1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
function C = ne (A, B)
%A ~= B not equal.
% C = (A ~= B) compares A and B element-by-element. One or
% both may be scalars. Otherwise, A and B must have the same size.
%
% See also GrB/lt, GrB/le, GrB/gt, GrB/ge, GrB/eq.
% The pattern of C depends on the type of inputs:
% A scalar, B scalar: C is scalar.
% A scalar, B matrix: C is full if A~=0, otherwise C is a subset of B.
% B scalar, A matrix: C is full if B~=0, otherwise C is a subset of A.
% A matrix, B matrix: C is sparse, with the pattern of A+B.
% Zeroes are then dropped from C after it is computed.
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
if (isobject (A))
A = A.opaque ;
end
if (isobject (B))
B = B.opaque ;
end
[am, an, atype] = gbsize (A) ;
[bm, bn, btype] = gbsize (B) ;
a_is_scalar = (am == 1) && (an == 1) ;
b_is_scalar = (bm == 1) && (bn == 1) ;
ctype = gboptype (atype, btype) ;
if (a_is_scalar)
if (b_is_scalar)
% both A and B are scalars. C is sparse.
C = GrB (gbeunion (A, 0, '~=', B, 0)) ;
else
% A is a scalar, B is a matrix
if (gb_scalar (A) ~= 0)
% since a ~= 0, entries not present in B result in a true
% value, so the result is full. Expand A to a full matrix.
A = gb_scalar_to_full (bm, bn, ctype, gb_fmt (B), A) ;
C = GrB (gbemult (A, '~=', gbfull (B, ctype))) ;
else
% since a == 0, entries not present in B result in a false
% value, so the result is a sparse subset of B. select all
% entries in B ~= 0, then convert to true.
C = GrB (gbnew (B, 'logical')) ;
end
end
else
if (b_is_scalar)
% A is a matrix, B is a scalar
if (gb_scalar (B) ~= 0)
% since b ~= 0, entries not present in A result in a true
% value, so the result is full. Expand B to a full matrix.
B = gb_scalar_to_full (am, an, ctype, gb_fmt (A), B) ;
C = GrB (gbemult (gbfull (A, ctype), '~=', B)) ;
else
% since b == 0, entries not present in A result in a false
% value, so the result is a sparse subset of A. Simply
% typecast A to logical. Explicit zeroes in A become explicit
% false entries. Any other explicit entries not equal to zero
% become true.
C = GrB (gbnew (A, 'logical')) ;
end
else
% both A and B are matrices. C is sparse.
C = GrB (gbeunion (A, 0, '~=', B, 0)) ;
end
end
|