file \verb'f'.


%===============================================================================
\subsection{{\sf GxB\_BinaryOp\_fprint:} Print a {\sf GrB\_BinaryOp}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_fprint        // print and check a GrB_BinaryOp
(
    GrB_BinaryOp binaryop,          // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example,
\verb'GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)' prints the
\verb'GrB_PLUS_FP64' binary operator to the file \verb'f'.


%===============================================================================
\subsection{{\sf GxB\_IndexUnaryOp\_fprint:} Print a {\sf GrB\_IndexUnaryOp}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_IndexUnaryOp_fprint    // print and check a GrB_IndexUnaryOp
(
    GrB_IndexUnaryOp op,            // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example,
\verb'GrB_IndexUnaryOp_fprint (GrB_TRIL, "tril", GxB_COMPLETE, f)' prints
the \verb'GrB_TRIL' index-unary operator to the file \verb'f'.

\newpage
%===============================================================================
\subsection{{\sf GxB\_Monoid\_fprint:} Print a {\sf GrB\_Monoid}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_fprint          // print and check a GrB_Monoid
(
    GrB_Monoid monoid,              // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example,
\verb'GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",'
\verb'GxB_COMPLETE, f)'
prints the predefined \verb'GxB_PLUS_FP64_MONOID' (based on the binary
operator \verb'GrB_PLUS_FP64') to the file \verb'f'.

%===============================================================================
\subsection{{\sf GxB\_Semiring\_fprint:} Print a {\sf GrB\_Semiring}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_fprint        // print and check a GrB_Semiring
(
    GrB_Semiring semiring,          // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example,
\verb'GxB_Semiring_fprint (GxB_PLUS_TIMES_FP64, "standard",'
\verb'GxB_COMPLETE, f)'
prints the predefined \verb'GxB_PLUS_TIMES_FP64' semiring to the file \verb'f'.

%===============================================================================
\subsection{{\sf GxB\_Descriptor\_fprint:} Print a {\sf GrB\_Descriptor}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Descriptor_fprint      // print and check a GrB_Descriptor
(
    GrB_Descriptor descriptor,      // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example,
\verb'GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)'
prints the descriptor \verb'd' to the file \verb'f'.

\newpage
%===============================================================================
\subsection{{\sf GxB\_Matrix\_fprint:} Print a {\sf GrB\_Matrix}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_fprint          // print and check a GrB_Matrix
(
    GrB_Matrix A,                   // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example, \verb'GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f)'
prints about 30 entries from the matrix \verb'A' to the file \verb'f'.


%===============================================================================
\subsection{{\sf GxB\_Vector\_fprint:} Print a {\sf GrB\_Vector}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_fprint          // print and check a GrB_Vector
(
    GrB_Vector v,                   // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example, \verb'GxB_Vector_fprint (v, "my vector", GxB_SHORT, f)'
prints about 30 entries from the vector \verb'v' to the file \verb'f'.

%===============================================================================
\subsection{{\sf GxB\_Scalar\_fprint:} Print a {\sf GrB\_Scalar}}
%===============================================================================

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_fprint          // print and check a GrB_Scalar
(
    GrB_Scalar s,                   // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;
\end{verbatim} } \end{mdframed}

For example, \verb'GxB_Scalar_fprint (s, "my scalar", GxB_SHORT, f)'
prints a short description of the scalar \verb's' to the file \verb'f'.

\newpage
%===============================================================================
\subsection{Performance and portability considerations}
%===============================================================================

Even when the print level is \verb'GxB_SILENT', these methods extensively check
the contents of the objects passed to them, which can take some time.  They
should be considered debugging tools only, not for final use in production.

The return value of the \verb'GxB_*print' methods can be relied upon, but the
output to the file (or \verb'stdout') can change from version to version.  If
these methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of the
\verb'pr' value.  This may be essential if the GraphBLAS library is installed
in a dedicated device, with no file output, for example.

Some implementations may wish to print nothing at all if the matrix is not yet
completed, or just an indication that the matrix has pending operations and
cannot be printed, when non-blocking mode is employed.  In this case, use
\verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', or \verb'GxB_Scalar_wait' to
finish all pending computations first.  If a matrix or vector has pending
operations, SuiteSparse:GraphBLAS prints a list of the {\em pending tuples},
which are the entries not yet inserted into the primary data structure.  It can
also print out entries that remain in the data structure but are awaiting
deletion; these are called {\em zombies} in the output report.

Most of the rest of the report is self-explanatory.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Matrix and Vector iterators} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{iter}

The \verb'GxB_Iterator' is an object that allows user applications to iterate
over the entries of a matrix or vector, one entry at a time.  Iteration can
be done in a linear manner (analogous to reading a file one entry at a time,
from start to finish), or in a random-access pattern (analogous to
the \verb'fseek' method for repositioning the access to file to a different 
position).

Multiple iterators can be used on a single matrix or vector, even in parallel
by multiple user threads.  While a matrix or vector is being used with an
iterator, the matrix or vector must not be modified.  Doing so will lead to
undefined results.

Since accessing a matrix or vector via an iterator requires many calls to
the iterator methods, they must be very fast.  Error checking is skipped,
except for the methods that create, attach, or free an iterator.  Methods
that advance an iterator or that access values or indices from a matrix or
vector do not return error conditions.  Instead, they have well-defined
preconditions that must be met (and which should be checked by the user
application).  If those preconditions are not met, results are undefined.

The iterator methods are implemented in SuiteSparse:GraphBLAS as both macros
(via \verb'#define') and as functions of the same name that appear in the
compiled \verb'libgraphblas.so' library.  This requires that the opaque
contents of the iterator object be defined in \verb'GraphBLAS.h' itself.  The
user application must not access these contents directly, but can only do so
safely via the iterator methods provided by SuiteSparse:GraphBLAS.

The iterator object can be used in one of four sets of methods,
for four different access patterns:

    \begin{enumerate}
    \item {\em row iterator}:  iterates across the rows of a matrix, and then
        within each row to access the entries in a given row.  Accessing all
        the entries of a matrix using a row iterator requires an outer loop
        (for the rows) and an inner loop (for the entries in each row).
        A matrix can be accessed via a row iterator only if its format
        (determined by \verb'GxB_get (A, GxB_FORMAT, &fmt)') is by-row
        (that is, \verb'GxB_BY_ROW').
        See Section~\ref{options}.
    \item {\em column iterator}:  iterates across the columns of a matrix, and
        then within each column to access the entries in a given column.
        Accessing all the entries of a matrix using a column iterator requires
        an outer loop (for the columns) and an inner loop (for the entries in
        each column).  A matrix can be accessed via a column iterator only if
        its format (determined by \verb'GxB_get (A, GxB_FORMAT, &fmt)') is
        by-column (that is, \verb'GxB_BY_COL').
        See Section~\ref{options}.
    \item {\em entry iterator}:  iterates across the entries of a matrix.
        Accessing all the entries of a matrix using an entry iterator requires
        just a single loop.  Any matrix can be accessed with an entry iterator.
    \item {\em vector iterator}:  iterates across the entries of a vector.
        Accessing all the entries of a vector using a vector iterator requires
        just a single loop.  Any vector can be accessed with a vector iterator.
    \end{enumerate}

\newpage
%===============================================================================
\subsection{Creating and destroying an iterator}
%===============================================================================

The process for using an iterator starts with the creation of an iterator, with
\verb'GxB_Iterator_new'.  This method creates an \verb'iterator' object but
does not {\em attach} it to any specific matrix or vector:

    {\footnotesize
    \begin{verbatim}
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ; \end{verbatim}}

When finished, the \verb'iterator' is freed with either of these methods:

    {\footnotesize
    \begin{verbatim}
    GrB_free (&iterator) ;
    GxB_Iterator_free (&iterator) ; \end{verbatim}}

%===============================================================================
\subsection{Attaching an iterator to a matrix or vector}
%===============================================================================

This new \verb'iterator' object can be {\em attached} to any matrix or vector,
and used as a row, column, or entry iterator for any matrix, or as an iterator
for any vector.  The \verb'iterator' can be used in any of these methods before
it is freed, but with just one access method at a time.

Once it is created, the \verb'iterator' must be attached to a matrix or
vector.  This process also selects the method by which the \verb'iterator'
will be used for a matrix.  Each of the four \verb'GxB_*Iterator_attach'
methods returns a \verb'GrB_Info' result.  The descriptor \verb'desc' in the
examples below is used only to control the number of threads used for the
internal call to \verb'GrB_wait', if the matrix \verb'A' or vector \verb'v' has
pending operations.

    \begin{enumerate}
    \item {\em row iterator}: 
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_rowIterator_attach (iterator, A, desc) ; \end{verbatim}}
    \item {\em column iterator}: 
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_colIterator_attach (iterator, A, desc) ; \end{verbatim}}
    \item {\em entry iterator}:
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, desc) ; \end{verbatim}}
    \item {\em vector iterator}:
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, desc) ; \end{verbatim}}
    \end{enumerate}

On input to \verb'GxB_*Iterator_attach', the \verb'iterator' must already
exist, having been created by \verb'GxB_Iterator_new'.  If the \verb'iterator'
is already attached to a matrix or vector, it is detached and then attached to
the given matrix \verb'A' or vector \verb'v'.

The return values for row/column methods are:

    \begin{itemize}
    \item
    \verb'GrB_SUCCESS':         if the \verb'iterator' is successfully
        attached to the matrix \verb'A'.
    \item
    \verb'GrB_NULL_POINTER':    if the \verb'iterator' or \verb'A' are NULL.
    \item
    \verb'GrB_INVALID_OBJECT':  if the matrix \verb'A' is invalid.
    \item
    \verb'GrB_NOT_IMPLEMENTED': if the matrix \verb'A' cannot be iterated
        in the requested access method (row iterators require the matrix to
        be held by-row, and column iterators require the matrix to be held
        by-column).
    \item
    \verb'GrB_OUT_OF_MEMORY':   if the method runs out of memory.
    \end{itemize}

The other two methods (entry iterator for matrices, or the vector iterator)
return the same error codes, except that they
do not return \verb'GrB_NOT_IMPLEMENTED'.

%===============================================================================
\subsection{Seeking to an arbitrary position}
%===============================================================================

Attaching the \verb'iterator' to a matrix or vector does not define a specific
position for the \verb'iterator'.  To use the \verb'iterator', a single call to
the corresponding {\em seek} method is required.  These
\verb'GxB*_Iterator_*seek*' methods may also be used later on to change the
position of the iterator arbitrarily.

    \begin{enumerate}
    \item {\em row iterator}: 
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_rowIterator_seekRow (iterator, row) ;
    GrB_Index kount = GxB_rowIterator_kount (iterator) ;
    GrB_Info info = GxB_rowIterator_kseek (iterator, k) ; \end{verbatim}}

        These methods move a row iterator to a specific row, defined in one of
        two ways: (1) the row index itself (in range 0 to \verb'nrows'-1), or
        (2) by specifying \verb'k', which moves the iterator to the \verb'k'th
        {\em explicit} row (in the range 0 to \verb'kount'-1). For sparse,
        bitmap, or full matrices, these two methods are identical.  For
        hypersparse matrices, not all rows are present in the data structure;
        these {\em implicit} rows are skipped and not included in the
        \verb'kount'.  Implicit rows contain no entries.  The
        \verb'GxB_rowIterator_kount' method returns the \verb'kount' of the
        matrix, where \verb'kount' is equal to \verb'nrows' for sparse, bitmap,
        and matrices, and \verb'kount' $\le$ \verb'nrows' for hypersparse
        matrices.  All three methods listed above can be used for any row
        iterator.

        The \verb'GxB_rowIterator_*seek*' methods return \verb'GrB_SUCCESS' if
        the iterator has been moved to a row that contains at least one entry,
        \verb'GrB_NO_VALUE' if the row has no entries, or \verb'GxB_EXHAUSTED'
        if the row is out of bounds (\verb'row' $\ge$ \verb'nrows' or
        if \verb'k' $\ge$ \verb'kount').
        None of these return conditions are
        errors; they are all informational.

        For sparse, bitmap, and full matrices, \verb'GxB_rowIterator_seekRow'
        always moves to the given row.  For hypersparse matrices, if the
        requested row is implicit, the iterator is moved to the first
        explicit row following it.  If no such row exists, the iterator
        is exhausted and \verb'GxB_EXHAUSTED' is returned.
        The \verb'GxB_rowIterator_kseek' method always moves to the \verb'k'th
        explicit row, for any matrix.
        Use \verb'GxB_rowIterator_getRowIndex', described below, to determine
        the row index of the current position.

        Precondition: on input, the \verb'iterator' must have been successfully
        attached to a matrix via a prior call to \verb'GxB_rowIterator_attach'.
        Results are undefined if this precondition is not met.

    \item {\em column iterator}: 
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_colIterator_seekCol (iterator, col) ;
    GrB_Index kount = GxB_colIterator_kount (iterator) ;
    GrB_Info info = GxB_colIterator_kseek (iterator, k) ; \end{verbatim}}

        These methods move a column iterator to a specific column, defined in
        one of two ways: (1) the column index itself (in range 0 to
        \verb'ncols'-1), or (2) by specifying \verb'k', which moves the
        iterator to the \verb'k'th {\em explicit} column (in the range 0 to
        \verb'kount'-1). For sparse, bitmap, or full matrices, these two
        methods are identical.  For hypersparse matrices, not all columns are
        present in the data structure; these {\em implicit} columns are skipped
        and not included in the \verb'kount'.  Implicit columns contain no
        entries.  The \verb'GxB_colIterator_kount' method returns the
        \verb'kount' of the matrix, where \verb'kount' is equal to \verb'ncols'
        for sparse, bitmap, and matrices, and \verb'kount' $\le$ \verb'ncols'
        for hypersparse matrices.  All three methods listed above can be used
        for any column iterator.

        The \verb'GxB_colIterator_*seek*' methods return \verb'GrB_SUCCESS' if
        the iterator has been moved to a column that contains at least one
        entry, \verb'GrB_NO_VALUE' if the column has no entries, or
        \verb'GxB_EXHAUSTED' if the column is out of bounds (\verb'col' $\ge$
        \verb'ncols' or \verb'k' $\ge$ \verb'kount').
        None of these return conditions are
        errors; they are all informational.

        For sparse, bitmap, and full matrices, \verb'GxB_colIterator_seekCol'
        always moves to the given column.  For hypersparse matrices, if the
        requested column is implicit, the iterator is moved to the first
        explicit column following it.  If no such column exists, the iterator
        is exhausted and \verb'GxB_EXHAUSTED' is returned.
        The \verb'GxB_colIterator_kseek' method always moves to the \verb'k'th
        explicit column, for any matrix.
        Use \verb'GxB_colIterator_getColIndex', described below, to determine
        the column index of the current position.

        Precondition: on input, the \verb'iterator' must have been successfully
        attached to a matrix via a prior call to \verb'GxB_colIterator_attach'.
        Results are undefined if this precondition is not met.

    \item {\em entry iterator}:
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_Matrix_Iterator_seek (iterator, p) ;
    GrB_Index pmax = GxB_Matrix_Iterator_getpmax (iterator) ;
    GrB_Index p = GxB_Matrix_Iterator_getp (iterator); \end{verbatim}}

        The \verb'GxB_Matrix_Iterator_seek' method moves the \verb'iterator' to
        the given position \verb'p', which is in the range 0 to \verb'pmax'-1,
        where the value of \verb'pmax' is obtained from
        \verb'GxB_Matrix_Iterator_getpmax'.
        For sparse, hypersparse, and full matrices, \verb'pmax' is the same as
        \verb'nvals' returned by \verb'GrB_Matrix_nvals'.  For bitmap matrices,
        \verb'pmax' is equal to \verb'nrows*ncols'.  If \verb'p' $\ge$
        \verb'pmax', the iterator is exhausted and \verb'GxB_EXHAUSTED' is
        returned.  Otherwise, \verb'GrB_SUCCESS' is returned.

        All entries in the matrix are given an ordinal position, \verb'p'.
        Seeking to position \verb'p' will either move the \verb'iterator' to
        that particular position, or to the next higher position containing an
        entry if there is entry at position \verb'p'.  The latter case only
        occurs for bitmap matrices.
        Use \verb'GxB_Matrix_Iterator_getp' to determine the current
        position of the iterator.

        Precondition: on input, the \verb'iterator' must have been successfully
        attached to a matrix via a prior call to
        \verb'GxB_Matrix_Iterator_attach'.  Results are undefined if this
        precondition is not met.

    \item {\em vector iterator}:
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_Vector_Iterator_seek (iterator, p) ;
    GrB_Index pmax = GxB_Vector_Iterator_getpmax (iterator) ;
    GrB_Index p = GxB_Vector_Iterator_getp (iterator); \end{verbatim}}

        The \verb'GxB_Vector_Iterator_seek' method is identical to the
        entry iterator of a matrix, but applied to a \verb'GrB_Vector' instead.

        Precondition: on input, the \verb'iterator' must have been successfully
        attached to a vector via a prior call to
        \verb'GxB_Vector_Iterator_attach'.  Results are undefined if this
        precondition is not met.

    \end{enumerate}

%===============================================================================
\subsection{Advancing to the next position}
%===============================================================================

For best performance, the {\em seek} methods described above should be used
with care, since some of them require $O(\log n)$ time.  The fastest method
for changing the position of the iterator is the corresponding {\em next}
method, described below for each iterator:

    \begin{enumerate}
    \item {\em row iterator}:  To move to the next row.

    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_rowIterator_nextRow (iterator) ; \end{verbatim}}

    The row iterator is a 2-dimensional iterator, requiring an outer loop and
    an inner loop.  The outer loop iterates over the rows of the matrix, using
    \verb'GxB_rowIterator_nextRow' to move to the next row.  If the matrix is
    hypersparse, the next row is always an explicit row; implicit rows are
    skipped.  The return conditions are identical to
    \verb'GxB_rowIterator_seekRow'.

    Preconditions: on input, the row iterator must already be attached to a
    matrix via a prior call to \verb'GxB_rowIterator_attach', and the
    \verb'iterator' must be at a specific row, via a prior call to
    \verb'GxB_rowIterator_*seek*' or \verb'GxB_rowIterator_nextRow'. 
    Results are undefined if these conditions are not met.

    \item {\em row iterator}:  To move to the next entry within a row.

    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_rowIterator_nextCol (iterator) ; \end{verbatim}}

    The row iterator is moved to the next entry in the current row.
    The method returns \verb'GrB_NO_VALUE' if the end of the row is reached.
    The iterator does not move to the next row in this case.
    The method returns \verb'GrB_SUCCESS' if the iterator has been moved
    to a specific entry in the current row.

    Preconditions: the same as \verb'GxB_rowIterator_nextRow'.

    \item {\em column iterator}:  To move to the next column

    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_colIterator_nextCol (iterator) ; \end{verbatim}}

    The column iterator is a 2-dimensional iterator, requiring an outer loop
    and an inner loop.  The outer loop iterates over the columns of the matrix,
    using \verb'GxB_colIterator_nextCol' to move to the next column.  If the
    matrix is hypersparse, the next column is always an explicit column;
    implicit columns are skipped.  The return conditions are identical to
    \verb'GxB_colIterator_seekCol'.

    Preconditions: on input, the column iterator must already be attached to a
    matrix via a prior call to \verb'GxB_colIterator_attach', and the
    \verb'iterator' must be at a specific column, via a prior call to
    \verb'GxB_colIterator_*seek*' or \verb'GxB_colIterator_nextCol'.
    Results are undefined if these conditions are not met.

