1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
//------------------------------------------------------------------------------
// gbbuild: build a GraphBLAS matrix or a built-in sparse matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Usage:
// A = gbbuild (I, J, X)
// A = gbbuild (I, J, X, desc)
// A = gbbuild (I, J, X, m, desc)
// A = gbbuild (I, J, X, m, n, desc)
// A = gbbuild (I, J, X, m, n, dup, desc) ;
// A = gbbuild (I, J, X, m, n, dup, type, desc) ;
// X and either I or J may be a scalars, in which case they are effectively
// expanded so that they all have the same length. X is only implicitly
// expanded if A is built as an iso matrix.
// m and n default to the largest index in I and J, respectively.
// dup is a string that defaults to 'plus.xtype' where xtype is the type of X.
// If dup is given by without a type, type of dup defaults to the type of X.
// If dup is the empty string '' then any duplicates result in an error.
// If dup is the string 'ignore' then duplicates are ignored.
// type is a string that defines is the type of A, which defaults to the type
// of X.
// If X is a scalar, and dup is '1st', '2nd', 'any', 'min', 'max',
// 'pair' (same as 'oneb'),
// 'or', 'and', 'bitor', or 'bitand', then GxB_Matrix_build_Scalar is used and
// A is built as an iso matrix. X is not explicitly expanded. This is
// much faster than when using the default dup.
// The descriptor is optional; if present, it must be the last input parameter.
// desc.kind is the only part used from the descriptor, and it defaults to
// desc.kind = 'GrB'.
#include "gb_interface.h"
#define USAGE "usage: A = GrB.build (I, J, X, m, n, dup, type, desc)"
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
gb_usage (nargin >= 3 && nargin <= 8 && nargout <= 2, USAGE) ;
//--------------------------------------------------------------------------
// get the descriptor
//--------------------------------------------------------------------------
base_enum_t base ;
kind_enum_t kind ;
GxB_Format_Value fmt ;
int sparsity ;
GrB_Descriptor desc = NULL ;
desc = gb_mxarray_to_descriptor (pargin [nargin-1], &kind, &fmt,
&sparsity, &base) ;
// if present, remove the descriptor from consideration
if (desc != NULL) nargin-- ;
OK (GrB_Descriptor_free (&desc)) ;
//--------------------------------------------------------------------------
// get I and J
//--------------------------------------------------------------------------
GrB_Index ni, nj ;
bool I_allocated, J_allocated ;
int64_t Imax = -1, Jmax = -1 ;
GrB_Index *I = (GrB_Index *) gb_mxarray_to_list (pargin [0], base,
&I_allocated, (int64_t *) &ni, &Imax) ;
GrB_Index *J = (GrB_Index *) gb_mxarray_to_list (pargin [1], base,
&J_allocated, (int64_t *) &nj, &Jmax) ;
//--------------------------------------------------------------------------
// get X
//--------------------------------------------------------------------------
const mxArray *Xm = pargin [2] ;
GrB_Type xtype = gb_mxarray_type (Xm) ;
GrB_Index nx = mxGetNumberOfElements (Xm) ;
//--------------------------------------------------------------------------
// check the sizes of I, J, and X, and the type of X
//--------------------------------------------------------------------------
GrB_Index nvals = MAX (ni, nj) ;
nvals = MAX (nvals, nx) ;
if (!(ni == 1 || ni == nvals) ||
!(nj == 1 || nj == nvals) ||
!(nx == 1 || nx == nvals))
{
ERROR ("I, J, and X must have the same length") ;
}
CHECK_ERROR (!(mxIsNumeric (Xm) || mxIsLogical (Xm)),
"X must be a numeric or logical array") ;
CHECK_ERROR (mxIsSparse (Xm), "X cannot be sparse") ;
//--------------------------------------------------------------------------
// expand any scalars in I and J (but not X)
//--------------------------------------------------------------------------
