File: gb_random.m

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (170 lines) | stat: -rw-r--r-- 5,087 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function C = gb_random (varargin)
%GB_RANDOM uniformly distributed random GraphBLAS matrix.
% Implements C = GrB.random (...), C = sprand (...), C = sprand (...),

% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0

%---------------------------------------------------------------------------
% parse inputs
%---------------------------------------------------------------------------

% defaults
dist = 'uniform' ;
type = 'double' ;
range = [ ] ;
sym_option = 'unsymmetric' ;
firstchar = nargin + 1 ;

% look for strings
for k = 1:nargin
    arg = varargin {k} ;
    if (ischar (arg))
        arg = lower (arg) ;
        firstchar = min (firstchar, k) ;
        switch arg
            case { 'uniform', 'normal' }
                dist = arg ;
            case { 'range' }
                range = varargin {k+1} ;
                if (isobject (range))
                    range = range.opaque ;
                end
                [rm, rn, type] = gbsize (range) ;
                if (rm*rn > 2)
                    error ('GrB:error', 'range can contain at most 2 entries') ;
                end
                range = gbfull (range, type, 0, struct ('kind', 'full')) ;
            case { 'unsymmetric', 'symmetric', 'hermitian' }
                sym_option = arg ;
            otherwise
                error ('GrB:error', 'unknown option') ;
        end
    end
end

symmetric = isequal (sym_option, 'symmetric') ;
hermitian = isequal (sym_option, 'hermitian') ;
desc.base = 'zero-based' ;

%---------------------------------------------------------------------------
% construct the pattern
%---------------------------------------------------------------------------

if (firstchar == 2)

    % C = GrB.random (A, ...) ;
    A = varargin {1} ;
    if (isobject (A))
        A = A.opaque ;
    end
    [m, n] = gbsize (A) ;
    if ((symmetric || hermitian) && (m ~= n))
        error ('GrB:error', 'input matrix must be square') ;
    end
    [I, J] = gbextracttuples (A, desc) ;
    e = length (I) ;

elseif (firstchar == (4 - (symmetric || hermitian)))

    % C = GrB.random (m, n, d, ...)
    % C = GrB.random (n, d, ... 'symmetric')
    % C = GrB.random (n, d, ... 'hermitian')
    m = gb_get_scalar (varargin {1}) ;
    if (symmetric || hermitian)
        n = m ;
        d = gb_get_scalar (varargin {2}) ;
    else
        n = gb_get_scalar (varargin {2}) ;
        d = gb_get_scalar (varargin {3}) ;
    end
    if (isinf (d))
        % construct a full random matrix
        e = m * n ;
        I = repmat ((int64 (0) : int64 (m-1)), 1, n) ;
        J = repmat ((int64 (0) : int64 (n-1)), m, 1) ;
    else
        % construct a sparse random matrix with about e entries
        e = round (m * n * d) ;
        I = int64 (floor (rand (e, 1) * m)) ;
        J = int64 (floor (rand (e, 1) * n)) ;
    end

else

    error ('GrB:error', 'invalid usage') ;

end

%---------------------------------------------------------------------------
% construct the values
%---------------------------------------------------------------------------

if (isequal (type, 'logical'))

    % X is logical: just pass a single logical 'true' to GrB.build
    X = true ;

else

    % construct the initial random values
    if (isequal (dist, 'uniform'))
        X = rand (e, 1) ;
    else
        X = randn (e, 1) ;
    end

    % scale the values and typecast if requested
    if (~isempty (range))
        lo = double (min (range)) ;
        hi = double (max (range)) ;
        if (gb_contains (type, 'int'))
            % X is signed or unsigned integer
            X = cast (floor ((hi - lo + 1) * X + lo), type) ;
        elseif (~gb_contains (type, 'complex'))
            % X is single or double real
            X = cast ((hi - lo) * X + lo, type) ;
        else
            % X is complex: construct random imaginary values
            if (isequal (dist, 'uniform'))
                Y = rand (e, 1) ;
            else
                Y = randn (e, 1) ;
            end
            X = (hi - lo) * X + lo ;
            Y = (hi - lo) * Y + lo ;
            if (isequal (type, 'single complex'))
                % X is single complex
                X = single (X) ;
                Y = single (Y) ;
            end
            X = complex (X, Y) ;
        end
    end

end

%---------------------------------------------------------------------------
% build the matrix
%---------------------------------------------------------------------------

C = gbbuild (I, J, X, m, n, '2nd', desc) ;

% make it symmetric or hermitian, if requested
L = gbselect ('tril', C, -1) ;
if (symmetric)
    % C = tril (C) + tril (C,-1)'
    C = gbeadd (gbselect ('tril', C, 0), '+', gbtrans (L)) ;
elseif (hermitian)
    % C = L + L' + real (diag (C))
    LT = gbtrans (L) ;
    if (gb_contains (gbtype (LT), 'complex'))
        LT = gbapply ('conj', LT) ;
    end
    D = gbselect ('diag', C, 0) ;
    if (gb_contains (gbtype (D), 'complex'))
        D = gbapply ('creal', D) ;
    end
    C = gbeadd (L, '+', gbeadd (LT, '+', D)) ;
end