    {\footnotesize
    \item {\em column iterator}:  To move to the next entry within a column.

    \begin{verbatim}
    GrB_Info info = GxB_colIterator_nextRow (iterator) ; \end{verbatim}}

    The column iterator is moved to the next entry in the current column.
    The method returns \verb'GrB_NO_VALUE' if the end of the column is reached.
    The iterator does not move to the next column in this case.
    The method returns \verb'GrB_SUCCESS' if the iterator has been moved
    to a specific entry in the current column.

    Preconditions: the same as \verb'GxB_colIterator_nextCol'.

    \item {\em entry iterator}: To move to the next entry.
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_Matrix_Iterator_next (iterator) ; \end{verbatim}}

    This method moves an iterator to the next entry of a matrix.
    It returns \verb'GrB_SUCCESS' if the iterator is at an entry that
    exists in the matrix, or \verb'GrB_EXHAUSTED' otherwise.

    Preconditions: on input, the entry iterator must be already attached to a
    matrix via \verb'GxB_Matrix_Iterator_attach', and the position of the
    iterator must also have been defined by a prior call to
    \verb'GxB_Matrix_Iterator_seek' or \verb'GxB_Matrix_Iterator_next'.
    Results are undefined if these conditions are not met.

    \item {\em vector iterator}: To move to the next entry.
    {\footnotesize
    \begin{verbatim}
    GrB_Info info = GxB_Vector_Iterator_next (iterator) ; \end{verbatim}}

    This method moves an iterator to the next entry of a vector.
    It returns \verb'GrB_SUCCESS' if the iterator is at an entry that
    exists in the vector, or \verb'GrB_EXHAUSTED' otherwise.

    Preconditions: on input, the iterator must be already attached to a
    vector via \verb'GxB_Vector_Iterator_attach', and the position of the
    iterator must also have been defined by a prior call to
    \verb'GxB_Vector_Iterator_seek' or \verb'GxB_Vector_Iterator_next'.
    Results are undefined if these conditions are not met.

    \end{enumerate}

%===============================================================================
\subsection{Accessing the indices of the current entry}
%===============================================================================

Once the iterator is attached to a matrix or vector, and is placed in position
at an entry in the matrix or vector, the indices and value of this entry can be
obtained.  The methods for accessing the value of the entry are described in
Section~\ref{getvalu}.  Accessing the indices is performed with four different
sets of methods, depending on which access pattern is in use, described below:

    \begin{enumerate}
    \item {\em row iterator}:  To get the current row index.
    {\footnotesize
    \begin{verbatim}
    GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ; \end{verbatim}}

    The method returns \verb'nrows(A)' if the iterator is exhausted, or the
    current row index \verb'i' otherwise.  There need not be any entry in the
    current row.  Zero is returned if the iterator is attached to the matrix
    but \verb'GxB_rowIterator_*seek*' has not been called, but this does not
    mean the iterator is positioned at row zero.

    Preconditions: on input, the iterator must be already successfully attached
    to matrix as a row iterator via \verb'GxB_rowIterator_attach'.
    Results are undefined if this condition is not met.

    \item {\em row iterator}:  To get the current column index.
    {\footnotesize
    \begin{verbatim}
    GrB_Index j = GxB_rowIterator_getColIndex (iterator) ; \end{verbatim}}

    Preconditions: on input, the iterator must be already successfully attached
    to matrix as a row iterator via \verb'GxB_rowIterator_attach', and in
    addition, the row iterator must be positioned at a valid entry present in
    the matrix.  That is, the last call to \verb'GxB_rowIterator_*seek*' or
    \verb'GxB_rowIterator_*next*', must have returned \verb'GrB_SUCCESS'.
    Results are undefined if these conditions are not met.

    \item {\em column iterator}:  To get the current column index.
    {\footnotesize
    \begin{verbatim}
    GrB_Index j = GxB_colIterator_getColIndex (iterator) ; \end{verbatim}}

    The method returns \verb'ncols(A)' if the iterator is exhausted, or the
    current column index \verb'j' otherwise.  There need not be any entry in the
    current column.  Zero is returned if the iterator is attached to the matrix
    but \verb'GxB_colIterator_*seek*' has not been called, but this does not
    mean the iterator is positioned at column zero.

    Precondition: on input, the iterator must be already successfully attached
    to matrix as a column iterator via \verb'GxB_colIterator_attach'.
    Results are undefined if this condition is not met.

    \item {\em column iterator}:  To get the current row index.
    {\footnotesize
    \begin{verbatim}
    GrB_Index i = GxB_colIterator_getRowIndex (iterator) ; \end{verbatim}}

    Preconditions: on input, the iterator must be already successfully attached
    to matrix as a column iterator via \verb'GxB_colIterator_attach', and in
    addition, the column iterator must be positioned at a valid entry present in
    the matrix.  That is, the last call to \verb'GxB_colIterator_*seek*' or
    \verb'GxB_colIterator_*next*', must have returned \verb'GrB_SUCCESS'.
    Results are undefined if these conditions are not met.

    \item {\em entry iterator}: To get the current row and column index.
    {\footnotesize
    \begin{verbatim}
    GrB_Index i, j ;
    GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ; \end{verbatim}}

    Returns the row and column index of the current entry.

    Preconditions: on input, the entry iterator must be already attached to a
    matrix via \verb'GxB_Matrix_Iterator_attach', and the position of the
    iterator must also have been defined by a prior call to
    \verb'GxB_Matrix_Iterator_seek' or \verb'GxB_Matrix_Iterator_next', with a
    return value of \verb'GrB_SUCCESS'.
    Results are undefined if these conditions are not met.

    \item {\em vector iterator}: To get the current index.
    {\footnotesize
    \begin{verbatim}
    GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ; \end{verbatim}}

    Returns the index of the current entry.

    Preconditions: on input, the entry iterator must be already attached to a
    matrix via \verb'GxB_Vector_Iterator_attach', and the position of the
    iterator must also have been defined by a prior call to
    \verb'GxB_Vector_Iterator_seek' or \verb'GxB_Vector_Iterator_next', with a
    return value of \verb'GrB_SUCCESS'.
    Results are undefined if these conditions are not met.

    \end{enumerate}

%===============================================================================
\subsection{Accessing the value of the current entry}
\label{getvalu}
%===============================================================================

So far, all methods that create or use an iterator have been split into four
sets of methods, for the row, column, or entry iterators attached to a matrix,
or for a vector iterator.  Accessing the value is different.  All four
iterators use the same set of methods to access the value of their current
entry.  These methods return the value of the current entry at the position
determined by the iterator.  The return value can of course be typecasted
using standard C syntax once the value is returned to the caller.

Preconditions: on input, the prior call to \verb'GxB_*Iterator_*seek*', or
\verb'GxB_*Iterator_*next*' must have returned \verb'GrB_SUCCESS', indicating
that the iterator is at a valid current entry for either a matrix or vector.
No typecasting is permitted, in the sense that the method name must match the
type of the matrix or vector.
Results are undefined if these conditions are not met.

    {\footnotesize
    \begin{verbatim}
    // for built-in types:
    bool       value = GxB_Iterator_get_BOOL (iterator) ;
    int8_t     value = GxB_Iterator_get_INT8 (iterator) ;
    int16_t    value = GxB_Iterator_get_INT16 (iterator) ;
    int32_t    value = GxB_Iterator_get_INT32 (iterator) ;
    int64_t    value = GxB_Iterator_get_INT64 (iterator) ;
    uint8_t    value = GxB_Iterator_get_UINT8 (iterator) ;
    uint16_t   value = GxB_Iterator_get_UINT16 (iterator) ;
    uint32_t   value = GxB_Iterator_get_UINT32 (iterator) ;
    uint64_t   value = GxB_Iterator_get_UINT64 (iterator) ;
    float      value = GxB_Iterator_get_FP32 (iterator) ;
    double     value = GxB_Iterator_get_FP64 (iterator) ;
    GxB_FC32_t value = GxB_Iterator_get_FC32 (iterator) ;
    GxB_FC64_t value = GxB_Iterator_get_FC64 (iterator) ;

    // for user-defined types:
    <type> value ;
    GxB_Iterator_get_UDT (iterator, (void *) &value) ; \end{verbatim}}

%===============================================================================
\newpage
\subsection{Example: row iterator for a matrix}
%===============================================================================

The following example uses a row iterator to access all of the entries
in a matrix \verb'A' of type \verb'GrB_FP64'.  Note the inner and outer loops.
The outer loop iterates over all rows of the matrix.  The inner loop iterates
over all entries in the row \verb'i'.  This access pattern requires the matrix
to be held by-row, but otherwise it works for any matrix.  If the matrix is
held by-column, then use the column iterator methods instead.

    {\footnotesize
    \begin{verbatim}
    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the matrix A, known to be type GrB_FP64
    GrB_Info info = GxB_rowIterator_attach (iterator, A, NULL) ;
    if (info < 0) { handle the failure ... }
    // seek to A(0,:)
    info = GxB_rowIterator_seekRow (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // iterate over entries in A(i,:)
        GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;
        while (info == GrB_SUCCESS)
        {
            // get the entry A(i,j)
            GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;
            double  aij = GxB_Iterator_get_FP64 (iterator) ;
            // move to the next entry in A(i,:)
            info = GxB_rowIterator_nextCol (iterator) ;
        }
        // move to the next row, A(i+1,:), or a subsequent one if i+1 is implicit
        info = GxB_rowIterator_nextRow (iterator) ;
    }
    GrB_free (&iterator) ; \end{verbatim}}

%===============================================================================
\newpage
\subsection{Example: column iterator for a matrix}
%===============================================================================

The column iterator is analgous to the row iterator.

The following example uses a column iterator to access all of the entries in a
matrix \verb'A' of type \verb'GrB_FP64'.  The outer loop iterates over all
columns of the matrix.  The inner loop iterates over all entries in the column
\verb'j'.  This access pattern requires the matrix to be held by-column, but
otherwise it works for any matrix.  If the matrix is held by-row, then use
the row iterator methods instead.

    {\footnotesize
    \begin{verbatim}
    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the matrix A, known to be type GrB_FP64
    GrB_Info info = GxB_colIterator_attach (iterator, A, NULL) ;
    // seek to A(:,0)
    info = GxB_colIterator_seekCol (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // iterate over entries in A(:,j)
        GrB_Index j = GxB_colIterator_getColIndex (iterator) ;
        while (info == GrB_SUCCESS)
        {
            // get the entry A(i,j)
            GrB_Index i = GxB_colIterator_getRowIndex (iterator) ;
            double  aij = GxB_Iterator_get_FP64 (iterator) ;
            // move to the next entry in A(:,j)
            info = GxB_colIterator_nextRow (iterator) ;
            OK (info) ;
        }
        // move to the next column, A(:,j+1), or a subsequent one if j+1 is implicit
        info = GxB_colIterator_nextCol (iterator) ;
    }
    GrB_free (&iterator) ; \end{verbatim}}

%===============================================================================
\newpage
\subsection{Example: entry iterator for a matrix}
%===============================================================================

The entry iterator allows for a simpler access pattern, with a single loop, but
using a row or column iterator is faster.  The method works for any matrix.

    {\footnotesize
    \begin{verbatim}
    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the matrix A, known to be type GrB_FP64
    GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, NULL) ;
    if (info < 0) { handle the failure ... }
    // seek to the first entry
    info = GxB_Matrix_Iterator_seek (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // get the entry A(i,j)
        GrB_Index i, j ;
        GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;
        double aij = GxB_Iterator_get_FP64 (iterator) ;
        // move to the next entry in A
        info = GxB_Matrix_Iterator_next (iterator) ;
    }
    GrB_free (&iterator) ; \end{verbatim}}

%===============================================================================
\subsection{Example: vector iterator}
%===============================================================================

A vector iterator is used much like an entry iterator for a matrix.

    {\footnotesize
    \begin{verbatim}
    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the vector v, known to be type GrB_FP64
    GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, NULL) ;
    if (info < 0) { handle the failure ... }
    // seek to the first entry
    info = GxB_Vector_Iterator_seek (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // get the entry v(i)
        GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;
        double vi = GxB_Iterator_get_FP64 (iterator) ;
        // move to the next entry in v
        info = GxB_Vector_Iterator_next (iterator) ;
    }
    GrB_free (&iterator) ; \end{verbatim}}

%===============================================================================
\newpage
\subsection{Performance}
%===============================================================================

I have benchmarked the performance of the row and column iterators to compute
\verb'y=0' and then \verb'y+=A*x' where \verb'y' is a dense vector and \verb'A'
is a sparse matrix, using a single thread.  The row and column iterators are
very fast, sometimes only 1\% slower than calling \verb'GrB_mxv' to compute the
same thing (also assuming a single thread), for large problems.  For sparse
matrices that average just 1 or 2 entries per row, the row iterator can be
about 30\% slower than \verb'GrB_mxv', likely because of the slightly higher
complexity of moving from one row to the next using these methods.

It is possible to split up the problem for multiple user threads, each with its
own iterator.  Given the low overhead of the row and column iterator for a
single thread, this should be very fast.  Care must be taken to ensure a good
load balance.  Simply spliting up the rows of a matrix and giving the same
number of rows to each user thread can result in imbalanced work.  This is
handled internally in \verb'GrB_*' methods, but enabling parallelism when using
iterators is the responsibility of the user application.

The entry iterators are easier to use but harder to implement.  The methods
must internally fuse both inner and outer loops so that the user application can
use a single loop.  As a result, the computation \verb'y+=A*x' can be up to
4x slower (about 2x typical) than when using \verb'GrB_mxv' with a single
thread.

To obtain the best performace possible, many of the iterator methods are
implemented as macros in \verb'GraphBLAS.h'.  Using macros is the default,
giving typical C and C++ applications access to the fastest methods possible.

To ensure access to these methods when not using the macros, these methods are
also defined as regular functions that appear in the compiled
\verb'libgraphblas.so' library with the same name as the macros.  Applications
that cannot use the macro versions can \verb'#undef' the macros after the
\verb'#include <GraphBLAS.h>' statement, and then they would access the regular
compiled functions in \verb'libgraphblas.so'.  This non-macro approach is not
the default, and the iterator methods may be slightly slower.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Iso-Valued Matrices and Vectors } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{iso}

The GraphBLAS C API states that the entries in all \verb'GrB_Matrix' and
\verb'GrB_Vector' objects have a numerical value, with either a built-in or
user-defined type.  Representing an unweighted graph requires a value to be
placed on each edge, typically $a_{ij}=1$.  Adding a structure-only data type
would not mix well with the rest of GraphBLAS, where all operators, monoids,
and semirings need to operate on a value, of some data type.  And yet
unweighted graphs are very important in graph algorithms.

The solution is simple, and exploiting it in SuiteSparse:GraphBLAS requires
nearly no extensions to the GraphBLAS C API.   SuiteSparse:GraphBLAS can often
detect when the user application is creating a matrix or vector where all
entries in the sparsity pattern take on the same numerical value.

For example, ${\bf C \langle C \rangle} = 1$, when the mask is structural, sets
all entries in $\bf C$ to the value 1.  SuiteSparse:GraphBLAS detects this, and
performs this assignment in $O(1)$ time.  It stores a single copy of this
``iso-value'' and sets an internal flag in the opaque data structure for $\bf
C$, which states that all entries in the pattern of $\bf C$ are equal to 1.
This saves both time and memory and allows for the efficient representation of
sparse adjacency matrices of unweighted graphs, yet does not change the C API.
To the user application, it still appears that $\bf C$ has \verb'nvals(C)'
entries, all equal to 1.

Creating and operating on iso-valued matrices (or just {\em iso matrices} for 
short) is significantly faster than creating matrices with different data
values.  A matrix that is iso requires only $O(1)$ space for its numerical
values.  The sparse and hypersparse formats require an additional $O(n+e)$ or
$O(e)$ integer space to hold the pattern of an $n$-by-$n$ matrix \verb'C',
respectively, and a matrix \verb'C' in bitmap format requires $O(n^2)$ space
for the bitmap.  A full matrix requires no integer storage, so a matrix that is
both iso and full requires only $O(1)$ space, regardless of its dimension.

The sections below a describe the methods that can be used to create iso
matrices and vectors.  Let $a$, $b$, and $c$ denote the iso values of \verb'A',
\verb'B', and \verb'C', respectively.

%-------------------------------------------------------------------------------
\subsection{Using iso matrices and vectors in a graph algorithm}
%-------------------------------------------------------------------------------
\label{iso_usage}

There are two primary useful ways to use iso-valued matrices and vectors: (1)
as iso sparse/hypersparse adjacency matrices for unweighted graphs, and (2) as
iso full matrices or vectors used with operations that do not need to access
all of the content of the iso full matrix or vector.

In the first use case, simply create a \verb'GrB_Matrix' with values that are
all the same (those in the sparsity pattern).  The
\verb'GxB_Matrix_build_Scalar' method can be used for this, since it
guarantees that the time and work spent on the numerical part of the array
is only $O(1)$.  The method still must spend $O(e)$ or $O(e \log e)$ time
on the integer arrays that represent the sparsity pattern, but the reduction
in time and work on the numerical part of the matrix will improve performance.

The use of \verb'GxB_Matrix_build_Scalar' is optional.  Matrices can also be
constructed with \verb'GrB*' methods.  In particular, \verb'GrB_Matrix_build_*'
can be used.  It first builds a non-iso matrix and then checks if all of the
values are the same, after assembling any duplicate entries.  This does not
save time or memory for the construction of the matrix itself, but it will
lead to savings in time and memory later on, when the matrix is used.

To ensure a matrix \verb'C' is iso-valued, simply use \verb'GrB_assign' to
compute \verb'C<C,struct>=1', or assign whatever value of scalar you wish.
It is essential to use a structural mask.  Otherwise, it is not clear that
all entries in \verb'C' will be assigned the same value.  The following
code takes $O(1)$ time, and it resets the size of the numerical part of the
\verb'C' matrix to be $O(1)$ in size:

{\footnotesize
\begin{verbatim}
    bool scalar = true ;
    GrB_Matrix_assign (C, C, NULL, scalar, GrB_ALL, nrows, GrB_ALL, ncols,
        GrB_DESC_S) ; \end{verbatim}}

The MATLAB/Octave analog of the code above is \verb'C=spones(C)'.

The second case for where iso matrices and vectors are useful is to use them
with operations that do not necessarily access all of their content.
Suppose you have a matrix \verb'A' of arbitrarily large dimension (say
\verb'n'-by-\verb'n' where \verb'n=2^60', of type \verb'GrB_FP64').  A matrix
this large can be represented by SuiteSparse:GraphBLAS, but only in a
hypersparse form.

Now, suppose you wish to compute the maximum value in each row, reducing the
matrix to a vector.  This can be done with \verb'GrB_reduce':

{\footnotesize
\begin{verbatim}
    GrB_Vector_new (&v, GrB_FP64, n) ;
    GrB_reduce (v, NULL, GrB_MAX_MONOID_FP64, A, NULL) ; \end{verbatim}}

It can also be done with \verb'GrB_mxv', by creating an iso full vector
\verb'x'.  The creation of \verb'x' takes $O(1)$ time and memory,
and the \verb'GrB_mxv' computation takes $O(e)$ time (with modest assumptions;
if \verb'A' needs to be transposed the time would be $O(e \log e)$).

