File: gbbandwidth.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (187 lines) | stat: -rw-r--r-- 6,485 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//------------------------------------------------------------------------------
// gbbandwidth: compute the lower and/or upper bandwidth of a GrB matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// usage:

// [lo,hi] = gbbandwidth (A, compute_lo, compute_hi)

#include "gb_interface.h"

#define USAGE "usage: [lo,hi] = gbbandwidth (A, compute_lo, compute_hi)"

void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    gb_usage (nargin == 3 && nargout == 2, USAGE) ;
    GrB_Matrix A = gb_get_shallow (pargin [0]) ;
    bool compute_lo = (bool) mxGetScalar (pargin [1]) ;
    bool compute_hi = (bool) mxGetScalar (pargin [2]) ;
    GrB_Index nrows, ncols ;
    OK (GrB_Matrix_nrows (&nrows, A)) ;
    OK (GrB_Matrix_ncols (&ncols, A)) ;

    //--------------------------------------------------------------------------
    // compute lo and hi
    //--------------------------------------------------------------------------

    int64_t hi = 0, lo = 0 ;
    GrB_Matrix x = NULL, imin = NULL, imax = NULL, idiag = NULL ;

    GxB_Format_Value fmt ;
    OK (GxB_Matrix_Option_get (A, GxB_FORMAT, &fmt)) ;
    bool by_col = (fmt == GxB_BY_COL) ;

    if (by_col)
    { 

        //----------------------------------------------------------------------
        // A is held by column
        //----------------------------------------------------------------------

        OK (GrB_Matrix_new (&x, GrB_BOOL, 1, nrows)) ;
        OK (GrB_Matrix_new (&imin, GrB_INT64, 1, ncols)) ;
        OK (GrB_Matrix_new (&imax, GrB_INT64, 1, ncols)) ;
        OK (GrB_Matrix_new (&idiag, GrB_INT64, 1, ncols)) ;

        // x = true (1, nrows)
        OK (GrB_Matrix_assign_BOOL (x, NULL, NULL, true, GrB_ALL, 1, GrB_ALL,
            nrows, NULL)) ;

        if (compute_hi)
        { 
            // imin = x*A, where imin(j) = min row index in column j
            OK (GrB_mxm (imin, NULL, NULL, GxB_MIN_FIRSTJ_INT64, x, A, NULL)) ;
        }

        if (compute_lo)
        { 
            // imax = x*A, where imax(j) = max row index in column j
            OK (GrB_mxm (imax, NULL, NULL, GxB_MAX_FIRSTJ_INT64, x, A, NULL)) ;
        }

        // construct idiag: idiag(j) = j with same sparsity pattern as imin/imax
        OK (GrB_Matrix_apply_IndexOp_INT64 (idiag, NULL, NULL,
            GrB_COLINDEX_INT64, compute_hi ? imin : imax, 0, NULL)) ;

        if (compute_hi)
        { 
            // imin = idiag - imin
            OK (GrB_Matrix_eWiseMult_BinaryOp (imin, NULL, NULL,
                GrB_MINUS_INT64, idiag, imin, NULL)) ;
            // hi = max (imin, 0) ;
            OK (GrB_Matrix_reduce_INT64 (&hi, GrB_MAX_INT64,
                GrB_MAX_MONOID_INT64, imin, NULL)) ;
        }

        if (compute_lo)
        { 
            // imax = imax - idiag
            OK (GrB_Matrix_eWiseMult_BinaryOp (imax, NULL, NULL,
                GrB_MINUS_INT64, imax, idiag, NULL)) ;
            // lo = max (imax, 0) ;
            OK (GrB_Matrix_reduce_INT64 (&lo, GrB_MAX_INT64,
                GrB_MAX_MONOID_INT64, imax, NULL)) ;
        }

    }
    else
    { 

        //----------------------------------------------------------------------
        // A is held by row
        //----------------------------------------------------------------------

        OK (GrB_Matrix_new (&x, GrB_BOOL, ncols, 1)) ;
        OK (GrB_Matrix_new (&imin, GrB_INT64, nrows, 1)) ;
        OK (GrB_Matrix_new (&imax, GrB_INT64, nrows, 1)) ;
        OK (GrB_Matrix_new (&idiag, GrB_INT64, nrows, 1)) ;

        // x = true (ncols, 1)
        OK (GrB_Matrix_assign_BOOL (x, NULL, NULL, true, GrB_ALL, ncols,
            GrB_ALL, 1, NULL)) ;

        if (compute_lo)
        { 
            // imin = A*x, where imin(i) = min column index in row i
            OK (GrB_mxm (imin, NULL, NULL, GxB_MIN_FIRSTJ_INT64, A, x, NULL)) ;
        }

        if (compute_hi)
        { 
            // imax = A*x, where imax(i) = max column index in row i
            OK (GrB_mxm (imax, NULL, NULL, GxB_MAX_FIRSTJ_INT64, A, x, NULL)) ;
        }

        // construct idiag: idiag(i) = i with same sparsity pattern as imin/imax
        OK (GrB_Matrix_apply_IndexOp_INT64 (idiag, NULL, NULL,
            GrB_ROWINDEX_INT64, compute_lo ? imin : imax, 0, NULL)) ;

        if (compute_lo)
        { 
            // imin = idiag - imin
            OK (GrB_Matrix_eWiseMult_BinaryOp (imin, NULL, NULL,
                GrB_MINUS_INT64, idiag, imin, NULL)) ;
            // lo = max (imin, 0) ;
            OK (GrB_Matrix_reduce_INT64 (&lo, GrB_MAX_INT64,
                GrB_MAX_MONOID_INT64, imin, NULL)) ;
        }

        if (compute_hi)
        { 
            // imax = imax - idiag
            OK (GrB_Matrix_eWiseMult_BinaryOp (imax, NULL, NULL,
                GrB_MINUS_INT64, imax, idiag, NULL)) ;
            // hi = max (imax, 0) ;
            OK (GrB_Matrix_reduce_INT64 (&hi, GrB_MAX_INT64,
                GrB_MAX_MONOID_INT64, imax, NULL)) ;
        }
    }

    OK (GrB_Matrix_free (&A)) ;
    OK (GrB_Matrix_free (&x)) ;
    OK (GrB_Matrix_free (&idiag)) ;
    OK (GrB_Matrix_free (&imin)) ;
    OK (GrB_Matrix_free (&imax)) ;

    //--------------------------------------------------------------------------
    // return result as int64 scalars
    //--------------------------------------------------------------------------

    if (lo > FLINTMAX || hi > FLINTMAX)
    { 
        // output is int64 to avoid flint overflow
        int64_t *p ;
        pargout [0] = mxCreateNumericMatrix (1, 1, mxINT64_CLASS, mxREAL) ;
        // use mxGetData (best for Octave, fine for MATLAB)
        p = (int64_t *) mxGetData (pargout [0]) ;
        p [0] = (int64_t) lo ;
        pargout [1] = mxCreateNumericMatrix (1, 1, mxINT64_CLASS, mxREAL) ;
        p = (int64_t *) mxGetData (pargout [1]) ;
        p [0] = (int64_t) hi ;
    }
    else
    { 
        // output is double
        pargout [0] = mxCreateDoubleScalar ((double) lo) ;
        pargout [1] = mxCreateDoubleScalar ((double) hi) ;
    }

    GB_WRAPUP ;
}