if (ni == 1 && ni < nvals)
{
GrB_Index *I2 = (GrB_Index *) mxMalloc (nvals * sizeof (GrB_Index)) ;
GB_helper8 ((GB_void *) I2, (GB_void *) I, nvals, sizeof (GrB_Index)) ;
if (I_allocated) gb_mxfree ((void **) (&I)) ;
I_allocated = true ;
I = I2 ;
}
if (nj == 1 && nj < nvals)
{
GrB_Index *J2 = (GrB_Index *) mxMalloc (nvals * sizeof (GrB_Index)) ;
GB_helper8 ((GB_void *) J2, (GB_void *) J, nvals, sizeof (GrB_Index)) ;
if (J_allocated) gb_mxfree ((void **) (&J)) ;
J_allocated = true ;
J = J2 ;
}
//--------------------------------------------------------------------------
// get m and n if present
//--------------------------------------------------------------------------
GrB_Index nrows = 0, ncols = 0 ;
if (nargin < 4)
{
// nrows = max entry in I + 1
if (Imax > -1)
{
// Imax already computed
nrows = Imax ;
}
else
{
// nrows = max entry in I+1
bool ok = GB_helper4 (I, ni, &nrows) ;
CHECK_ERROR (!ok, "out of memory") ;
}
}
else
{
// m is provided on input
nrows = gb_mxget_uint64_scalar (pargin [3], "m") ;
}
if (nargin < 5)
{
if (Jmax > -1)
{
// Jmax already computed
ncols = Jmax ;
}
else
{
// ncols = max entry in J+1
bool ok = GB_helper4 (J, nj, &ncols) ;
CHECK_ERROR (!ok, "out of memory") ;
}
}
else
{
// n is provided on input
ncols = gb_mxget_uint64_scalar (pargin [4], "n") ;
}
//--------------------------------------------------------------------------
// get the dup operator
//--------------------------------------------------------------------------
// default_dup: if dup does not appear as a parameter
bool default_dup = (nargin < 6) ;
GrB_BinaryOp dup = GxB_IGNORE_DUP ;
if (!default_dup)
{
dup = gb_mxstring_to_binop (pargin [5], xtype, xtype) ;
}
// if dup defaults to plus.xtype, below, or GrB_LOR for boolean
bool nice_iso_dup ;
if (default_dup)
{
// dup will be GrB_LOR which is nice for an iso build. For all other
// types, the dup is plus, which is not nice.
nice_iso_dup = (xtype == GrB_BOOL) ;
}
else if (dup == NULL || dup == GxB_IGNORE_DUP)
{
// if X is a scalar and dup is '' (NULL) or 'ignore' (GxB_IGNORE_DUP),
// then dup is a nice iso dup.
nice_iso_dup = true ;
}
else
{
// parse dup to see if it will build an iso matrix if X is a scalar
#define LEN 256
char sdup [LEN+2] ;
gb_mxstring_to_string (sdup, LEN, pargin [5], "dup") ;
int32_t position [2] ;
gb_find_dot (position, sdup) ;
if (position [0] >= 0) sdup [position [0]] = '\0' ;
nice_iso_dup =
MATCH (sdup, "1st") || MATCH (sdup, "first" ) ||
MATCH (sdup, "2nd") || MATCH (sdup, "second") ||
MATCH (sdup, "any") ||
MATCH (sdup, "min") || MATCH (sdup, "max" ) ||
MATCH (sdup, "||" ) || MATCH (sdup, "|" ) ||
MATCH (sdup, "&&" ) || MATCH (sdup, "&" ) ||
MATCH (sdup, "or" ) || MATCH (sdup, "bitor" ) ||
MATCH (sdup, "and") || MATCH (sdup, "bitand") ||
MATCH (sdup, "lor") || MATCH (sdup, "land" ) ;
}
//--------------------------------------------------------------------------
// get the output matrix type
//--------------------------------------------------------------------------
GrB_Type type = NULL ;
if (nargin > 6)
{
type = gb_mxstring_to_type (pargin [6]) ;
CHECK_ERROR (type == NULL, "unknown type") ;
}
else
{
type = xtype ;
}
//--------------------------------------------------------------------------
// build the matrix
//--------------------------------------------------------------------------
fmt = gb_get_format (nrows, ncols, NULL, NULL, fmt) ;
sparsity = gb_get_sparsity (NULL, NULL, sparsity) ;
GrB_Matrix A = gb_new (type, nrows, ncols, fmt, sparsity) ;
void *X2 = NULL ;
bool X_is_scalar = (nx == 1 && nx < nvals) ;
bool iso_build = X_is_scalar && nice_iso_dup ;
// mxGetData is used instead of the MATLAB-recommended mxGetDoubles, etc,
// because mxGetData works best for Octave, and it works fine for MATLAB
// since GraphBLAS requires R2018a with the interleaved complex data type.