{\footnotesize
\begin{verbatim}
    GrB_Vector_new (&v, GrB_FP64, n) ;
    GrB_Vector_new (&x, GrB_FP64, n) ;
    GrB_assign (x, NULL, NULL, 1, GrB_ALL, n, NULL) ;
    GrB_mxv (v, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, x, NULL) ; \end{verbatim}}

The above computations are identical in SuiteSparse:GraphBLAS.  Internally,
\verb'GrB_reduce' creates \verb'x' and calls \verb'GrB_mxv'.  Using
\verb'GrB_mxm' directly gives the user application additional flexibility in
creating new computations that exploit the multiplicative operator in the
semiring.  \verb'GrB_reduce' always uses the \verb'FIRST' operator in its
semiring, but any other binary operator can be used instead when using
\verb'GrB_mxv'.

Below is a method for computing the argmax of each row of a square matrix
\verb'A' of dimension \verb'n' and type \verb'GrB_FP64'.  The vector \verb'x'
contains the maximum value in each row, and the vector \verb'p' contains the
zero-based column index of the maximum value in each row.  If there are
duplicate maximum values in each row, any one of them is selected arbitrarily
using the \verb'ANY' monoid.  To select the minimum column index of the
duplicate maximum values, use the \verb'GxB_MIN_SECONDI_INT64' semiring instead
(this will be slightly slower than the \verb'ANY' monoid if there are many
duplicates).

To compute the argmax of each column, use the \verb'GrB_DESC_T0' descriptor
in \verb'GrB_mxv', and compute \verb'G=A*D' instead of \verb'G=D*A' with
\verb'GrB_mxm'.  See the \verb'GrB.argmin' and \verb'GrB.argmax' functions
in the MATLAB/Octave interface for details.

% corresponds to GrB.argmax with dim = 2

{\footnotesize
\begin{verbatim}
    GrB_Vector_new (&x, GrB_FP64, n) ;
    GrB_Vector_new (&y, GrB_FP64, n) ;
    GrB_Vector_new (&p, GrB_INT64, n) ;
    // y (:) = 1, an iso full vector
    GrB_assign (y, NULL, NULL, 1, GrB_ALL, n, NULL) ;
    // x = max (A) where x(i) = max (A (i,:))
    GrB_mxv (x, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, y, NULL) ;
    // D = diag (x)
    GrB_Matrix_diag (&D, x, 0) ;
    // G = D*A using the ANY_EQ semiring
    GrB_Matrix_new (&G, GrB_BOOL, n, n) ;
    GrB_mxm (G, NULL, NULL, GxB_ANY_EQ_FP64, D, A, NULL) ;
    // drop explicit zeros from G
    GrB_select (G, NULL, NULL, GrB_VALUENE_BOOL, G, 0, NULL) ;
    // find the position of any max entry in each row: p = G*y,
    // so that p(i) = j if x(i) = A(i,j) = max (A (i,:))
    GrB_mxv (p, NULL, NULL, GxB_ANY_SECONDI_INT64, G, y, NULL) ; \end{verbatim}}

No part of the above code takes $\Omega(n)$ time or memory.  The data type of
the iso full vector \verb'y' can be anything, and its iso value can be
anything.  It is operated on by the \verb'FIRST' operator in the first
\verb'GrB_mxv', and the \verb'SECONDI' positional operator in the second
\verb'GrB_mxv', and both operators are oblivious to the content and even the
type of \verb'y'.  The semirings simply note that \verb'y' is a full vector and
compute their result according, by accessing the matrices only (\verb'A' and
\verb'G', respectively).

For floating-point values, \verb'NaN' values are ignored, and treated as if
they were not present in the input matrix, unless all entries in a given row
are equal to \verb'NaN'.  In that case, if all entries in \verb'A(i,:)' are
equal to \verb'NaN', then \verb'x(i)' is \verb'NaN' and the entry \verb'p(i)'
is not present.

%-------------------------------------------------------------------------------
\subsection{Iso matrices from matrix multiplication}
%-------------------------------------------------------------------------------
\label{iso_mxm}

Consider \verb'GrB_mxm', \verb'GrB_mxv', and \verb'GrB_vxm', and
    let \verb'C=A*B', where no mask is present, or \verb'C<M>=A*B' where
    \verb'C' is initially empty.  If \verb'C' is not initially empty,
    then these rules apply to a temporary matrix \verb'T<M>=A*B', which is
    initially empty and is then assigned to \verb'C' via \verb'C<M>=T'.

    The iso property of \verb'C' is determined with the following rules,
    where the first rule that fits defines the property and value of \verb'C'.

    \begin{itemize}
    \item If the semiring includes a positional multiplicative operator
    (\verb'GxB_FIRSTI', \verb'GrB_SECONDI', and related operators), then
    \verb'C' is never iso.

    \item Define an {\em iso-monoid} as a built-in monoid with the property
    that reducing a set of $n>1$ identical values $x$ returns the same value
    $x$.  These are the \verb'MIN' \verb'MAX' \verb'LOR' \verb'LAND' \verb'BOR'
    \verb'BAND' and \verb'ANY' monoids.  All other monoids are not iso monoids:
    \verb'PLUS', \verb'TIMES', \verb'LXNOR', \verb'EQ', \verb'BXOR',
    \verb'BXNOR', and all user-defined monoids.   Currently, there is no
    mechanism for telling SuiteSparse:GraphBLAS that a user-defined monoid
    is an iso-monoid.

    \item If the multiplicative op is \verb'PAIR' (same as \verb'ONEB'),
    and the monoid is an
    iso-monoid, or the \verb'EQ' or \verb'TIMES' monoids, then \verb'C' is
    iso with a value of 1.

    \item If both \verb'B' and the monoid are iso, and the multiplicative op is
    \verb'SECOND' or \verb'ANY', then \verb'C' is iso with a value of $b$.

    \item If both \verb'A' and the monoid are iso, and the multiplicative op is
    \verb'FIRST' or \verb'ANY', then \verb'C' is iso with a value of $a$.

    \item If \verb'A', \verb'B', and the monoid are all iso, then \verb'C'
    is iso, with a value $c=f(a,b)$, where $f$ is any multiplicative op
    (including user-defined, which assumes that a user-defined $f$ has no 
    side effects).

    \item If \verb'A' and \verb'B' are both iso and full (all entries present,
    regardless of the format of the matrices), then \verb'C' is iso and full.
    Its iso value is computed in $O(\log(n))$ time, via a reduction of $n$
    copies of the value $t=f(a,b)$ to a scalar.  The storage required to
    represent \verb'C' is just $O(1)$, regardless of its dimension.
    Technically, the \verb'PLUS' monoid could be computed as $c=nt$ in $O(1)$
    time, but the log-time reduction works for any monoid, including
    user-defined ones.

    \item Otherwise, \verb'C' is not iso.
    \end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices from eWiseMult and kronecker}
%-------------------------------------------------------------------------------
\label{iso_emult}

Consider \verb'GrB_eWiseMult'.  Let
\verb'C=A.*B', or \verb'C<M>=A.*B' with any mask and where \verb'C' is
initially empty, where \verb'.*' denotes a binary operator $f(x,y)$
applied with \verb'eWiseMult'.  These rules also apply to \verb'GrB_kronecker'.

    \begin{itemize}
    \item If the operator is positional (\verb'GxB_FIRSTI' and related) then
    \verb'C' is not iso.

    \item If the op is \verb'PAIR' (same as \verb'ONEB'),
        then \verb'C' is iso with $c=1$.

    \item If \verb'B' is iso and the op is \verb'SECOND' or \verb'ANY',
        then \verb'C' is iso with $c=b$.

    \item If \verb'A' is iso and the op is \verb'FIRST' or \verb'ANY',
        then \verb'C' is iso with $c=a$.

    \item If both \verb'A' and \verb'B' are iso,
        then \verb'C' is iso with $c=f(a,b)$.

    \item Otherwise, \verb'C' is not iso.
    \end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices from eWiseAdd}
%-------------------------------------------------------------------------------
\label{iso_add}

Consider \verb'GrB_eWiseAdd', and also the accumulator phase of \verb'C<M>+=T'
when an accumulator operator is present.  Let \verb'C=A+B', or \verb'C<M>=A+B'
with any mask and where \verb'C' is initially empty.

    \begin{itemize}
    \item If both \verb'A' and \verb'B' are full (all entries present), then
    the rules for \verb'eWiseMult' in Section~\ref{iso_emult} are used
    instead.

    \item If the operator is positional (\verb'GxB_FIRSTI' and related) then
    \verb'C' is not iso.

    \item If $a$ and $b$ differ (when typecasted to the type of \verb'C'),
    then \verb'C' is not iso.

    \item If $c=f(a,b) = a = b$ holds, then \verb'C' is iso,
    where $f(a,b)$ is the operator.

    \item Otherwise, \verb'C' is not iso.
    \end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices from eWiseUnion}
%-------------------------------------------------------------------------------
\label{iso_union}

\verb'GxB_eWiseUnion' is very similar to \verb'GrB_eWiseAdd', but the rules
for when the result is iso-valued are very different.

    \begin{itemize}
    \item If both \verb'A' and \verb'B' are full (all entries present), then
    the rules for \verb'eWiseMult' in Section~\ref{iso_emult} are used
    instead.

    \item If the operator is positional (\verb'GxB_FIRSTI' and related) then
    \verb'C' is not iso.

    \item If the op is \verb'PAIR' (same as \verb'ONEB'),
        then \verb'C' is iso with $c=1$.

    \item If \verb'B' is iso and the op is \verb'SECOND' or \verb'ANY',
        and the input scalar \verb'beta' matches $b$
        (the iso-value of \verb'B'),
        then \verb'C' is iso with $c=b$.

    \item If \verb'A' is iso and the op is \verb'FIRST' or \verb'ANY',
        and the input scalar \verb'alpha' matches $a$
        (the iso-value of \verb'A'),
        then \verb'C' is iso with $c=a$.

    \item If both \verb'A' and \verb'B' are iso,
        and $f(a,b) = f(\alpha,b) = f(a,\beta)$,
        then \verb'C' is iso with $c=f(a,b)$.

    \item Otherwise, \verb'C' is not iso.
    \end{itemize}

%-------------------------------------------------------------------------------
\subsection{Reducing iso matrices to a scalar or vector}
%-------------------------------------------------------------------------------
\label{iso_reduce}

If \verb'A' is iso with $e$ entries, reducing it to a scalar takes $O(\log(e))$
time, regardless of the monoid used to reduce the matrix to a scalar.  Reducing
\verb'A' to a vector \verb'c' is the same as the matrix-vector multiply
\verb"c=A*x" or \verb"c=A'*x", depending on the descriptor, where \verb'x'
is an iso full vector (refer to Section~\ref{iso_mxm}).

%-------------------------------------------------------------------------------
\subsection{Iso matrices from apply}
%-------------------------------------------------------------------------------
\label{iso_apply}

Let \verb'C=f(A)' denote the application of a unary operator \verb'f',
and let \verb'C=f(A,s)' and \verb'C=f(s,A)' denote the application of a binary
operator with \verb's' a scalar.

    \begin{itemize}
    \item If the operator is positional (\verb'GxB_POSITION*',
    \verb'GxB_FIRSTI', and related) then \verb'C' is not iso.

    \item If the operator is \verb'ONE' or \verb'PAIR' (same as \verb'ONEB'),
        then \verb'C' iso with $c=1$.

    \item If the operator is \verb'FIRST' or \verb'ANY' with \verb'C=f(s,A)',
        then \verb'C' iso with $c=s$.

    \item If the operator is \verb'SECOND' or \verb'ANY' with \verb'C=f(A,s)',
        then \verb'C' iso with $c=s$.

    \item If \verb'A' is iso then \verb'C' is iso, with the following value
        of $c$:

        \begin{itemize}
        \item If the op is \verb'IDENTITY', then $c=a$.
        \item If the op is unary with \verb'C=f(A)', then $c=f(a)$.
        \item If the op is binary with \verb'C=f(s,A)', then $c=f(s,a)$.
        \item If the op is binary with \verb'C=f(A,s)', then $c=f(a,s)$.
        \end{itemize}


    \item Otherwise, \verb'C' is not iso.
    \end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices from select}
%-------------------------------------------------------------------------------
\label{iso_select}

Let \verb'C=select(A)' denote the application of a \verb'GrB_IndexUnaryOp' operator
in \verb'GrB_select'.

    \begin{itemize}
    \item If \verb'A' is iso, then \verb'C' is iso with $c=a$.
    \item If the operator is any \verb'GrB_VALUE*_BOOL' operator,
        with no typecasting, and the test is true only for a single boolean
        value, then \verb'C' is iso.
    \item If the operator is \verb'GrB_VALUEEQ_*', with no typecasting,
        then \verb'C' is iso, with $c=t$ where $t$ is the value of the scalar
        \verb'y'.
    \item If the operator is \verb'GrB_VALUELE_UINT*', with no typecasting,
        and the scalar \verb'y' is zero, then \verb'C' is iso with $c=0$.
    \item Otherwise, \verb'C' is not iso.
    \end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices from assign and subassign}
%-------------------------------------------------------------------------------
\label{iso_assign}

These rules are somewhat complex.  Consider the assignment \verb'C<M>(I,J)=...'
with \verb'GrB_assign'.  Internally, this assignment is converted into
\verb'C(I,J)<M(I,J)>=...' and then \verb'GxB_subassign' is used.  Thus,
all of the rules below assume the form \verb'C(I,J)<M>=...' where \verb'M'
has the same size as the submatrix \verb'C(I,J)'.

\subsubsection{Assignment with no accumulator operator}

If no accumulator operator is present, the following rules are used.

\begin{itemize}
\item 
For matrix assignment, \verb'A' must be iso.  For scalar assignment, the single
scalar is implicitly expanded into an iso matrix \verb'A' of the right size.
If these rules do not hold, \verb'C' is not iso.

\item
If \verb'A' is not iso, or if \verb'C' is not iso on input, then \verb'C' is
not iso on output.

\item
If \verb'C' is iso or empty on input, and \verb'A' is iso (or scalar assignment
is begin performed) and the iso values $c$ and $a$ (or the scalar $s$) match,
then the following forms of assignment result in an iso matrix \verb'C'  on
output:

                \begin{itemize}
                \item \verb'C(I,J) = scalar'
                \item \verb'C(I,J)<M> = scalar'
                \item \verb'C(I,J)<!M> = scalar'
                \item \verb'C(I,J)<M,replace> = scalar'
                \item \verb'C(I,J)<!M,replace> = scalar'
                \item \verb'C(I,J) = A'
                \item \verb'C(I,J)<M> = A'
                \item \verb'C(I,J)<!M> = A'
                \item \verb'C(I,J)<M,replace> = A'
                \item \verb'C(I,J)<!M,replace> = A'
                \end{itemize}

\item
For these forms of assignment, \verb'C' is always iso on output, regardless
of its iso property on input:

                \begin{itemize}
                \item \verb'C = scalar'
                \item \verb'C<M,struct>=scalar'; C empty on input.
                \item \verb'C<C,struct>=scalar'
                \end{itemize}

\item
For these forms of assignment, \verb'C' is always iso on output if \verb'A'
is iso:

                \begin{itemize}
                \item \verb'C = A'
                \item \verb'C<M,str> = A'; C empty on input.
                \end{itemize}
\end{itemize}


\subsubsection{Assignment with an accumulator operator}

If an accumulator operator is present, the following rules are used.
Positional operators (\verb'GxB_FIRSTI' and related) cannot be used as
accumulator operators, so these rules do not consider that case.

\begin{itemize}
\item 
For matrix assignment, \verb'A' must be iso.  For scalar assignment, the single
scalar is implicitly expanded into an iso matrix \verb'A' of the right size.
If these rules do not hold, \verb'C' is not iso.

\item For these forms of assignment \verb'C' is iso if \verb'C' is 
empty on input, or if $c=c+a$ for the where $a$ is the iso value of \verb'A' or
the value of the scalar for scalar assignment.

                \begin{itemize}
                \item \verb'C(I,J) += scalar'
                \item \verb'C(I,J)<M> += scalar'
                \item \verb'C(I,J)<!M> += scalar'
                \item \verb'C(I,J)<M,replace> += scalar'
                \item \verb'C(I,J)<!M,replace> += scalar'
                \item \verb'C(I,J)<M,replace> += A'
                \item \verb'C(I,J)<!M,replace> += A'
                \item \verb'C(I,J) += A'
                \item \verb'C(I,J)<M> += A'
                \item \verb'C(I,J)<!M> += A '
                \item \verb'C += A'
                \end{itemize}
\end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices from build methods}
%-------------------------------------------------------------------------------
\label{iso_build}

\verb'GxB_Matrix_build_Scalar' and \verb'GxB_Vector_build_Scalar'
always construct an iso matrix/vector.

\verb'GrB_Matrix_build' and \verb'GrB_Vector_build' can also construct iso
matrices and vectors.  A non-iso matrix/vector is constructed first, and then
the entries are checked to see if they are all equal.  The resulting iso-valued
matrix/vector will be efficient to use and will use less memory than a non-iso
matrix/vector.  However, constructing an iso matrix/vector with
\verb'GrB_Matrix_build' and \verb'GrB_Vector_build' will take more time
and memory than constructing the matrix/vector with
\verb'GxB_Matrix_build_Scalar' or \verb'GxB_Vector_build_Scalar'.

%-------------------------------------------------------------------------------
\subsection{Iso matrices from other methods}
%-------------------------------------------------------------------------------
\label{iso_other}

\begin{itemize}
\item
For \verb'GrB_Matrix_dup' and \verb'GrB_Vector_dup', the output matrix/vector
has the same iso property as the input matrix/vector.

\item
\verb'GrB_*_setElement_*' preserves the iso property of the matrix/vector it
modifies, if the input scalar is equal to the iso value of the matrix/vector.
If the matrix or vector has no entries, the first call to \verb'setElement'
makes it iso.  This allows a sequence of \verb'setElement' calls with the same
scalar value to create an entire iso matrix or vector, if starting from
an empty matrix or vector.

\item
\verb'GxB_Matrix_concat' constructs an iso matrix as its result if all input
tiles are either empty or iso.

\item
\verb'GxB_Matrix_split' constructs its output tiles as iso if its input
matrix is iso.

\item
\verb'GxB_Matrix_diag' and \verb'GrB_Matrix_diag' construct an iso matrix if
its input vector is iso.

\item
\verb'GxB_Vector_diag' constructs an iso vector if its input matrix is iso.

\item
\verb'GrB_*extract' constructs an iso matrix/vector if its input matrix/vector
is iso.

\item
\verb'GrB_transpose' constructs an iso matrix if its input is iso.

\item
The \verb'GxB_import/export/pack/unpack' methods preserve the iso property
of their matrices/vectors.
\end{itemize}

%-------------------------------------------------------------------------------
\subsection{Iso matrices not exploited}
%-------------------------------------------------------------------------------

There are many cases where an matrix may have the iso property but it is not
detected by SuiteSparse:GraphBLAS.  For example, if \verb'A' is non-iso,
\verb'C=A(I,J)' from \verb'GrB_extract' may be iso, if all entries in the
extracted submatrix have the same value.  Future versions of
SuiteSparse:GraphBLAS may extend the rules described in this section to detect
these cases.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Performance} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{perf}

Getting the best performance out of an algorithm that relies on GraphBLAS can
depend on many factors.  This section describes some of the possible
performance pitfalls you can hit when using SuiteSparse:GraphBLAS, and how to
avoid them (or at least know when you've encountered them).

%-------------------------------------------------------------------------------
\subsection{The burble is your friend}
%-------------------------------------------------------------------------------

Turn on the burble with \verb'GxB_set (GxB_BURBLE, true)'.  You will get a
single line of output from each (significant) call to GraphBLAS.
The burble output can help you detect when you are likely using sub-optimal
methods, as described in the next sections.

%-------------------------------------------------------------------------------
\subsection{Data types and typecasting}
%-------------------------------------------------------------------------------

Avoid mixing data types and relying on typecasting as much as possible.
SuiteSparse:GraphBLAS has a set of highly-tuned kernels for each data type,
and many operators and semirings, but there are too many combinations to
generate ahead of time.  If typecasting is required, or if
SuiteSparse:GraphBLAS does not have a kernel for the specific operator or
semiring, the word \verb'generic' will appear in the burble.  The generic
methods rely on function pointers for each operation on every scalar, so they
are slow.  A future JIT will avoid this problem.

The only time that typecasting is fast is when computing \verb'C=A' via
\verb'GrB_assign' or \verb'GrB_apply', where the data types of \verb'C' and
\verb'A' can differ.  In this case, one of $13^2 = 169$ kernels are called,
each of which performs the specific typecasting requested, without relying on
function pointers.

%-------------------------------------------------------------------------------
\subsection{Matrix data structures: sparse, hypersparse, bitmap, or full}
%-------------------------------------------------------------------------------

SuiteSparse:GraphBLAS tries to automatically determine the best data structure
for your matrices and vectors, selecting between sparse, hypersparse, bitmap,
and full formats.  By default, all 4 formats can be used.  A matrix typically
starts out hypersparse when it is created by \verb'GrB_Matrix_new', and then
changes during its lifetime, possibly taking on all four different formats
at different times.  This can be modified via \verb'GxB_set'.  For example,
this line of code:

    {\scriptsize
    \begin{verbatim}
    GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_BITMAP) ; \end{verbatim}}

\noindent
tells SuiteSparse that the matrix \verb'A' can be held in either sparse or
bitmap format (at its discretion), but not hypersparse or full.  The bitmap
format will be used if the matrix has enough entries, or sparse otherwise.
Sometimes this selection is best controlled by the user algorithm, so a single
format can be requested:

    {\scriptsize
    \begin{verbatim}
    GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE) ; \end{verbatim}}

This ensures that SuiteSparse will primarily use the sparse format.  This is
still just a hint, however.  The data structure is opaque and SuiteSparse is
free to choose otherwise.  In particular, if you insist on using only the
\verb'GxB_FULL' format, then that format is used when all entries are present.
However, if the matrix is not actually full with all entries present, then the
bitmap format is used instead.  The full format does not preserve the sparsity
structure in this case.  Any GraphBLAS library must preserve the proper
structure, per the C Specification.  This is critical in a graph algorithm,
since an edge $(i,j)$ of weight zero, say, is not the same as no edge $(i,j)$
at all.

%-------------------------------------------------------------------------------
\subsection{Matrix formats: by row or by column, or using the transpose of
a matrix}
%-------------------------------------------------------------------------------

By default, SuiteSparse uses a simple rule:
all matrices are held by row, unless the consist of a single
column, in which case they are held by column.  All vectors are treated as if
they are $n$-by-1 matrices with a single column.  Changing formats from
row-oriented to column-oriented can have significant performance implications,
so SuiteSparse never tries to outguess the application.  It just uses this
simple rule.

However, there are cases where changing the format can greatly improve
performance.  There are two ways to handle this, which in the end are
equivalent in the SuiteSparse internals.  You can change the format (row to
column oriented, or visa versa), or work with the explicit transpose of a
matrix in the same storage orientation.

There are cases where SuiteSparse must explicitly transpose an input matrix, or
the output matrix, in order to perform a computation.  For example, if all
matrices are held in row-oriented fashion, SuiteSparse does not have a method
for computing \verb"C=A'*B", where \verb'A' is transposed.  Thus, SuiteSparse
either computes a temporary transpose of its input matrix \verb'AT=A' and then
\verb'C=AT*B', or it swaps the computations, performing \verb"C=(B'*A)'", which
requires an explicit transpose of \verb'BT=B', and a transpose of the final
result to obtain \verb'C'.

These temporary transposes are costly to compute, taking time and memory.  They
are not kept, but are discarded when the method returns to the user
application.  If you see the term \verb'transpose' in the burble output, and if
you need to perform this computation many times, try constructing your own
explicit transpose, say \verb"AT=A'", via \verb'GrB_transpose', or create a
copy of \verb'A' but held in another orientation via \verb'GxB_set'.  For
example, assuming the default matrix format is by-row, and that \verb'A' is
\verb'm'-by-\verb'n' of type \verb'GrB_FP32':

    {\scriptsize
    \begin{verbatim}
    // method 1: AT = A'
    GrB_Matrix_new (AT, GrB_FP32, n, m) ;
    GrB_transpose (AT, NULL, NULL, A, NULL) ;

    // method 2: A2 = A but held by column instead of by row
    // note: doing the set before the assign is faster than the reverse
    GrB_Matrix_new (A2, GrB_FP32, m, n) ;
    GxB_set (A2, GxB_FORMAT, GxB_BY_COL) ;
    GrB_assign (A2, NULL, NULL, A, GrB_ALL, m, GrB_ALL, n, NULL) ; \end{verbatim}}

Internally, the data structure for \verb'AT' and \verb'A2' are nearly identical
(that is, the tranpose of \verb'A' held in row format is the same as \verb'A'
held in column format).  Using either of them in subsequent calls to GraphBLAS
will allow SuiteSparse to avoid computing an explicit transpose.  The two
matrices \verb'AT' and \verb'A2' do differ in one very significant way:  their
dimensions are different, and they behave differement mathematically.
Computing \verb"C=A'*B" using these matrices would differ:

    {\scriptsize
    \begin{verbatim}
    // method 1: C=A'*B using AT
    GrB_mxm (C, NULL, NULL, semiring, AT, B, NULL) ;

    // method 2: C=A'*B using A2
    GrB_mxm (C, NULL, NULL, semiring, A2, B, GrB_DESC_T0) ; \end{verbatim}}

The first method computes \verb'C=AT*B'.  The second method computes
\verb"C=A2'*B", but the result of both computations is the same, and internally
the same kernels will be used.

%-------------------------------------------------------------------------------
\subsection{Push/pull optimization}
%-------------------------------------------------------------------------------

Closely related to the discussion above on when to use a matrix or its
transpose is the exploitation of ``push/pull'' direction optimization.  In
linear algebraic terms, this is simply deciding whether to multiply by the
matrix or its transpose.  Examples can be see in the BFS and
Betweeness-Centrality methods of LAGraph.  Here is the BFS kernel:

    {\scriptsize
    \begin{verbatim}
    int sparsity = do_push ? GxB_SPARSE : GxB_BITMAP ;
    GxB_set (q, GxB_SPARSITY_CONTROL, sparsity) ;
    if (do_push)
    {
        // q'{!pi} = q'*A
        GrB_vxm (q, pi, NULL, semiring, q, A, GrB_DESC_RSC) ;
    }
    else
    {
        // q{!pi} = AT*q
        GrB_mxv (q, pi, NULL, semiring, AT, q, GrB_DESC_RSC) ;
    }\end{verbatim}}

The call to \verb'GxB_set' is optional, since SuiteSparse will likely already
determine that a bitmap format will work best when the frontier \verb'q' has
many entries, which is also when the pull step is fastest.  The push step
relies on a sparse vector times sparse matrix method originally due to
Gustavson.  The output is computed as a set union of all rows \verb'A(i,:)'
where \verb'q(i)' is present on input.  This set union is very fast when
\verb'q' is very sparse.  The pull step relies on a sequence of dot product
computations, one per possible entry in the output \verb'q', and it uses the
matrix \verb"AT" which is a row-oriented copy of the explicit transpose of the
adjacency matrix \verb'A'.

Mathematically, the results of the two methods are identical, but internally,
the data format of the input matrices is very different (using \verb'A' held
by row, or \verb'AT' held by row which is the same as a copy of \verb'A' that
is held by column), and the algorithms used are very different.

%-------------------------------------------------------------------------------
\subsection{Computing with full matrices and vectors}
%-------------------------------------------------------------------------------

Sometimes the best approach to getting the highest performance is to use dense
vectors, and occassionaly dense matrices are tall-and-thin or short-and-fat.
Packages such as Julia, Octave, or MATLAB, when dealing with the conventional
plus-times semirings, assume that multiplying a sparse matrix \verb'A' times a
dense vector \verb'x', \verb'y=A*x', will result in a dense vector \verb'y'.
This is not always the case, however. GraphBLAS must always return a result
that respects the sparsity structure of the output matrix or vector.  If the
$i$th row of \verb'A' has no entries then \verb'y(i)' must not appear as an
entry in the vector \verb'y', so it cannot be held as a full vector.  As a
result, the following computation can be slower than it could be:

    {\scriptsize
    \begin{verbatim}
    GrB_mxv (y, NULL, NULL, semiring, A, x, NULL) ; \end{verbatim}}

SuiteSparse must do extra work to compute the sparsity of this vector \verb'y',
but if this is not needed, and \verb'y' can be padded with zeros (or 
the identity value of the monoid, to be precise), a faster method can be used,
by relying on the accumulator.  Instead of computing \verb'y=A*x', set all
entries of \verb'y' to zero first, and then compute \verb'y+=A*x' where the
accumulator operator and type matches the monoid of the semiring.  SuiteSparse
has special kernels for this case; you can see them in the burble as
\verb'F+=S*F' for example.

    {\scriptsize
    \begin{verbatim}
    // y = 0
    GrB_assign (y, NULL, NULL, 0, GrB_ALL, n, NULL) ;
    // y += A*x
    GrB_mxv (y, NULL, GrB_PLUS_FP32, GrB_PLUS_TIMES_SEMIRING_FP32, A, x, NULL) ; \end{verbatim}}

You can see this computation in the LAGraph PageRank method, where all
entries of \verb'r' are set to the \verb'teleport' scalar first.

    {\scriptsize
    \begin{verbatim}
    for (iters = 0 ; iters < itermax && rdiff > tol ; iters++)
    {
        // swap t and r ; now t is the old score
        GrB_Vector temp = t ; t = r ; r = temp ;
        // w = t ./ d
        GrB_eWiseMult (w, NULL, NULL, GrB_DIV_FP32, t, d, NULL) ;
        // r = teleport
        GrB_assign (r, NULL, NULL, teleport, GrB_ALL, n, NULL) ;
        // r += A'*w
        GrB_mxv (r, NULL, GrB_PLUS_FP32, LAGraph_plus_second_fp32, AT, w, NULL) ;
        // t -= r
        GrB_assign (t, NULL, GrB_MINUS_FP32, r, GrB_ALL, n, NULL) ;
        // t = abs (t)
        GrB_apply (t, NULL, NULL, GrB_ABS_FP32, t, NULL) ;
        // rdiff = sum (t)
        GrB_reduce (&rdiff, NULL, GrB_PLUS_MONOID_FP32, t, NULL) ;
    } \end{verbatim}}

SuiteSparse exploits the iso-valued property of the scalar-to-vector assignment
of \verb'y=0', or \verb'r=teleport', and performs these assignments in O(1)
time and space.  Because the \verb'r' vector start out as full on input to
\verb'GrB_mxv', and because there is an accumulatr with no mask, no entries in
the input/output vector \verb'r' will be deleted, even if \verb'A' has empty
rows.  The call to \verb'GrB_mxv' exploits this, and is able to use a fast
kernel for this computation.  SuiteSparse does not need to compute the sparsity
pattern of the vector \verb'r'.

%-------------------------------------------------------------------------------
\subsection{Iso-valued matrices and vectors}
%-------------------------------------------------------------------------------

Using iso-valued matrices and vectors is always faster than using matrices and
vectors whose entries can have different values.  Iso-valued matrices are very
important in graph algorithms.  For example, an unweighted graph is best
represented as an iso-valued sparse matrix, and unweighted graphs are very
common.  The burble output, or the \verb'GxB_print', \verb'GxB_Matrix_iso', or
\verb'GxB_Vector_iso' can all be used to report whether or not your matrix or
vector is iso-valued.

Sometimes a matrix or vector may have values that are all the same, but
SuiteSparse hasn't detected this.  If this occurs, you can force a matrix
or vector to be iso-valued by assigning a single scalar to all its entries.

    {\scriptsize
    \begin{verbatim}
    // C<s(C)> = 3.14159
    GrB_assign (C, C, NULL, 3.14159, GrB_ALL, m, GrB_ALL, n, GrB_DESC_S) ; \end{verbatim}}

The matrix \verb'C' is used as its own mask.  The descriptor is essential here,
telling the mask to be used in a structural sense, without regard to the values
of the entries in the mask.  This assignment sets all entries that already
exist in \verb'C' to be equal to a single value, 3.14159. The sparsity
structure of \verb'C' does not change.  Of course, any scalar can be used; the
value 1 is common for unweighted graphs.  SuiteSparse:GraphBLAS performs the
above assignment in O(1) time and space, independent of the dimension of
\verb'C' or the number of entries in contains.

%-------------------------------------------------------------------------------
\subsection{User-defined types and operators}
%-------------------------------------------------------------------------------

These are currently slow.  Once SuiteSparse:GraphBLAS employs a JIT
accelerator, these data types and operators will be just as fast as built-in
types and operators.  This work is in progress for the GPU, in CUDA, in
collaboration with Joe Eaton and Corey Nolet.

%-------------------------------------------------------------------------------
\subsection{About NUMA systems}
%-------------------------------------------------------------------------------

I have tested this package extensively on multicore single-socket systems, but
have not yet optimized it for multi-socket systems with a NUMA architecture.
That will be done in a future release.  If you publish benchmarks
with this package, please state the SuiteSparse:GraphBLAS version, and a caveat
if appropriate.  If you see significant performance issues when going from a
single-socket to multi-socket system, I would like to hear from you so I can
look into it.

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Examples} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{examples}

Several examples of how to use GraphBLAS are listed below.  They all
appear in the \verb'Demo' folder of SuiteSparse:GraphBLAS.  Programs in
the \verb'Demo' folder are meant as simple examples; for the fastest methods,
see LAgraph (Section~\ref{lagraph}).

\begin{enumerate}
\item creating a random matrix
\item creating a finite-element matrix
\item reading a matrix from a file
\item complex numbers as a user-defined type
\item matrix import/export
\end{enumerate}

Additional examples appear in the newly created LAGraph project, currently in
progress.

%-------------------------------------------------------------------------------
\subsection{LAGraph}
%-------------------------------------------------------------------------------
\label{lagraph}

The LAGraph project is a community-wide effort to create graph algorithms based
on GraphBLAS (any implementation of the API, not just SuiteSparse: GraphBLAS).
Some of the algorithms and utilities in LAGraph are listed in the table below.
Many additional algorithms are planned.  Refer to
\url{https://github.com/GraphBLAS/LAGraph} for a current list of algorithms. All
functions in the \verb'Demo/' folder in SuiteSparse:GraphBLAS will eventually
be translated into algorithms or utilities for LAGraph, and then removed
from \verb'GraphBLAS/Demo'.

To use LAGraph with SuiteSparse:GraphBLAS, place the two folders \verb'LAGraph'
and \verb'GraphBLAS' in the same parent directory.  This allows the
\verb'cmake' script in LAGraph to find the copy of GraphBLAS.  Alternatively,
the GraphBLAS source could be placed anywhere, as long as
\verb'sudo make install' is performed.

%-------------------------------------------------------------------------------
\subsection{Creating a random matrix}
%-------------------------------------------------------------------------------
\label{random}

The \verb'random_matrix' function in the \verb'Demo' folder generates a random
matrix with a specified dimension and number of entries, either symmetric or
unsymmetric, and with or without self-edges (diagonal entries in the matrix).
It relies on \verb'simple_rand*' functions in the \verb'Demo' folder to provide
a portable random number generator that creates the same sequence on any
computer and operating system.

\verb'random_matrix' can use one of two methods: \verb'GrB_Matrix_setElement'
and \verb'GrB_Matrix_build'.  The former method is very simple to use:

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;
    for (int64_t k = 0 ; k < ntuples ; k++)
    {
        GrB_Index i = simple_rand_i ( ) % nrows ;
        GrB_Index j = simple_rand_i ( ) % ncols ;
        if (no_self_edges && (i == j)) continue ;
        double x = simple_rand_x ( ) ;
        // A (i,j) = x
        GrB_Matrix_setElement (A, x, i, j) ;
        if (make_symmetric)
        {
            // A (j,i) = x
            GrB_Matrix_setElement (A, x, j, i) ;
        }
    } \end{verbatim}}

The above code can generate a million-by-million sparse \verb'double' matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random \verb'i', \verb'j', and \verb'x'), including the time
to finish all pending computations.  The user application does not need to
create a list of all the tuples, nor does it need to know how many entries will
appear in the matrix.  It just starts from an empty matrix and adds them one at
a time in arbitrary order.  GraphBLAS handles the rest.  This method is not
feasible in MATLAB.

The next method uses \verb'GrB_Matrix_build'.  It is more complex to use than
\verb'setElement' since it requires the user application to allocate and fill
the tuple lists, and it requires knowledge of how many entries will appear in
the matrix, or at least a good upper bound, before the matrix is constructed.
It is slightly faster, creating the same matrix in 60 seconds, 51 seconds
of which is spent in \verb'GrB_Matrix_build'.

    {\footnotesize
    \begin{verbatim}
    GrB_Index *I, *J ;
    double *X ;
    int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;
    I = malloc (s * sizeof (GrB_Index)) ;
    J = malloc (s * sizeof (GrB_Index)) ;
    X = malloc (s * sizeof (double   )) ;
    if (I == NULL || J == NULL || X == NULL)
    {
        // out of memory
        if (I != NULL) free (I) ;
        if (J != NULL) free (J) ;
        if (X != NULL) free (X) ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    int64_t ntuples = 0 ;
    for (int64_t k = 0 ; k < nedges ; k++)
    {
        GrB_Index i = simple_rand_i ( ) % nrows ;
        GrB_Index j = simple_rand_i ( ) % ncols ;
        if (no_self_edges && (i == j)) continue ;
        double x = simple_rand_x ( ) ;
        // A (i,j) = x
        I [ntuples] = i ;
        J [ntuples] = j ;
        X [ntuples] = x ;
        ntuples++ ;
        if (make_symmetric)
        {
            // A (j,i) = x
            I [ntuples] = j ;
            J [ntuples] = i ;
            X [ntuples] = x ;
            ntuples++ ;
        }
    }
    GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ; \end{verbatim}}

The equivalent \verb'sprandsym' function in MATLAB takes 150 seconds, but
\verb'sprandsym' uses a much higher-quality random number generator to create
the tuples \verb'[I,J,X]'.  Considering just the time for
\verb'sparse(I,J,X,n,n)' in \verb'sprandsym' (equivalent to
\verb'GrB_Matrix_build'), the time is 70 seconds.  That is, each of these three
methods, \verb'setElement' and \verb'build' in SuiteSparse:GraphBLAS, and
\verb'sparse' in MATLAB, are equally fast.

%-------------------------------------------------------------------------------
\subsection{Creating a finite-element matrix}
%-------------------------------------------------------------------------------
\label{fem}

Suppose a finite-element matrix is being constructed, with \verb'k=40,000'
finite-element matrices, each of size \verb'8'-by-\verb'8'.  The following
operations (in pseudo-MATLAB notation) are very efficient in
SuiteSparse:GraphBLAS.