if (iso_build)
{
// build an iso matrix, with no dup operator (dup is GxB_IGNORE_DUP)
GrB_Scalar x_scalar = (GrB_Scalar) gb_get_shallow (Xm) ;
OK1 (A, GxB_Matrix_build_Scalar (A, I, J, x_scalar, nvals)) ;
OK (GrB_Scalar_free (&x_scalar)) ;
}
else if (xtype == GrB_BOOL)
{
bool empty = 0 ;
bool *X = (nvals == 0) ? &empty : ((bool *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_LOR ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (bool)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (bool)) ;
X = (bool *) X2 ;
}
OK1 (A, GrB_Matrix_build_BOOL (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_INT8)
{
int8_t empty = 0 ;
int8_t *X = (nvals == 0) ? &empty : ((int8_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_INT8 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (int8_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (int8_t)) ;
X = (int8_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_INT8 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_INT16)
{
int16_t empty = 0 ;
int16_t *X = (nvals == 0) ? &empty : ((int16_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_INT16 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (int16_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (int16_t));
X = (int16_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_INT16 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_INT32)
{
int32_t empty = 0 ;
int32_t *X = (nvals == 0) ? &empty : ((int32_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_INT32 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (int32_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (int32_t));
X = (int32_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_INT32 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_INT64)
{
int64_t empty = 0 ;
int64_t *X = (nvals == 0) ? &empty : ((int64_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_INT64 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (int64_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (int64_t));
X = (int64_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_INT64 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_UINT8)
{
uint8_t empty = 0 ;
uint8_t *X = (nvals == 0) ? &empty : ((uint8_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_UINT8 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (uint8_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (uint8_t));
X = (uint8_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_UINT8 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_UINT16)
{
uint16_t empty = 0 ;
uint16_t *X = (nvals == 0) ? &empty : ((uint16_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_UINT16 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (uint16_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof(uint16_t));
X = (uint16_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_UINT16 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_UINT32)
{
uint32_t empty = 0 ;
uint32_t *X = (nvals == 0) ? &empty : ((uint32_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_UINT32 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (uint32_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof(uint32_t));
X = (uint32_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_UINT32 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_UINT64)
{
uint64_t empty = 0 ;
uint64_t *X = (nvals == 0) ? &empty : ((uint64_t *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_UINT64 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (uint64_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof(uint64_t));
X = (uint64_t *) X2 ;
}
OK1 (A, GrB_Matrix_build_UINT64 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_FP32)
{
float empty = 0 ;
float *X = (nvals == 0) ? &empty : ((float *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_FP32 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (float)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (float)) ;
X = (float *) X2 ;
}
OK1 (A, GrB_Matrix_build_FP32 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GrB_FP64)
{
double empty = 0 ;
double *X = (nvals == 0) ? &empty : ((double *) mxGetData (Xm)) ;
if (default_dup) dup = GrB_PLUS_FP64 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (double)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals, sizeof (double)) ;
X = (double *) X2 ;
}
OK1 (A, GrB_Matrix_build_FP64 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GxB_FC32)
{
GxB_FC32_t empty = GxB_CMPLXF (0,0) ;
GxB_FC32_t *X = &empty ;
if (nvals > 0) X = (GxB_FC32_t *) mxGetData (Xm) ;
if (default_dup) dup = GxB_PLUS_FC32 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (GxB_FC32_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals,
sizeof (GxB_FC32_t)) ;
X = (GxB_FC32_t *) X2 ;
}
OK1 (A, GxB_Matrix_build_FC32 (A, I, J, X, nvals, dup)) ;
}
else if (xtype == GxB_FC64)
{
GxB_FC64_t empty = GxB_CMPLX (0,0) ;
GxB_FC64_t *X = &empty ;
if (nvals > 0) X = (GxB_FC64_t *) mxGetData (Xm) ;
if (default_dup) dup = GxB_PLUS_FC64 ;
if (X_is_scalar)
{
X2 = mxMalloc (nvals * sizeof (GxB_FC64_t)) ;
GB_helper8 ((GB_void *) X2, (GB_void *) X, nvals,
sizeof (GxB_FC64_t)) ;
X = (GxB_FC64_t *) X2 ;
}
OK1 (A, GxB_Matrix_build_FC64 (A, I, J, X, nvals, dup)) ;
}
else
{
ERROR ("unsupported type") ;
}
//--------------------------------------------------------------------------
// free workspace
//--------------------------------------------------------------------------
if (X2 != NULL ) gb_mxfree ((void **) (&X2)) ;
if (I_allocated) gb_mxfree ((void **) (&I)) ;
if (J_allocated) gb_mxfree ((void **) (&J)) ;
//--------------------------------------------------------------------------
// export the output matrix A
//--------------------------------------------------------------------------
pargout [0] = gb_export (&A, kind) ;
pargout [1] = mxCreateDoubleScalar (kind) ;
GB_WRAPUP ;
}
|