    {\footnotesize
    \begin{verbatim}
    A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix
    for i = 1:k
        construct a 8-by-8 sparse or dense finite-element F
        I and J define where the matrix F is to be added:
        I = a list of 8 row indices
        J = a list of 8 column indices
        % using GrB_assign, with the 'plus' accum operator:
        A (I,J) = A (I,J) + F
    end \end{verbatim}}

If this were done in MATLAB or in GraphBLAS with blocking mode enabled, the
computations would be extremely slow.  A far better approach is to construct a
list of tuples \verb'[I,J,X]' and to use \verb'sparse(I,J,X,n,n)'. This is
identical to creating the same list of tuples in GraphBLAS and using the
\verb'GrB_Matrix_build', which is equally fast.

In SuiteSparse:GraphBLAS, the performance of both methods is essentially
identical, and roughly as fast as \verb'sparse' in MATLAB.  Inside
SuiteSparse:GraphBLAS, \verb'GrB_assign' is doing the same thing. When
performing \verb'A(I,J)=A(I,J)+F', if it finds that it cannot quickly insert an
update into the \verb'A' matrix, it creates a list of pending tuples to be
assembled later on.   When the matrix is ready for use in a subsequent
GraphBLAS operation (one that normally cannot use a matrix with pending
computations), the tuples are assembled all at once via
\verb'GrB_Matrix_build'.

GraphBLAS operations on other matrices have no effect on when the pending
updates of a matrix are completed.  Thus, any GraphBLAS method or operation can
be used to construct the \verb'F' matrix in the example above, without
affecting when the pending updates to \verb'A' are completed.

The MATLAB \verb'wathen.m' script is part of Higham's \verb'gallery' of
matrices \cite{Higham}.  It creates a finite-element matrix with random
coefficients for a 2D mesh of size \verb'nx'-by-\verb'ny', a matrix formulation
by Wathen \cite{Wathen}.  The pattern of the matrix is fixed; just the values
are randomized.  The GraphBLAS equivalent can use either
\verb'GrB_Matrix_build', or \verb'GrB_assign'.  Both methods have good
performance.  The \verb'GrB_Matrix_build' version below is about 15\% to 20\%
faster than the MATLAB \verb'wathen.m' function, regardless of the problem
size.  It uses the identical algorithm as \verb'wathen.m'.

    {\footnotesize
    \begin{verbatim}
    int64_t ntriplets = nx*ny*64 ;
    I = malloc (ntriplets * sizeof (int64_t)) ;
    J = malloc (ntriplets * sizeof (int64_t)) ;
    X = malloc (ntriplets * sizeof (double )) ;
    if (I == NULL || J == NULL || X == NULL)
    {
        FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    ntriplets = 0 ;
    for (int j = 1 ; j <= ny ; j++)
    {
        for (int i = 1 ; i <= nx ; i++)
        {
            nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
            nn [1] = nn [0] - 1 ;
            nn [2] = nn [1] - 1 ;
            nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
            nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
            nn [5] = nn [4] + 1 ;
            nn [6] = nn [5] + 1 ;
            nn [7] = nn [3] + 1 ;
            for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
            for (int krow = 0 ; krow < 8 ; krow++)
            {
                for (int kcol = 0 ; kcol < 8 ; kcol++)
                {
                    I [ntriplets] = nn [krow] ;
                    J [ntriplets] = nn [kcol] ;
                    X [ntriplets] = em (krow,kcol) ;
                    ntriplets++ ;
                }
            }
        }
    }
    // A = sparse (I,J,X,n,n) ;
    GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ; \end{verbatim}}

The \verb'GrB_assign' version has the advantage of not requiring the
user application to construct the tuple list, and is almost as fast as using
\verb'GrB_Matrix_build'.  The code is more elegant than either the MATLAB
\verb'wathen.m' function or its GraphBLAS equivalent above.  Its performance is
comparable with the other two methods, but slightly slower, being about 5\%
slower than the MATLAB \verb'wathen', and 20\% slower than the GraphBLAS
method above.

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;
    for (int j = 1 ; j <= ny ; j++)
    {
        for (int i = 1 ; i <= nx ; i++)
        {
            nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
            nn [1] = nn [0] - 1 ;
            nn [2] = nn [1] - 1 ;
            nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
            nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
            nn [5] = nn [4] + 1 ;
            nn [6] = nn [5] + 1 ;
            nn [7] = nn [3] + 1 ;
            for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
            for (int krow = 0 ; krow < 8 ; krow++)
            {
                for (int kcol = 0 ; kcol < 8 ; kcol++)
                {
                    // F (krow,kcol) = em (krow, kcol)
                    GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;
                }
            }
            // A (nn,nn) += F
            GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;
        }
    } \end{verbatim}}

Since there is no \verb'Mask', and since \verb'GrB_REPLACE' is not used, the call
to \verb'GrB_assign' in the example above is identical to \verb'GxB_subassign'.
Either one can be used, and their performance would be identical.

Refer to the \verb'wathen.c' function in the \verb'Demo' folder, which
uses GraphBLAS to implement the two methods above, and two additional ones.

%-------------------------------------------------------------------------------
\subsection{Reading a matrix from a file}
%-------------------------------------------------------------------------------
\label{read}

See also \verb'LAGraph_mmread' and \verb'LAGraph_mmwrite', which
can read and write any matrix in Matrix Market format, and
\verb'LAGraph_binread' and \verb'LAGraph_binwrite', which read/write a matrix
from a binary file.  The binary file I/O functions are much faster than
the \verb'read_matrix' function described here, and also much faster than
\verb'LAGraph_mmread' and \verb'LAGraph_mmwrite'.

The \verb'read_matrix' function in the \verb'Demo' reads in a triplet matrix
from a file, one line per entry, and then uses \verb'GrB_Matrix_build' to
create the matrix.  It creates a second copy with \verb'GrB_Matrix_setElement',
just to test that method and compare the run times.
Section~\ref{random} has already compared
\verb'build' versus \verb'setElement'.

The function can return the matrix as-is, which may be rectangular or
unsymmetric.  If an input parameter is set to make the matrix symmetric,
\verb'read_matrix' computes \verb"A=(A+A')/2" if \verb'A' is square (turning
all directed edges into undirected ones).  If \verb'A' is rectangular, it
creates a bipartite graph, which is the same as the augmented matrix,
\verb"A = [0 A ; A' 0]".
If \verb'C' is an \verb'n'-by-\verb'n' matrix, then \verb"C=(C+C')/2" can be
computed as follows in GraphBLAS, (the \verb'scale2' function divides an entry
by 2):

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    GrB_Descriptor_new (&dt2) ;
    GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;
    GrB_Matrix_new (&A, GrB_FP64, n, n) ;
    GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ;    // A=C+C'
    GrB_free (&C) ;
    GrB_Matrix_new (&C, GrB_FP64, n, n) ;
    GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;
    GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ;             // C=A/2
    GrB_free (&A) ;
    GrB_free (&scale2_op) ; \end{verbatim}}

This is of course not nearly as elegant as \verb"A=(A+A')/2" in MATLAB, but
with minor changes it can work on any type and use any built-in operators
instead of \verb'PLUS', or it can use any user-defined operators and types.
The above code in SuiteSparse:GraphBLAS takes 0.60 seconds for the
\verb'Freescale2' matrix, slightly slower than MATLAB (0.55 seconds).

Constructing the augmented system is more complicated using the GraphBLAS C API
Specification since it does not yet have a simple way of specifying a range of
row and column indices, as in \verb'A(10:20,30:50)' in MATLAB (\verb'GxB_RANGE'
is a SuiteSparse:GraphBLAS extension that is not in the Specification).  Using
the C API in the Specification, the application must instead build a list of
indices first, \verb'I=[10, 11' \verb'...' \verb'20]'.

Thus, to compute the MATLAB equivalent of \verb"A = [0 A ; A' 0]", index lists
\verb'I' and \verb'J' must first be constructed:

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    int64_t n = nrows + ncols ;
    I = malloc (nrows * sizeof (int64_t)) ;
    J = malloc (ncols * sizeof (int64_t)) ;
    // I = 0:nrows-1
    // J = nrows:n-1
    if (I == NULL || J == NULL)
    {
        if (I != NULL) free (I) ;
        if (J != NULL) free (J) ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;
    for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ; \end{verbatim}}

Once the index lists are generated, however, the resulting GraphBLAS operations
are fairly straightforward, computing \verb"A=[0 C ; C' 0]".

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    GrB_Descriptor_new (&dt1) ;
    GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN) ;
    GrB_Matrix_new (&A, GrB_FP64, n, n) ;
    // A (nrows:n-1, 0:nrows-1) = C'
    GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;
    // A (0:nrows-1, nrows:n-1) = C
    GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ; \end{verbatim}}

This takes 1.38 seconds for the \verb'Freescale2' matrix, almost as fast as \newline
\verb"A=[sparse(m,m) C ; C' sparse(n,n)]" in MATLAB (1.25 seconds).
The \verb'GxB_Matrix_concat' function would be faster still (this example
was written prior to \verb'GxB_Matrix_concat' was added to SuiteSparse:GraphBLAS).

Both calls to \verb'GrB_assign' use no accumulator, so the second one
causes the partial matrix \verb"A=[0 0 ; C' 0]" to be built first, followed by
the final build of \verb"A=[0 C ; C' 0]".  A better method, but not an obvious
one, is to use the \verb'GrB_FIRST_FP64' accumulator for both assignments.  An
accumulator enables SuiteSparse:GraphBLAS to determine that that entries
created by the first assignment cannot be deleted by the second, and thus it
need not force completion of the pending updates prior to the second
assignment.

SuiteSparse:GraphBLAS also adds a \verb'GxB_RANGE' mechanism that mimics
the MATLAB colon notation.  This speeds up the method and simplifies the
code the user needs to write to compute \verb"A=[0 C ; C' 0]":

    \vspace{-0.05in}
    {\footnotesize
    \begin{verbatim}
    int64_t n = nrows + ncols ;
    GrB_Matrix_new (&A, xtype, n, n) ;
    GrB_Index I_range [3], J_range [3] ;
    I_range [GxB_BEGIN] = 0 ;
    I_range [GxB_END  ] = nrows-1 ;
    J_range [GxB_BEGIN] = nrows ;
    J_range [GxB_END  ] = ncols+nrows-1 ;
    // A (nrows:n-1, 0:nrows-1) += C'
    GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
        C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1) ;
    // A (0:nrows-1, nrows:n-1) += C
    GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
        C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ; \end{verbatim}}

Any operator will suffice because it is not actually applied.  An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an \verb'accum' operator is used, only the final matrix is built, and the
time in GraphBLAS drops slightly to 1.25 seconds.  This is a very small
improvement because in this particular case, SuiteSparse:GraphBLAS is able to
detect that no sorting is required for the first build, and the second one is a
simple concatenation.  In general, however, allowing GraphBLAS to postpone
pending updates can lead to significant reductions in run time.

%-------------------------------------------------------------------------------
\subsection{User-defined types and operators}
%-------------------------------------------------------------------------------
\label{user}

The \verb'Demo' folder contains two working examples of user-defined types,
first discussed in Section~\ref{type_new}: \verb'double complex', and a
user-defined \verb'typedef' called \verb'wildtype' with a \verb'struct'
containing a string and a 4-by-4 \verb'float' matrix.

{\bf Double Complex:}
Prior to v3.3, GraphBLAS did not have a native complex type.  It now appears as
the \verb'GxB_FC64' predefined type, but a complex type can also easily added
as a user-defined type.  The \verb'Complex_init' function in the
\verb'usercomplex.c' file in the \verb'Demo' folder creates the \verb'Complex'
type based on the ANSI C11 \verb'double complex' type.
It creates a full suite of operators that correspond to every
built-in GraphBLAS operator, both binary and unary.  In addition, it
creates the operators listed in the following table, where $D$ is
\verb'double' and $C$ is \verb'Complex'.

\vspace{0.1in}
{\footnotesize
\begin{tabular}{llll}
\hline
name                    & types             & MATLAB/Octave & description \\
                        &                   & equivalent    & \\
\hline
\verb'Complex_complex'  & $D \times D \rightarrow C$ & \verb'z=complex(x,y)' & complex from real and imag. \\
\hline
\verb'Complex_conj'     & $C \rightarrow C$ & \verb'z=conj(x)'  & complex conjugate \\
\verb'Complex_real'     & $C \rightarrow D$ & \verb'z=real(x)'  & real part \\
\verb'Complex_imag'     & $C \rightarrow D$ & \verb'z=imag(x)'  & imaginary part \\
\verb'Complex_angle'    & $C \rightarrow D$ & \verb'z=angle(x)' & phase angle \\
\verb'Complex_complex_real'  & $D \rightarrow C$ & \verb'z=complex(x,0)' & real to complex real \\
\verb'Complex_complex_imag'  & $D \rightarrow C$ & \verb'z=complex(0,x)' & real to complex imag. \\
\hline
\end{tabular}
}

The \verb'Complex_init' function creates two monoids (\verb'Complex_add_monoid'
and \verb'Complex_times_monoid') and a semiring \verb'Complex_plus_times' that
corresponds to the conventional linear algebra for complex matrices.  The
include file \verb'usercomplex.h' in the \verb'Demo' folder is available so
that this user-defined \verb'Complex' type can easily be imported into any
other user application.  When the user application is done, the
\verb'Complex_finalize' function frees the \verb'Complex' type and its
operators, monoids, and semiring.
NOTE: the \verb'Complex' type is not supported in this Demo in Microsoft
Visual Studio.

{\bf Struct-based:}
In addition, the \verb'wildtype.c' program  creates a user-defined
\verb'typedef' of a \verb'struct' containing a dense 4-by-4 \verb'float'
matrix, and a 64-character string.  It constructs an additive monoid that adds
two 4-by-4 dense matrices, and a multiplier operator that multiplies two 4-by-4
matrices.  Each of these 4-by-4 matrices is treated by GraphBLAS as a
``scalar'' value, and they can be manipulated in the same way any other
GraphBLAS type can be manipulated. The purpose of this type is illustrate the
endless possibilities of user-defined types and their use in GraphBLAS.

%-------------------------------------------------------------------------------
\subsection{User applications using OpenMP or other threading models}
%-------------------------------------------------------------------------------
\label{threads}

An example demo program (\verb'openmp_demo') is included that illustrates how a
multi-threaded user application can use GraphBLAS.

The results from the \verb'openmp_demo' program may appear out of order.  This
is by design, simply to show that the user application is running in parallel.
The output of each thread should be the same.  In particular, each thread
generates an intentional error, and later on prints it with \verb'GrB_error'.
It will print its own error, not an error from another thread.  When all the
threads finish, the leader thread prints out each matrix generated by each
thread.

GraphBLAS can also be combined with user applications that rely on MPI, the
Intel TBB threading library, POSIX pthreads, Microsoft Windows threads, or any
other threading library.  If GraphBLAS itself is compiled with OpenMP,
it will be thread safe when combined with other libraries.
See Section~\ref{omp_parallelism} for thread-safety issues that can occur
if GraphBLAS is compiled without OpenMP.

\newpage
%-------------------------------------------------------------------------------
\section{Compiling and Installing SuiteSparse:GraphBLAS}
%-------------------------------------------------------------------------------
\label{sec:install}

%----------------------------------------
\subsection{On Linux and Mac}
%----------------------------------------

GraphBLAS makes extensive use of features in the ANSI C11 standard, and thus a
C compiler supporting this version of the C standard is required to use
all features of GraphBLAS. 

{\bf Any version of the Intel \verb'icx' compiler is highly recommended.} In
most cases, the Intel \verb'icx' and the Intel OpenMP library (\verb'libiomp')
result in the best performance.  The \verb'gcc' and the GNU OpenMP library
(\verb'libgomp') generally gives good performance: typically on par with icx
but in a few special cases significantly slower.  The Intel \verb'icc' compiler
is not recommended; it results in poor performance for
\verb'#pragma omp atomic'.

On the Mac (OS X), \verb'clang' 8.0.0 in \verb'Xcode' version 8.2.1 is
sufficient, although earlier versions of \verb'Xcode' may work as well.  For
the GNU \verb'gcc' compiler, version 4.9 or later is required, but best
performance is obtained in 9.3 or later.  Version 3.13 or later of \verb'cmake'
is required; version 3.17 is preferred.

If you are using a pre-C11 ANSI C compiler, such as Microsoft Visual Studio,
then the \verb'_Generic' keyword is not available.  SuiteSparse:GraphBLAS
will still compile, but you will not have access to polymorphic functions
such as \verb'GrB_assign'.  You will need to use the non-polymorphic functions
instead.

To compile SuiteSparse:GraphBLAS, simply type \verb'make' in the main GraphBLAS
folder, which compiles the library with your default system compiler.  This
compile GraphBLAS using 8 threads, which will take a long time.  To compile with
more threads (40, for this example), use:

    {\small
    \begin{verbatim}
    make JOBS=40 \end{verbatim} }

To use a non-default compiler with 4 threads:

    {\small
    \begin{verbatim}
    make CC=icx CXX=icpx JOBS=4 \end{verbatim} }

GraphBLAS v6.1.3 and later use the \verb'cpu_features' package by Google to
determine if the target architecture supports AVX2 and/or AVX512F (on Intel
x86\_64 architectures only).  In case you have build issues with this package,
you can compile without it (and then AVX2 and AVX512F acceleration will not
be used):

    {\small
    \begin{verbatim}
    make CMAKE_OPTIONS='-DGBNCPUFEAT=1'  \end{verbatim} }

Without \verb'cpu_features', it is still possible to enable AVX2 and AVX512F.
Rather than relying on run-time tests, you can use these flags to enable
both AVX2 and AVX512F, without relying on \verb'cpu_features':

    {\small
    \begin{verbatim}
    make CMAKE_OPTIONS='-DGBNCPUFEAT=1 -DGBAVX2=1 -DGBAVX512F=1' \end{verbatim} }

To use multiple options, separate them by a space.  For example, to build
just the library but not \verb'cpu_features', and to enable
AVX2 but not AVX512F, and use 40 threads to compile:

    {\small
    \begin{verbatim}
    make CMAKE_OPTIONS='-DGBNCPUFEAT=1 -DGBAVX2=1' JOBS=40 \end{verbatim} }

After compiling the library, you can compile the demos with
\verb'make all' and then \verb'make demos' while in the top-level
GraphBLAS folder.

If \verb'cmake' or \verb'make' fail, it might be that your default compiler
does not support ANSI C11.  Try another compiler.  For example, try one of
these options.  Go into the \verb'build' directory and type one of these:

    {\small
    \begin{verbatim}
    CC=gcc cmake ..
    CC=gcc-11 cmake ..
    CC=xlc cmake ..
    CC=icx cmake ..  \end{verbatim} }

You can also do the following in the top-level GraphBLAS folder instead:

    {\small
    \begin{verbatim}
    CC=gcc make
    CC=gcc-11 make
    CC=xlc make
    CC=icx make \end{verbatim} }

For faster compilation, you can specify a parallel make.  For example,
to use 32 parallel jobs and the \verb'gcc' compiler, do the following:

    {\small
    \begin{verbatim}
    JOBS=32 CC=gcc make \end{verbatim} }

If you do not have \verb'cmake', refer to Section~\ref{altmake}.

%----------------------------------------
\subsection{More details on the Mac}
%----------------------------------------

SuiteSparse:GraphBLAS requires OpenMP for its internal parallelism, but
OpenMP is not on the Mac by default.

If you have the Intel compiler and OpenMP library, then use the following
in the top-level \verb'GraphBLAS' folder.  OpenMP will be found automatically:

    {\small
    \begin{verbatim}
    make CC=icc CXX=icpc \end{verbatim} }

The following instructions work on MacOS Big Sur (v11.3)
and MacOS Monterey (12.1), using
cmake 3.13 or later:

First install Xcode (see \url{https://developer.apple.com/xcode}),
and then install the command line tools for Xcode:

    {\small
    \begin{verbatim}
    cd /Applications/Utilities
    xcode-select —install \end{verbatim} }

Next, install brew, at \url{https://brew.sh}.

If not used for the MATLAB mexFunction interface, a recent update of the Apple
Clang compiler now works with \verb'libomp' and the
\verb'GraphBLAS/CMakeLists.txt'.  To use the MATLAB mexFunction, however, you
must use \verb'gcc' (\verb'gcc-11' is recommended).  Using Clang will result in
a segfault when you attempt to use the \verb'@GrB' interface in MATLAB.

With MacOS Big Sur install \verb'gcc-11', \verb'cmake', and OpenMP, and then
compile GraphBLAS.  cmake 3.13 or later is required.  For the MATLAB
mexFunctions, you must use \verb'gcc-11'; the \verb'libomp' from \verb'brew'
will allow you to compile the mexFunctions but they will not work properly.

    {\small
    \begin{verbatim}
    brew install cmake
    brew install libomp
    brew install gcc
    cd GraphBLAS/GraphBLAS
    make CC=gcc-11 CXX=g++-11 JOBS=8 \end{verbatim} }

The above instructions assume MATLAB, using
\verb'libgraphblas_matlab.dylib', since MATLAB includes its
own copy of SuiteSparse:GraphBLAS (\verb'libmwgraphblas.dylib') but at version
v3.3.3, not the latest version.

Next, compile the MATLAB mexFunctions.  I had to edit this file first:

{\small
\begin{verbatim}
/Users/davis/Library/Application Support/MathWorks/MATLAB/R2021a/mex_C_maci64.xml \end{verbatim} }

where you would replace \verb'davis' with your MacOS user name.
Change lines 4 and 18, where both cases of \verb'MACOSX_DEPLOYMENT_TARGET=10.14'
must become \verb"MACOSX_DEPLOYMENT_TARGET=11.3".  Otherwise, MATLAB
complains that the \verb'libgraphblas_matlab.dylib' was built for 11.3 but
linked for 10.14.

Next, type the following in the MATLAB Command Window:

    {\small
    \begin{verbatim}
    cd GraphBLAS/GraphBLAS/@GrB/private
    gbmake \end{verbatim} }

Then add the paths to your \verb'startup.m' file (usually in
\verb'~/Documents/MATLAB/startup.m').  For example, my path is:

    {\small
    \begin{verbatim}
    addpath ('/Users/davis/GraphBLAS/GraphBLAS') ;
    addpath ('/Users/davis/GraphBLAS/GraphBLAS/build') ; \end{verbatim} }

Finally, you can run the tests to see if your installation works:

    {\small
    \begin{verbatim}
    cd ../../test
    gbtest \end{verbatim} }

%----------------------------------------
\subsection{On the ARM64 architecture}
%----------------------------------------

You may encounter a compiler error on the ARM64 architecture when using the
\verb'gcc' compiler, versions 6.x and earlier.  This error was encountered on
ARM64 Linux with gcc 6.x:

\begin{verbatim}
`In function GrB_Matrix_apply_BinaryOp1st_Scalar.part.1':
GrB_Matrix_apply.c:(.text+0x210): relocation truncated to
fit: R_AARCH64_CALL26 against `.text.unlikely'
\end{verbatim}

For the ARM64, this error is silenced with gcc v7.x and later, at least on
Linux.

%----------------------------------------
\subsection{On Microsoft Windows}
\label{sec:windows}
%----------------------------------------

SuiteSparse:GraphBLAS is now ported to Microsoft Visual Studio.  However, that
compiler is not ANSI C11 compliant. As a result, GraphBLAS on Windows will have
a few minor limitations.

\begin{itemize}
\item The MS Visual Studio compiler does not support the \verb'_Generic'
keyword, required for the polymorphic GraphBLAS functions.  So for example, you
will need to use \verb'GrB_Matrix_free' instead of just \verb'GrB_free'.

\item Variable-length arrays are not supported, so user-defined
types are limited to 128 bytes in size.  This can be changed by editing
\verb'GB_VLA_MAXSIZE' in \verb'Source/GB_compiler.h', and recompiling
SuiteSparse:GraphBLAS.

\item AVX acceleration is not enabled.
\end{itemize}

If you use a recent \verb'gcc' or \verb'icx' compiler on Windows other than the
Microsoft Compiler (\verb'cl'), these limitations can be avoided.

The following instructions apply to Windows 10, CMake 3.16, and
Visual Studio 2019, but may work for earlier versions.

\begin{enumerate}

\item Install CMake 3.16 or later, if not already installed.
    See \url{https://cmake.org/} for details.

\item Install Microsoft Visual Studio, if not already installed.
    See \url{https://visualstudio.microsoft.com/} for details.
    Version 2019 is preferred, but earlier versions may also work.

\item Open a terminal window and type this in the
    \verb'SuiteSparse/GraphBLAS/build' folder:

    \vspace{-0.1in}
    {\small
    \begin{verbatim}
    cmake ..  \end{verbatim} }
    \vspace{-0.1in}

\item The \verb'cmake' command generates many files in
    \verb'SuiteSparse/GraphBLAS/build', and the file \verb'graphblas.sln' in
    particular.  Open the generated \verb'graphblas.sln' file in Visual Studio.

\item Optionally: right-click \verb'graphblas' in the left panel (Solution
    Explorer) and select properties; then navigate to \verb'Configuration'
    \verb'Properties', \verb'C/C++', \verb'General' and change the parameter
    \verb'Multiprocessor Compilation' to \verb'Yes (/MP)'.  Click \verb'OK'.
    This will significantly speed up the compilation of GraphBLAS.

\item Select the \verb'Build' menu item at the top of the window and
    select \verb'Build Solution'.  This should create a folder called
    \verb'Release' and place the compiled \verb'graphblas.dll',
    \verb'graphblas.lib', and \verb'graphblas.exp' files there.  Please be
    patient; some files may take a while to compile and sometimes may appear to
    be stalled.  Just wait.

    % Alternatively, type this command in the terminal window:
    % {\small
    % \begin{verbatim}
    % devenv graphblas.sln /build "release|x64" /project graphblas \end{verbatim}}

\item Add the \verb'GraphBLAS/build/Release' folder to the Windows System path:

    \begin{itemize}
    \item Open the \verb'Start Menu' and type \verb'Control Panel'.
    \item Select the \verb'Control Panel' app.
    \item When the app opens, select \verb'System and Security'.
    \item Under \verb'System and Security', select \verb'System'.
    \item From the top left side of the \verb'System' window, select
        \verb'Advanced System Settings'.  You may have to authenticate
        at this step.
    \item The \verb'Systems Properties' window should appear with the
        \verb'Advanced' tab selected;
        select \verb'Environment Variables'.
    \item The \verb'Environment Variables' window displays 2 sections, one for
        \verb'User' variables and the other for \verb'System' variables.  Under
        the \verb'Systems' variable section, scroll to and select \verb'Path',
        then select \verb'Edit'.   A editor window appears allowing to add,
        modify, delete or re-order the parts of the \verb'Path'.
    \item Add the full path of the \verb'GraphBLAS\build\Release' folder
        (typically starting with \verb'C:\Users\you\'..., where \verb'you' is
        your Windows username) to the \verb'Path'.
    \item If the above steps do not work, you can instead copy the
        \verb'graphblas.*' files from \verb'GraphBLAS\build\Release' into any
        existing folder listed in your \verb'Path'. 
    \end{itemize}

\item The \verb'GraphBLAS/Include/GraphBLAS.h' file must be included in user
    applications via \verb'#include "GraphBLAS.h"'.  This is already done for
    you in the MATLAB/Octave interface discussed in the next section.

\end{enumerate}

%----------------------------------------
\subsection{Compiling the MATLAB/Octave interface (for Octave)}
%----------------------------------------
\label{gbmake}

I'm working closely with John Eaton (the primary developer of Octave) to
enable SuiteSparse:GraphBLAS to work with Octave, and thus Octave 7 is
required.  The latest version of Octave is 6.4.0, so you need to download and
install the development version of Octave 7 to use SuiteSparse:GraphBLAS within
Octave.

First, compile the SuiteSparse:GraphBLAS dynamic library
(\verb'libgraphblas.so' for Linux, \verb'libgraphblas.dylib' for Mac,
or \verb'graphblas.dll' for Windows), as described in the prior two
subsections.

On the Mac, SuiteSparse:GraphBLAS v6.1.4 and Octave 7 will work 
Apple Silicon (thanks to G{\'{a}}bor Sz{\'{a}}rnyas).  Here are his instructions
(replicated from
\url{https://github.com/DrTimothyAldenDavis/GraphBLAS/issues/90}); do
these in your Mac Terminal:

\begin{itemize}
\item Building Octave.  Grab the brew formula:

    {\scriptsize
    \begin{verbatim}
    wget https://raw.githubusercontent.com/Homebrew/homebrew-core/master/Formula/octave.rb
    \end{verbatim} }

\item Edit \verb'octave.rb'.

   Add \verb`"disable-docs"` to \verb`args` (or ensure that you have a working
   texinfo installation).
   Edit Mercurial (\verb`hg`) repository: switch from the \verb`default` branch
   (containing code for Octave v8.0) to \verb`stable` (v7.0).  Then do:

    {\small
    \begin{verbatim}
    brew install --head ./octave.rb
    \end{verbatim} }

\item Building the tests (\verb'gbmake').
    Grab the OpenMP binaries as described at
    \url{https://mac.r-project.org/openmp/}

    {\scriptsize
    \begin{verbatim}
    curl -O https://mac.r-project.org/openmp/openmp-13.0.0-darwin21-Release.tar.gz
    sudo tar fvxz openmp-13.0.0-darwin21-Release.tar.gz -C /
    \end{verbatim} }

\item Do the following to edit \verb'gbmake.m':

    {\scriptsize
    \begin{verbatim}
    sed -i.bkp 's/-fopenmp/-Xclang -fopenmp/g' @GrB/private/gbmake.m
    \end{verbatim} }

\end{itemize}

Once Octave 7 and SuiteSparse:GraphBLAS are compiled and installed,
and \verb'gbmake.m' is modified if needed for Octave 7 on the Mac,
(or if using MATLAB) continue with the following instructions:

\begin{enumerate}
\item In the MATLAB/Octave command window:

    {\small
    \begin{verbatim}
    cd GraphBLAS/GraphBLAS/@GrB/private
    gbmake \end{verbatim} }

\item Follow the remaining instructions in the
    \verb'GraphBLAS/GraphBLAS/README.md' file, to revise your
    MATLAB/Octave path and \verb'startup.m' file.

\item As a quick test, try the command \verb'GrB(1)', which
    creates and displays a 1-by-1 GraphBLAS matrix.  For a longer test, do the
    following:

    {\small
    \begin{verbatim}
    cd GraphBLAS/GraphBLAS/test
    gbtest \end{verbatim} }

\item In Windows, if the tests fail with an error stating that the
    mex file is invalid because the module could not be found, it means
    that MATLAB could not find the compiled \verb'graphblas.lib', \verb'*.dll'
    or \verb'*.exp' files in the \verb'build/Release' folder.  This can happen
    if your Windows System path is not set properly, or if Windows is not
    recognizing the \verb'GraphBLAS/build/Release' folder (see
    Section~\ref{sec:windows})  Or, you might not have permission to change your
    Windows System path.  In this case, do the following in the MATLAB Command
    \vspace{-0.1in}
    Window:

    \vspace{-0.1in}
    {\small
    \begin{verbatim}
    cd GraphBLAS/build/Release
    GrB(1) \end{verbatim} }

    \vspace{-0.1in}
    After this step, the GraphBLAS library will be loaded into MATLAB.  You may
    need to add the above lines in your \verb'Documents/MATLAB/startup.m' file,
    so that they are done each time MATLAB starts.  You will also need to do
    this after \verb'clear all' or \verb'clear mex', since those MATLAB
    commands remove all loaded libraries from MATLAB.

    You might also get an error ``the specified procedure cannot be found.''
    This can occur if you have upgraded your GraphBLAS library from a prior
    version, and some of the compiled files \verb'@GrB/private/*.mex*'
    are stale.  Try the command \verb'gbmake all' in the MATLAB Command
    Window, which forces all of the MATLAB interface to be recompiled.
    Or, try deleting all \verb'@GrB/private/*.mex*' files and running
    \verb'gbmake' again.

\item On Windows, the \verb'casin', \verb'casinf', \verb'casinh', and
    \verb'casinhf' functions provided by Microsoft do not return the correct
    imaginary part.  As a result, \verb'GxB_ASIN_FC32', \verb'GxB_ASIN_FC64'
    \verb'GxB_ASINH_FC32', and \verb'GxB_ASINH_FC64' do not work properly on
    Windows.  This affects the \verb'GrB/asin', \verb'GrB/acsc',
    \verb'GrB/asinh', and \verb'GrB/acsch', functions in the MATLAB interface.
    See the MATLAB tests bypassed in \verb'gbtest76.m' for details, in the
    \newline
    \verb'GraphBLAS/GraphBLAS/test' folder.
    %% FUTURE: fix asin and acsc on Windows for the complex case.

\end{enumerate}

%----------------------------------------
\subsection{Compiling the MATLAB/Octave interface (for MATLAB)}
\label{R2021a}
%----------------------------------------

MATLAB R2021a includes its own copy of SuiteSparse:GraphBLAS v3.3.3, as the
file \verb'libmwgraphblas.so', which is used for the built-in \verb'C=A*B' when
both \verb'A' and \verb'B' are sparse (see the Release Notes of MATLAB R2021a,
which discusses the performance gained in MATLAB by using GraphBLAS).

That's great news for the impact of GraphBLAS on MATLAB itself, and the domain
of high performance computing in general, but it causes a linking problem when
using this MATLAB interface for GraphBLAS.  The two use different versions of
the same library, and a segfault arises if the MATLAB interface for v4.x (or
later) tries to link with the older GraphBLAS v3.3.3 library.  Likewise, the
built-in \verb'C=A*B' causes a segfault if it tries to use the newer GraphBLAS
v4.x (or later) libraries.

To resolve this issue, a second GraphBLAS library must be compiled,
\verb'libgraphblas_matlab', where the internal symbols are all renamed so they
do not conflict with the \verb'libmwgraphblas' library.  Then both libraries
can co-exist in the same instance of MATLAB.

To do this, go to the \verb'GraphBLAS/GraphBLAS' folder, containing the
MATLAB interface.  That folder contains a \verb'CMakeLists.txt' file to
compile the \verb'libgraphblas_matlab' library.  See the instructions
for how to compile the C library \verb'libgraphblas', and repeat them but
using the folder \newline
\verb'SuiteSparse/GraphBLAS/GraphBLAS/build' instead of \newline
\verb'SuiteSparse/GraphBLAS/build'.

This will compile the renamed SuiteSparse:GraphBLAS dynamic library
(\verb'libgraphblas_matlab.so' for Linux, \verb'libgraphblas_matlab.dylib'
for Mac, or \verb'graphblas_matlab.dll' for Windows).  These can be
placed in the same system-wide location as the standard \verb'libgraphblas'
libraries, such as \verb'/usr/local/lib' for Linux.  The two pairs of
libraries share the identical \verb'GraphBLAS.h' include file.

If you do not have system privileges to install the GraphBLAS compiled
libraries via \verb'sudo make install', then augment your
\verb'LD_LIBRARY_PATH' (Linux) or \verb'DYLD_LIBRARY_PATH' (MacOS) to point to
your personal copy \verb'SuiteSparse/GraphBLAS/GraphBLAS/build' folder.  See
\url{https://www.mathworks.com/help/matlab/matlab_external/building-on-unix-operating-systems.html}
for details. 

Next, compile the MATLAB interface as described in Section~\ref{gbmake}.  For
any instructions in that Section that refer to the \verb'GraphBLAS/build'
folder (Linux and Mac) or \verb'GraphBLAS/build/Release' (Windows), use \newline
\verb'GraphBLAS/GraphBLAS/build' (Linux and Mac) or \newline
\verb'GraphBLAS/GraphBLAS/build/Release' (Windows) instead.

The resulting functions for your \verb'@GrB' object will now work just fine;
no other changes are needed.

%----------------------------------------
\subsection{Setting the C flags and using CMake}
%----------------------------------------

Next, do \verb'make' in the \verb'build' directory.  If this still fails, see
the \verb'CMakeLists.txt' file.  You can edit that file to pass
compiler-specific options to your compiler.  Locate this section in the
\verb'CMakeLists.txt' file.  Use the \verb'set' command in \verb'cmake', as in
the example below, to set the compiler flags you need.

    {\small
    \begin{verbatim}
    # check which compiler is being used.  If you need to make
    # compiler-specific modifications, here is the place to do it.
    if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")
        # cmake 2.8 workaround: gcc needs to be told to do ANSI C11.
        # cmake 3.0 doesn't have this problem.
        set ( CMAKE_C_FLAGS  "${CMAKE_C_FLAGS} -std=c11 -lm " )
        ...
    elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")
        ...
    elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")
        ...
    elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")
        ...
    endif ( )
    \end{verbatim} }

To compile SuiteSparse:GraphBLAS without running the demos, use \newline
\verb'make library' in the top-level directory, or \verb'make' in the
\verb'build' directory.

Several compile-time options can be selected by editing the \verb'Source/GB.h'
file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.

%----------------------------------------
\subsection{Using a plain makefile}
\label{altmake}
%----------------------------------------

The \verb'GraphBLAS/alternative' directory contains a simple \verb'Makefile'
that can be used to compile SuiteSparse:GraphBLAS.  This is a useful option
if you do not have the required version of \verb'cmake'.  This \verb'Makefile'
can even compile the entire library with a C++ compiler, which cannot be
done with \verb'CMake'.

This alternative \verb'Makefile' does not build the
\verb'libgraphblas_matlab.so' library required for MATLAB (see
Section~\ref{R2021a}).  This can be done by revising the \verb'Makefile',
however:  add the \verb'-DGBRENAME=1' flag, and changing the library name
from \verb'libgraphblas' to \verb'libgraphbas_matlab'.

%----------------------------------------
\subsection{Running the Demos}
%----------------------------------------

After \verb'make' in the top-level directory to compile the library, type
\verb'make demo' to run the demos (also in the top-level directory).
You can also run the demos after compiling with \verb'make all':

    {\small
    \begin{verbatim}
    make all
    cd Demo
    ./demo \end{verbatim} }

The \verb'./demo' command is a script that runs the demos with various input
matrices in the \verb'Demo/Matrix' folder.  The output of the demos will be
compared with expected output files in \verb'Demo/Output'.

NOTE:
DO NOT publish benchmarks of these demos, and do not link against the
demo library in any user application.  These codes are sometimes slow,
and are meant as simple illustrations only, not for performance.  The fastest
methods are in LAGraph, not in SuiteSparse/GraphBLAS/Demo.  Benchmark LAGraph
instead.  Eventually, all GraphBLAS/Demos methods will be removed, and LAGraph
will serve all uses: for illustration, benchmarking, and production uses.

%----------------------------------------
\subsection{Installing SuiteSparse:GraphBLAS}
%----------------------------------------

To install the library (typically in \verb'/usr/local/lib' and
\verb'/usr/local/include' for Linux systems), go to the top-level GraphBLAS
folder and type:

    {\small
    \begin{verbatim}
    sudo make install \end{verbatim} }

%----------------------------------------
\subsection{Linking issues after installation}
%----------------------------------------

My Linux distro (Ubuntu 18.04) includes a copy of \verb'libgraphblas.so.1',
which is SuiteSparse:GraphBLAS v1.1.2.  After installing SuiteSparse:GraphBLAS
in \verb'/usr/local/lib' (with \verb'sudo make install'), compiling a simple
stand-alone program links against \verb'libgraphblas.so.1' instead of the
latest version, while at the same time accessing the latest version of the
include file as \verb'/usr/local/include/GraphBLAS.h'.  This command fails:

    {\small
    \begin{verbatim}
    gcc prog.c -lgraphblas \end{verbatim} }

Revising my \verb'LD_LIBRARY_PATH' to put \verb'/usr/local/lib' first in the
library directory order didn't help.  If you encounter this problem, try one of
the following options (all four work for me, and link against the proper
version, \verb'/usr/local/lib/libgraphblas.so.6.1.4' for example):

    {\small
    \begin{verbatim}
    gcc prog.c -l:libgraphblas.so.6
    gcc prog.c -l:libgraphblas.so.6.1.4
    gcc prog.c /usr/local/lib/libgraphblas.so
    gcc prog.c -Wl,-v -L/usr/local/lib -lgraphblas \end{verbatim} }

This \verb'prog.c' test program is a trivial one, which works in v1.0 and
later:

    {\small
    \begin{verbatim}
    #include <GraphBLAS.h>
    int main (void)
    {
        GrB_init (GrB_NONBLOCKING) ;
        GrB_finalize ( ) ;
    } \end{verbatim} }

Compile the program above, then use this command to ensure
\verb'libgraphblas.so.6' appears:

    {\small
    \begin{verbatim}
    ldd a.out \end{verbatim} }

%----------------------------------------
\subsection{Running the tests}
%----------------------------------------

To run a short test, type \verb'make demo' at the top-level \verb'GraphBLAS'
folder.  This will run all the demos in \verb'GraphBLAS/Demos'.  MATLAB is not
required.

To perform the extensive tests in the \verb'Test' folder, and the statement
coverage tests in \verb'Tcov', MATLAB R2018a or later is required.  See the
\verb'README.txt' files in those two folders for instructions on how to run the
tests.  The tests in the \verb'Test' folder have been ported to MATLAB on
Linux, MacOS, and Windows.  The \verb'Tcov' tests do not work on Windows.  The
MATLAB interface test (\verb'gbtest') works on all platforms; see the
\verb'GraphBLAS/GraphBLAS' folder for more details.

%----------------------------------------
\subsection{Cleaning up}
%----------------------------------------

To remove all compiled files, type \verb'make' \verb'distclean' in the top-level
GraphBLAS folder.

%-------------------------------------------------------------------------------
\section{Release Notes}
%-------------------------------------------------------------------------------

\begin{itemize}

\item Version 7.4.0 (Dec 23, 2022)

    \begin{itemize}
    \item add non-\verb'va_arg' methods: \verb'va_arg'-based \verb'GxB_get/set'
        methods are ANSI C11 but cause issues for cffi in Python.  As a
        temporary workaround, new methods have been added that do not use
        \verb'va_arg'.  The existing \verb'GxB_get/set' methods are not
        changed.  The new methods are not in the user guide, since all of the
        \verb'GxB_get/set' methods will be superceded with \verb'GrB_get/set'
        in the v2.1 C API.  At that point, all \verb'GxB_get/set' methods will
        become historical (kept, not deprecated, but removed from the user
        guide).
    \end{itemize}

\item Version 7.3.3 (Dec 9, 2022)

    \begin{itemize}
    \item \verb'stdatomic.h': using \verb'#include <stdatomic.h>' and
        \verb'atomic_compare_exchange_weak'
        instead of GCC/clang/icx \verb'__atomic_*' variants.
        Added \verb'-latomic' if required.
    \item chunk factor for C=A*B (saxpy3 method):
        revised for non-builtin-semirings
    \end{itemize}

\item Version 7.3.2 (Nov 12, 2022)

    \begin{packed_itemize}
    \item \verb'cmake_modules': minor revision to build system, to sync 
        with SuiteSparse v6.0.0
    \item Added option \verb'-DNOPENMP=1' to disable OpenMP parallelism.
    \end{packed_itemize}

\item Version 7.3.1 (Oct 21, 2022)

    \begin{packed_itemize}
    \item workaround for a bug in the Microsoft Visual Studio Compiler,
        MSC 19.2x (in vs2019).
    \end{packed_itemize}

\item Version 7.3.0 (Oct 14, 2022)

    \begin{packed_itemize}
    \item \verb'GrB_Matrix': changes to the internal data structure
        \item minor internal changes: \verb'A->nvals' for sparse/hypersparse
        \item more significant changes: added hyper-hash for
        hypersparse case, speeds up many operations on hypersparse matrices.
        Based on \cite{Green19}.
        \item \verb'GxB_unpack_HyperHash' and \verb'GxB_pack_HyperHash':
            to pack/unpack the hyper-hash
    \item \verb'@GrB' MATLAB/Octave interface: changed license to Apache-2.0.
    \item MATLAB library: renamed to \verb'libgraphblas_matlab.so'
    \item performance: faster \verb'C=A*B' when using a single thread and
        \verb'B' is a sparse vector with many entries.
    \end{packed_itemize}

\item Version 7.2.0 (Aug 8, 2022)

    \begin{packed_itemize}
    \item added ZSTD as a compression option for serialize/deserialize:
        Version 1.5.3 by Yann Collet,
        \url{https://github.com/facebook/zstd.git}.
        Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
        Included in SuiteSparse:GraphBLAS via its BSD-3-clause license.
        The default method is now ZSTD, level 1.
    \item \verb'GxB_Matrix_reshape*' added.
    \item MATLAB interface: \verb'reshape', \verb'C(:)=A', \verb'C=A(:)' are
        faster.  Better error messages.
    \end{packed_itemize}

\item Version 7.1.2 (July 8, 2022)

    \begin{packed_itemize}
    \item MATLAB interface: linear indexing added for C(:)=A, C=A(:), and
        single-output I=find(C).  Faster bandwidth, istriu, istril,
        isbanded, isdiag.  C(I,J)=A can now grow the size of A.
    \end{packed_itemize}

\item Version 7.1.1 (June 3, 2022)

    \begin{packed_itemize}
    \item minor updates to documentation and error messages
    \item MATLAB interface: minor revision of GrB.deserialize
    \end{packed_itemize}

\item Version 7.1.0 (May 20, 2022)

    \begin{packed_itemize}
    \item  added cube root: \verb'GxB_CBRT_FP32' and \verb'GxB_CBRT_FP64'
        unary operators
    \item added \verb'GxB_Matrix_isStoredElement'
        and \verb'GxB_Vector_isStoredElement'
    \end{packed_itemize}

\item Version 7.0.4 (Apr 25, 2022)

    \begin{packed_itemize}
    \item (46) bug fix: user-defined type size was incorrectly limited
        to 128 bytes.  Caught by Erik Welch.
    \end{packed_itemize}

\item Version 7.0.3 (Apr 8, 2022)

    \begin{packed_itemize}
    \item faster transpose when using 2 threads
    \end{packed_itemize}

\item Version 7.0.2 (Apr 5, 2022)

    \begin{packed_itemize}
    \item (45) bug fix: vector iterator was broken for iterating across a
        vector in bitmap format.  Caught by Erik Welch.
    \end{packed_itemize}

\item Version 7.0.1 (Apr 3, 2022)

    \begin{packed_itemize}
    \item added revised ACM TOMS submission to the Doc folder
    \end{packed_itemize}

\item Version 7.0.0 (Apr 2, 2022)

    \begin{packed_itemize}
    \item (44) spec bug: \verb'GrB_Matrix_diag'
        was implemented in v5.2.x and v6.x with the wrong signature.
        This fix requires the major release to change, from v6.x to v7.x.
    \item (43) performance bug fix for \verb'GrB_mxm':
        auto selection for saxpy method (Hash vs Gustavson) revised.
    \item \verb'GrB_assign': better performance for \verb'C(i,j)=scalar' and
        \verb'C(i,j)+=scalar' when \verb'i' and \verb'j' have length 1 (scalar
        assigment with no scalar expansion).
    \end{packed_itemize}

\item Version 6.2.5 (Mar 14, 2022)

    \begin{packed_itemize}
    \item For SuiteSparse v5.11.0.
    \end{packed_itemize}

\item Version 6.2.4 (Mar 8, 2022)

    \begin{packed_itemize}
    \item (42) bug fix: \verb'GrB_mxm' with 0-by-0 iso full matrices.
        Caught by Henry Amuasi in the Python
        grblas interface, then triaged and isolated by Erik Welch.
    \end{packed_itemize}

\item Version 6.2.3 (Mar 5, 2022)

    \begin{packed_itemize}
    \item minor update to documentation in \verb'GrB.build':
        no change to any code
    \end{packed_itemize}

\item Version 6.2.2 (Feb 28, 2022)

    \begin{packed_itemize}
    \item revised output of \verb'GxB_*_sort' to return newly created matrices
        C and P as full or bitmap matrices, as appropriate, instead of
        sparse/hypersparse, following their sparsity control settings.
    \end{packed_itemize}

\item Version 6.2.1 (Feb 14, 2022)

    \begin{packed_itemize}
    \item  (41) bug fix: \verb'GxB_Iterator_get' used \verb'(void *) + size'
        arithmetic
    \end{packed_itemize}

\item Version 6.2.0 (Feb 14, 2022)

    \begin{packed_itemize}
    \item added the \verb'GxB_Iterator' object and its methods.  See
        Section~\ref{iter}.
    \item \verb'@GrB' interface: revised sparse-times-full rule for the
        conventional semiring (the syntax \verb'C=A*B'), so that
        sparse-times-full results in \verb'C' as full,
        but hypersparse-times-sparse is not full
        (typically sparse or hypersparse).
    \end{packed_itemize}

\item Version 6.1.4 (Jan 12, 2022)

    \begin{packed_itemize}
    \item added Section~\ref{perf} to User Guide: how to get the best
        performance out of algorithms based on GraphBLAS.
    \item \verb'cpu_features':  no longer built as a separate library,
        but built directly into \verb'libgraphblas.so' and
        \verb'libgraphblas.a'.  Added compile-time flags to
        optionally disable the use of \verb'cpu_features' completely.
    \item Octave 7: port to Apple Silicon (thanks to 
            G{\'{a}}bor Sz{\'{a}}rnyas).
    \item min/max monoids:  real case (FP32 and FP64) no longer terminal
    \item \verb'@GrB' interface: overloaded \verb'C=A*B' syntax where one
        matrix is full always results in a full matrix \verb'C'.
    \item Faster \verb'C=A*B' for sparse-times-full and full-times-sparse
        for \verb'@GrB' interface.
    \end{packed_itemize}

\item Version 6.1.3 (Jan 1, 2022)

    \begin{packed_itemize}
    \item performance: task creation for \verb'GrB_mxm'
        had a minor flaw (results were correct but parallelism suffered).
        Performance improvement of up to 10x when nnz(A)<<nnz(B).
    \end{packed_itemize}

\item Version 6.1.2 (Dec 31, 2021)

    \begin{packed_itemize}
    \item performance: revised \verb'swap_rule' in \verb'GrB_mxm', which decides whether
        to compute \verb"C=A*B" or \verb"C=(B'*A')'", and variants, resulting in up
        to 3x performance gain over v6.1.1 for \verb'GrB_mxm' (observed;
        could be higher in other cases).
    \end{packed_itemize}

\item Version 6.1.1 (Dec 28, 2021) 

    \begin{packed_itemize}
    \item minor revision to AVX2 and AVX512f selection
    \item \verb'cpu_features/Makefile': remove test of \verb'list_cpu_features'
        so that the package can be built when cross-compiling
    \end{packed_itemize}

\item Versions 6.1.0 (Dec 26, 2021)

    \begin{packed_itemize}
    \item added \verb'GxB_get' options: compiler name and version.
    \item added package: \url{https://github.com/google/cpu_features},
        Nov 30, 2021 version.
    \item performance: faster \verb'C+=A*B' when \verb'C' is full,
        \verb'A' is bitmap/full, and \verb'B' is sparse/hyper.  % saxpy5
        Faster \verb"C+=A'*B" when
        \verb'A' is sparse/hyper, and \verb'B' is bitmap/full.  % dot4
    \item (40) bug fix: deserialization of iso and empty matrices/vectors was
        incorrect
    \end{packed_itemize}

\item Versions 6.0.2 and 5.2.2 (Nov 30, 2021)

    \begin{packed_itemize}
    \item (39) bug fix: \verb'GrB_Matrix_export':
        numerical values not properly exported
    \end{packed_itemize}

\item Versions 6.0.1 and 5.2.1 (Nov 27, 2021)

    \begin{packed_itemize}
    \item v6.0.x and v5.2.x (for the same x):
        differ only in \verb'GrB_wait', \verb'GrB_Info',
        \verb'GrB_SCMP', and \verb'GxB_init'.
    \item (38) bug fix:  \verb"C+=A'*B" when the accum operator is the same as
        the monoid and C is iso-full, and \verb'A' or \verb'B' are hypersparse.
        (dot4 method).
    \item performance: \verb'GrB_select' with user-defined
        \verb'GrB_IndexUnaryOp' about 2x faster.
    \item performance: faster \verb'(MIN,MAX)_(FIRSTJ,SECONDI)' semirings
    \end{packed_itemize}

\item Version 6.0.0 (Nov 15, 2021)

    \begin{packed_itemize}
    \item this release contains only a few changes that cause a
        break with backward compatibility.  It is otherwise identical to v5.2.0.
    \item v6.0.0 is fully compliant with the v2.0 C API Specification.
        Three changes from the v2.0 C API Spec are not backward compatible
        (\verb'GrB_*wait', \verb'GrB_Info', \verb'GrB_SCMP').
        \verb'GxB_init' has also changed.
        \begin{packed_itemize}
        \item \verb'GrB_wait (object, mode)': was \verb'GrB_wait (&object)'.
        \item \verb'GrB_Info': changed enum values
        \item \verb'GrB_SCMP': removed
        \item \verb'GxB_init (mode, malloc, calloc, realloc, free, is_thread_safe)':
            the last parameter, \verb'is_thread_safe', is deleted.
            The malloc, calloc, realloc, and free functions must be thread-safe.
        \end{packed_itemize}
    \end{packed_itemize}

\item Version 5.2.0 (Nov 15, 2021)

    \begin{packed_itemize}
    \item Added for the v2.0 C API Specification: only features that are
        backward compatible with SuiteSparse:GraphBLAS v5.x have been
        added to v5.2.0:
        \begin{packed_itemize}
        \item \verb'GrB_Scalar': replaces \verb'GxB_Scalar', \verb'GxB_Scalar_*'
            functions renamed GrB
        \item \verb'GrB_IndexUnaryOp': new, free, fprint, wait
        \item \verb'GrB_select': selection via \verb'GrB_IndexUnaryOp'
        \item \verb'GrB_apply': with \verb'GrB_IndexUnaryOp'
        \item \verb'GrB_reduce': reduce matrix or vector to \verb'GrB_Scalar'
        \item \verb'GrB_assign', \verb'GrB_subassion': with \verb'GrB_Scalar'
            input
        \item \verb'GrB_*_extractElement_Scalar': get \verb'GrB_Scalar'
            from a matrix or vector
        \item \verb'GrB*build': when \verb'dup' is \verb'NULL',
            duplicates result in an error.
        \item \verb'GrB import/export': import/export from/to user-provided
            arrays
        \item \verb'GrB_EMPTY_OBJECT', \verb'GrB_NOT_IMPLEMENTED': error codes
            added
        \item \verb'GrB_*_setElement_Scalar': set an entry in a matrix or
            vector, from a \verb'GrB_Scalar'
        \item \verb'GrB_Matrix_diag': same as
            \verb'GxB_Matrix_diag (C,v,k,NULL)'
        \item \verb'GrB_*_serialize/deserialize': with compression
        \item \verb'GrB_ONEB_T': binary operator, $f(x,y)=1$, the same as
            \verb'GxB_PAIR_T'.
        \end{packed_itemize}
    \item \verb'GxB*import*' and \verb'GxB*export*': now historical; use
        \verb'GxB*pack/unpack*'
    \item \verb'GxB_select': is now historical; use \verb'GrB_select' instead.
    \item \verb'GxB_IGNORE_DUP': special operator for build methods only; if dup
        is this operator, then duplicates are ignored (not an error)
    \item \verb'GxB_IndexUnaryOp_new': create a named index-unary operator
    \item \verb'GxB_BinaryOp_new': create a named binary operator
    \item \verb'GxB_UnaryOp_new': create a named unary operator
    \item \verb'GxB_Type_new': to create a named type
    \item \verb'GxB_Type_name': to query the name of a type
    \item added \verb'GxB_*type_name' methods
        to query the name of a type as a string.
    \item \verb'GxB' methods that query an object return a \verb'GrB_type' such
        as \verb'GxB_Matrix_type' are declared historical; will be kept but not
        recommended (use \verb'GxB_*type_name' methods).
    \item \verb'GxB_Matrix_serialize/deserialize': with compression;
        optional descriptor.
    \item \verb'GxB_Matrix_sort', \verb'GxB_Vector_sort':
        sort a matrix or vector
    \item \verb'GxB_eWiseUnion': like \verb'GrB_eWiseAdd' except for how
        entries in $\bf A\setminus B$ and $\bf B \setminus A$ are computed.
    \item added LZ4/LZ4HC: compression library, \url{http://www.lz4.org} (BSD
        2), v1.9.3, Copyright (c) 2011-2016, Yann Collet.
    \item MIS and pagerank demos: removed; MIS added to LAGraph/experimental
    \item disabled free memory pool if OpenMP not available
    \item (37) bug fix: ewise \verb'C=A+B' when all matrices are full,
        \verb'GBCOMPACT' not used, but \verb'GB_control.h' disabled the
        operator or type.  Caught by Roi Lipman, Redis.
    \item (36) bug fix: \verb'C<M>=Z' not returning \verb'C'
        as iso if \verb'Z 'iso and \verb'C' initially
        empty.  Caught by Erik Welch, Anaconda.
    \item performance improvements: \verb'C=A*B': sparse/hyper times
        bitmap/full, and visa versa, including \verb'C += A*B' when \verb'C' is
        full.
    \end{packed_itemize}

\item Version 5.1.10 (Oct 27, 2021)

    \begin{packed_itemize}
    \item  (35) bug fix: \verb'GB_selector'; \verb'A->plen' and \verb'C->plen'
        not updated correctly.  Caught by Jeffry Lovitz, Redis.
    \end{packed_itemize}

\item Version 5.1.9 (Oct 26, 2021)

    \begin{packed_itemize}
    \item (34) bug fix: in-place test incorrect for \verb"C+=A'*B" using dot4
    \item (33) bug fix: disable free pool if OpenMP not available
    \end{packed_itemize}

\item Version 5.1.8 (Oct 5, 2021)

    \begin{packed_itemize}
    \item (32) bug fix: C=A*B when A is sparse and B is iso and bitmap.
        Caught by Mark Blanco, CMU.
    \end{packed_itemize}

\item Version 5.1.7 (Aug 23, 2021)

    \begin{packed_itemize}
    \item (31) bug fix:  \verb'GrB_apply', when done in-place and matrix starts
        non-iso and becomes iso, gave the wrong iso result.
        Caught by Fabian Murariu.
    \end{packed_itemize}

\item Version 5.1.6 (Aug 16, 2021)

    \begin{packed_itemize}
    \item one-line change to \verb'C=A*B': faster symbolic analysis when a
        vector \verb'C(:,j)' is dense (for CSC) or \verb'C(i,:)' for CSR.
    \end{packed_itemize}

\item Version 5.1.5 (July 15, 2021)

    \begin{packed_itemize}
    \item submission to ACM Transactions on Mathematical Software as
        a Collected Algorithm of the ACM.
    \end{packed_itemize}

\item Version 5.1.4 (July 6, 2021)

    \begin{packed_itemize}
    \item faster Octave interface.  Octave v7 or later is required.
    \item (30) bug fix: 1-based printing not enabled for pending tuples.
        Caught by Will Kimmerer, while working on the Julia interface.
    \end{packed_itemize}

\item Version 5.1.3 (July 3, 2021)

    \begin{packed_itemize}
    \item added \verb'GxB_Matrix_iso' and \verb'GxB_Vector_iso':
        to query if a matrix or vector is held as iso-valued
    \item (29) bug fix: \verb'Matrix_pack_*R' into a matrix previously held by
        column, or \verb'Matrix_pack*C' into a matrix by row, would flip the
        dimensions.
        Caught by Erik Welch, Anaconda.
    \item (28) bug fix: \verb'kron(A,B)' with iso input matrices
        \verb'A' and \verb'B' fixed.
        Caught by Michel Pelletier, Graphegon.
    \item (27) bug fix: v5.1.0 had a wrong version of a file; posted by mistake.
        Caught by Michel Pelletier, Graphegon.
    \end{packed_itemize}

\item Version 5.1.2 (June 30, 2021)

    \begin{packed_itemize}
    \item iso matrices added:  these are matrices and vectors whose
        values in the sparsity pattern are all the same.  This is an internal
        change to the opaque data structures of the \verb'GrB_Matrix' and
        \verb'GrB_Vector' with very little change to the API.
    \item added \verb'GxB_Matrix_build_Scalar'
            and \verb'GxB_Vector_build_Scalar',
            which always build iso matrices and vectors.
    \item import/export methods can now import/export iso matrices and vectors.
    \item added \verb'GrB.argmin/argmax' to MATLAB/Octave interface
    \item added \verb'GxB_*_pack/unpack' methods as alternatives to
        import/export.
    \item added \verb'GxB_PRINT_1BASED' to the global settings.
    \item added \verb'GxB_*_memoryUsage'
    \item port to Octave:  \verb'gbmake' and \verb'gbtest'
        work in Octave7 to build and test
        the \verb'@GrB' interface to GraphBLAS.  Octave 7.0.0 is required.
    \end{packed_itemize}

\item Version 5.0.6 (May 24, 2021)

    \begin{packed_itemize}
    \item BFS and triangle counting demos removed from GraphBLAS/Demo:
        see LAGraph for these algorithms.  Eventually, all of GraphBLAS/Demo
        will be deleted, once LAGraph includes all the methods included there.
    \end{packed_itemize}

\item Version 5.0.5 (May 17, 2021)

    \begin{packed_itemize}
    \item (26) performance bug fix:  reduce-to-vector where \verb'A' is
        hypersparse CSR with a transposed descriptor (or CSC with no
        transpose), and some cases for \verb'GrB_mxm/mxv/vxm' when computing
        \verb'C=A*B' with A hypersparse CSC and \verb'B' bitmap/full (or
        \verb'A' bitmap/full and \verb'B' hypersparse CSR), the wrong internal
        method was being selected via the auto-selection strategy, resulting in
        a significant slowdown in some cases.
    \end{packed_itemize}

\item Version 5.0.4 (May 13, 2021)

    \begin{packed_itemize}
    \item \verb'@GrB' MATLAB/Octave interface: changed license
        to GNU General Public License v3.0 or later.
        It was licensed under Apache-2.0 in Version 5.0.3 and earlier.
        Changed back to Apache-2.0 for Version 7.3.0; see above.
    \end{packed_itemize}

\item Version 5.0.3 (May 12, 2021)

    \begin{packed_itemize}
    \item (25) bug fix: disabling \verb'ANY_PAIR' semirings by editing
        \verb'Source/GB_control.h' would cause a segfault if those disabled
        semirings were used.
    \item demos are no longer built by default
    \item (24) bug fix: new functions in v5.0.2 not declared as \verb'extern'
        in \verb'GraphBLAS.h'.
    \item \verb'GrB_Matrix_reduce_BinaryOp' reinstated from v4.0.3;
        same limit on built-in ops that correspond to known monoids.
    \end{packed_itemize}

\item Version 5.0.2 (May 5, 2021)

    \begin{packed_itemize}
    \item (23) bug fix: \verb'GrB_Matrix_apply_BinaryOp1st' and \verb'2nd'
        were using the
        wrong descriptors for \verb'GrB_INP0' and \verb'GrB_INP1'.
        Caught by Erik Welch, Anaconda.
    \item memory pool added for faster allocation/free of small blocks
    \item \verb'@GrB' interface ported to MATLAB R2021a.
    \item \verb'GxB_PRINTF' and \verb'GxB_FLUSH' global options added.
    \item \verb'GxB_Matrix_diag': construct a diagonal matrix from a vector
    \item \verb'GxB_Vector_diag': extract a diagonal from a matrix
    \item \verb'concat/split': methods to concatenate and split matrices.
    \item \verb'import/export':
        size of arrays now in bytes, not entries.  This change
        is required for better internal memory management, and it is not
        backward compatible with the \verb'GxB*import/export' functions in v4.0.
        A new parameter, \verb'is_uniform', has been added to all import/export
        methods, which indicates that the matrix values are all the same.
    \item (22) bug fix: SIMD vectorization was missing
        \verb'reduction(+,task_cnvals)' in
        \verb'GB_dense_subassign_06d_template.c'.  Caught by Jeff Huang, Texas
        A\&M, with his software package for race-condition detection.
    \item \verb'GrB_Matrix_reduce_BinaryOp': removed.  Use a monoid instead,
        with \verb'GrB_reduce' or \verb'GrB_Matrix_reduce_Monoid'.
    \end{packed_itemize}

\item Version 4.0.3 (Jan 19, 2021)

    \begin{packed_itemize}
    \item faster min/max monoids
    \item \verb'G=GrB(G)' converts \verb'G' from v3 object to v4
    \end{packed_itemize}

\item Version 4.0.2 (Jan 13, 2021)

    \begin{packed_itemize}
    \item ability to load \verb'*.mat' files saved with the v3 \verb'GrB'
    \end{packed_itemize}

\item Version 4.0.1 (Jan 4, 2021)

    \begin{packed_itemize}
    \item significant performance improvements: compared with v3.3.3,
        up to 5x faster in breadth-first-search (using 
        \verb'LAGraph_bfs_parent2'), and 2x faster in
        Betweenness-Centrality (using \verb'LAGraph_bc_batch5').
    \item \verb'GrB_wait(void)', with no inputs: removed
    \item \verb'GrB_wait(&object)': polymorphic function added
    \item \verb'GrB_*_nvals': no longer guarantees completion;
        use \verb'GrB_wait(&object)'
        or non-polymorphic \verb'GrB_*_wait (&object)' instead
    \item \verb'GrB_error': now has two parameters: a string
        (\verb'char **') and an object.
    \item \verb'GrB_Matrix_reduce_BinaryOp' limited to built-in operators that
        correspond to known monoids.
    \item \verb'GrB_*_extractTuples': may return indices out of order
    \item removed internal features: GBI iterator, slice and hyperslice matrices
    \item bitmap/full matrices and vectors added
    \item positional operators and semirings:
        \verb'GxB_FIRSTI_INT32' and related ops
    \item jumbled matrices: sort left pending, like zombies and pending tuples
    \item \verb'GxB_get/set': added \verb'GxB_SPARSITY_*'
        (hyper, sparse, bitmap, or full) and \verb'GxB_BITMAP_SWITCH'.
    \item \verb'GxB_HYPER': enum renamed to \verb'GxB_HYPER_SWITCH'
    \item \verb'GxB*import/export': API modified
    \item \verb'GxB_SelectOp': \verb'nrows' and \verb'ncols' removed
        from function signature.
    \item OpenMP tasking removed from mergesort and replaced with parallel
        for loops.  Just as fast on Linux/Mac; now the performance ports to
        Windows.
    \item \verb'GxB_BURBLE' added as a supported feature.  This was an
        undocumented feature of prior versions.
    \item bug fix: \verb'A({lo,hi})=scalar'
        \verb'A(lo:hi)=scalar' was OK
    \end{packed_itemize}

\item Version 3.3.3 (July 14, 2020).
    Bug fix: \verb'w<m>=A*u' with mask non-empty and u empty.

\item Version 3.3.2 (July 3, 2020).  Minor changes to build system.

\item Version 3.3.1 (June 30, 2020).  Bug fix to \verb'GrB_assign' and
    \verb'GxB_subassign' when the assignment is simple (\verb'C=A') but
    with typecasting.

\item Version 3.3.0 (June 26, 2020).  Compliant with V1.3 of the C API
    (except that the polymorphic \verb'GrB_wait(&object)' doesn't appear yet;
    it will appear in V4.0).

    Added complex types (\verb'GxB_FC32' and \verb'GxB_FC64'), many unary
    operators, binary operators, monoids, and semirings.  Added bitwise
    operators, and their monoids and semirings.  Added the predefined monoids
    and semirings from the v1.3 specification.  \verb'@GrB' interface: added complex
    matrices and operators, and changed behavior of integer operations to more
    closely match the behavior on built-in integer matrices.  The rules for
    typecasting large floating point values to integers has changed.  The
    specific object-based \verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', etc,
    functions have been added.  The no-argument \verb'GrB_wait()' is
    deprecated.  Added \verb'GrB_getVersion', \verb'GrB_Matrix_resize',
    \verb'GrB_Vector_resize', \verb'GrB_kronecker', \verb'GrB_*_wait', scalar
    binding with binary operators for \verb'GrB_apply', \newline
    \verb'GrB_Matrix_removeElement', and \verb'GrB_Vector_removeElement'.

\item Version 3.2.0 (Feb 20, 2020).  Faster \verb'GrB_mxm', \verb'GrB_mxv', and
    \verb'GrB_vxm', and faster operations on dense matrices/vectors.  Removed
    compile-time user objects (\verb'GxB_*_define'), since these were not
    compatible with the faster matrix operations.  Added the \verb'ANY' and
    \verb'PAIR' operators.  Added the predefined descriptors,
    \verb'GrB_DESC_*'.  Added the structural mask option.  Changed default
    chunk size to 65,536.  \verb'@GrB' interface modified:  \verb'GrB.init' is
    now optional.

\item Version 3.1.2 (Dec, 2019).  Changes to allow SuiteSparse:GraphBLAS
    to be compiled with the Microsoft Visual Studio compiler.  This compiler
    does not support the \verb'_Generic' keyword, so the polymorphic functions
    are not available.  Use the equivalent non-polymorphic functions instead,
    when compiling GraphBLAS with MS Visual Studio.  In addition,
    variable-length arrays are not supported, so user-defined types are limited
    to 128 bytes in size.  These changes have no effect if you have an ANSI C11
    compliant compiler.

    \verb'@GrB' interface modified:  \verb'GrB.init' is now required.

\item Version 3.1.0 (Oct 1, 2019).  \verb'@GrB' interface added.  See the
    \newline \verb'GraphBLAS/GraphBLAS' folder for details and documentation,
    and Section~\ref{octave}.

\item Version 3.0 (July 26, 2019), with OpenMP parallelism.

The version number is increased to 3.0, since
this version is not backward compatible with V2.x.  The \verb'GxB_select'
operation changes; the \verb'Thunk' parameter was formerly a
\verb'const void *' pointer, and is now a \verb'GxB_Scalar'.  A new parameter
is added to \verb'GxB_SelectOp_new', to define the expected type of
\verb'Thunk'.  A new parameter is added to \verb'GxB_init', to specify whether
or not the user-provided memory management functions are thread safe.

The remaining changes add new features, and are upward compatible with V2.x.
The major change is the addition of OpenMP parallelism.  This addition has no
effect on the API, except that round-off errors can differ with the number of
threads used, for floating-point types.  \verb'GxB_set' can optionally define
the number of threads to use (the default is \verb'omp_get_max_threads').  The
number of threads can also defined globally, and/or in the
\verb'GrB_Descriptor'.  The \verb'RDIV' and \verb'RMINUS' operators are added,
which are defined as $f(x,y)=y/x$ and $f(x,y)=y-x$, respectively.  Additional
options are added to \verb'GxB_get'.

\item Version 2.3.3 (May 2019): Collected Algorithm of the ACM.
No changes from V2.3.2 other than the documentation.

\item Version 2.3 (Feb 2019) improves the performance of many GraphBLAS
operations, including an early-exit for monoids.  These changes have a
significant impact on breadth-first-search (a performance bug was also fixed in
the two BFS \verb'Demo' codes).  The matrix and vector import/export functions
were added (Section~\ref{pack_unpack}), in support of the new LAGraph project
(\url{https://github.com/GraphBLAS/LAGraph}, see also Section~\ref{lagraph}).
LAGraph includes a push-pull BFS in GraphBLAS that is faster than two versions
in the \verb'Demo' folder.  \verb'GxB_init' was added to allow the memory
manager functions (\verb'malloc', etc) to be specified.

\item
Version 2.2 (Nov 2018)
adds user-defined objects at compile-time, via user \verb'*.m4' files placed in
\verb'GraphBLAS/User', which use the \verb'GxB_*_define' macros 
(NOTE: feature removed in v3.2).
The default matrix format is now \verb'GxB_BY_ROW'.
Also added are the \verb'GxB_*print' methods for printing the contents of each
GraphBLAS object (Section~\ref{fprint}).   PageRank demos have been added to
the \verb'Demos' folder.

\item
Version 2.1 (Oct 2018) was
a major update with support for new matrix formats
(by row or column, and hypersparse matrices), and colon notation
(\verb'I=begin:end' or \verb'I=begin:inc:end').  Some graph algorithms are more
naturally expressed with matrices stored by row, and this version includes the
new \verb'GxB_BY_ROW' format.  The default format in Version 2.1 and
prior versions is by column.
New extensions to GraphBLAS in this version include \verb'GxB_get',
\verb'GxB_set', and \verb'GxB_AxB_METHOD', \verb'GxB_RANGE', \verb'GxB_STRIDE',
and \verb'GxB_BACKWARDS', and their related definitions, described in
Sections~\ref{descriptor},~\ref{options},~and~\ref{colon}.

\item
Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added \verb'GxB_kron' and \verb'GxB_resize'.

\item
Version 1.1 (Dec 2017) primarily improved the performance.

\item
Version 1.0 was released on Nov 25, 2017.
\end{itemize}

%-------------------------------------------------------------------------------
\subsection{Regarding historical and deprecated functions and symbols}
%-------------------------------------------------------------------------------

When a \verb'GxB*' function or symbol is added to the C API Specification with
a \verb'GrB*' name, the new \verb'GrB*' name should be used instead, if
possible.  However, the old \verb'GxB*' name will be kept as long as possible
for historical reasons.  Historical functions and symbols will not always be
documented here in the SuiteSparse:GraphBLAS User Guide, but they will be kept
in \verb'GraphbBLAS.h' and kept in good working order in the library.
Historical functions and symbols would only be removed in the very unlikely
case that they cause a serious conflict with future methods.

The only methods that have been fully deprecated and removed are the older
versions of \verb'GrB_wait' and \verb'GrB_error' methods, which are
incompatible with the latest versions.

% \newpage
%-------------------------------------------------------------------------------
\section{Acknowledgments}
%-------------------------------------------------------------------------------

I would like to thank Jeremy Kepner (MIT Lincoln Laboratory Supercomputing
Center), and the GraphBLAS API Committee: Ayd\i n Bulu\c{c} (Lawrence Berkeley
National Laboratory), Timothy G. Mattson (Intel Corporation) Scott McMillan
(Software Engineering Institute at Carnegie Mellon University), Jos\'e Moreira
(IBM Corporation), Carl Yang (UC Davis), and Benjamin Brock (UC Berkeley), for
creating the GraphBLAS specification and for patiently answering my many
questions while I was implementing it.

I would like to thank Tim Mattson and Henry Gabb, Intel, Inc., for their
collaboration and for the support of Intel.

I would like to thank Joe Eaton and Corey Nolet for their collaboration on the
CUDA kernels (still in progress), and for the support of NVIDIA.

I would like to thank Pat Quillen for his
collaboration and for the support of MathWorks.

I would like to thank John Eaton for his collaboration on the integration
with Octave 7.

I would like to thank Michel Pelletier for his collaboration and work on the
pygraphblas interface, and Jim Kitchen and Erik Welch for their work on
Anaconda's python interface.

I would like to thank Will Kimmerer for his collaboration and work on the
Julia interface.

I would like to thank John Gilbert (UC Santa Barbara) for our many discussions
on GraphBLAS, and for our decades-long conversation and collaboration on sparse
matrix computations.

I would like to thank S\'ebastien Villemot (Debian Developer,
\url{http://sebastien.villemot.name}) for helping me with various build issues
and other code issues with GraphBLAS (and all of SuiteSparse) for its packaging
in Debian Linux.

I would like to thank G{\'{a}}bor Sz{\'{a}}rnyas for porting the \verb'@GrB'
interface to Octave 7 on Apple Silicon.

I would like to thank Roi Lipman, Redis (\url{https://redislabs.com}), for
our many discussions on GraphBLAS and for enabling its use in RedisGraph
(\url{https://redislabs.com/redis-enterprise/technology/redisgraph/}), a graph
database module for Redis.  Based on SuiteSparse:GraphBLAS, RedisGraph is up
600x faster than the fastest graph databases ({\footnotesize
\url{https://youtu.be/9h3Qco_x0QE} \newline
\url{https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/}}).

SuiteSparse:GraphBLAS was developed with support from
NVIDIA, Intel, MIT Lincoln Lab, MathWorks, Redis, IBM,
the National Science Foundation (1514406, 1835499), and Julia Computing.

%-------------------------------------------------------------------------------
\section{Additional Resources}
%-------------------------------------------------------------------------------

See \url{http://graphblas.org} for the GraphBLAS community page.  See
\url{https://github.com/GraphBLAS/GraphBLAS-Pointers} for an up-to-date list of
additional resources on GraphBLAS, maintained by G{\'{a}}bor Sz{\'{a}}rnyas.

%-------------------------------------------------------------------------------
% References
%-------------------------------------------------------------------------------
{\footnotesize
\addcontentsline{toc}{section}{References}
\bibliographystyle{annotate}
\bibliography{GraphBLAS_UserGuide.bib}
}
\end{document}