File: gbextract.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (197 lines) | stat: -rw-r--r-- 6,579 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//------------------------------------------------------------------------------
// gbextract: extract entries into a GraphBLAS matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// gbextract is an interface to GrB_Matrix_extract and
// GrB_Matrix_extract_[TYPE], computing the GraphBLAS expression:

//      C<#M,replace> = accum (C, A (I,J)) or
//      C<#M,replace> = accum (C, AT (I,J))

// Usage:

//      C = gbextract (Cin, M, accum, A, I, J, desc)

// A is required.  See GrB.m for more details.
// If accum or M is used, then Cin must appear.

#include "gb_interface.h"
#include "GB_ij.h"

#define USAGE "usage: C = GrB.extract (Cin, M, accum, A, I, J, desc)"

void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    gb_usage (nargin >= 1 && nargin <= 7 && nargout <= 2, USAGE) ;

    //--------------------------------------------------------------------------
    // find the arguments
    //--------------------------------------------------------------------------

    mxArray *Matrix [6], *String [2], *Cell [2] ;
    base_enum_t base ;
    kind_enum_t kind ;
    GxB_Format_Value fmt ;
    int nmatrices, nstrings, ncells, sparsity ;
    GrB_Descriptor desc ;
    gb_get_mxargs (nargin, pargin, USAGE, Matrix, &nmatrices, String, &nstrings,
        Cell, &ncells, &desc, &base, &kind, &fmt, &sparsity) ;

    CHECK_ERROR (nmatrices < 1 || nmatrices > 3 || nstrings > 1, USAGE) ;

    //--------------------------------------------------------------------------
    // get the matrices
    //--------------------------------------------------------------------------

    GrB_Type atype, ctype = NULL ;
    GrB_Matrix C = NULL, M = NULL, A ;

    if (nmatrices == 1)
    { 
        A = gb_get_shallow (Matrix [0]) ;
    }
    else if (nmatrices == 2)
    { 
        C = gb_get_deep    (Matrix [0]) ;
        A = gb_get_shallow (Matrix [1]) ;
    }
    else // if (nmatrices == 3)
    { 
        C = gb_get_deep    (Matrix [0]) ;
        M = gb_get_shallow (Matrix [1]) ;
        A = gb_get_shallow (Matrix [2]) ;
    }

    OK (GxB_Matrix_type (&atype, A)) ;
    if (C != NULL)
    { 
        OK (GxB_Matrix_type (&ctype, C)) ;
    }

    //--------------------------------------------------------------------------
    // get the operator
    //--------------------------------------------------------------------------

    GrB_BinaryOp accum = NULL ;

    if (nstrings == 1)
    { 
        // if accum appears, then Cin must also appear
        CHECK_ERROR (C == NULL, USAGE) ;
        accum  = gb_mxstring_to_binop  (String [0], ctype, ctype) ;
    }

    //--------------------------------------------------------------------------
    // get the size of A
    //--------------------------------------------------------------------------

    GrB_Desc_Value in0 ;
    OK (GxB_Desc_get (desc, GrB_INP0, &in0)) ;
    GrB_Index anrows, ancols ;
    bool A_transpose = (in0 == GrB_TRAN) ;
    if (A_transpose)
    { 
        // T = AT (I,J) is to be extracted where AT = A'
        OK (GrB_Matrix_nrows (&ancols, A)) ;
        OK (GrB_Matrix_ncols (&anrows, A)) ;
    }
    else
    { 
        // T = A (I,J) is to be extracted
        OK (GrB_Matrix_nrows (&anrows, A)) ;
        OK (GrB_Matrix_ncols (&ancols, A)) ;
    }

    //--------------------------------------------------------------------------
    // get I and J
    //--------------------------------------------------------------------------

    GrB_Index *I = (GrB_Index *) GrB_ALL ;
    GrB_Index *J = (GrB_Index *) GrB_ALL ;
    GrB_Index ni = anrows, nj = ancols ;
    bool I_allocated = false, J_allocated = false ;

    if (anrows == 1 && ncells == 1)
    { 
        // only J is present
        J = gb_mxcell_to_index (Cell [0], base, ancols, &J_allocated, &nj,
            NULL) ;
    }
    else if (ncells == 1)
    { 
        // only I is present
        I = gb_mxcell_to_index (Cell [0], base, anrows, &I_allocated, &ni,
            NULL) ;
    }
    else if (ncells == 2)
    { 
        // both I and J are present
        I = gb_mxcell_to_index (Cell [0], base, anrows, &I_allocated, &ni,
            NULL) ;
        J = gb_mxcell_to_index (Cell [1], base, ancols, &J_allocated, &nj,
            NULL) ;
    }

    //--------------------------------------------------------------------------
    // construct C if not present on input
    //--------------------------------------------------------------------------

    if (C == NULL)
    { 
        // Cin is not present: determine its size, same type as A.
        // T = A(I,J) or AT(I,J) will be extracted.
        // accum must be null
        int I_kind, J_kind ;
        int64_t I_colon [3], J_colon [3] ;
        GrB_Index cnrows, cncols ;
        GB_ijlength (I, ni, anrows, (int64_t *) &cnrows, &I_kind, I_colon) ;
        GB_ijlength (J, nj, ancols, (int64_t *) &cncols, &J_kind, J_colon) ;
        ctype = atype ;

        // create the matrix C and set its format and sparsity
        fmt = gb_get_format (cnrows, cncols, A, NULL, fmt) ;
        sparsity = gb_get_sparsity (A, NULL, sparsity) ;
        C = gb_new (ctype, cnrows, cncols, fmt, sparsity) ;
    }

    //--------------------------------------------------------------------------
    // compute C<M> += A(I,J) or AT(I,J)
    //--------------------------------------------------------------------------

    OK1 (C, GrB_Matrix_extract (C, M, accum, A, I, ni, J, nj, desc)) ;

    //--------------------------------------------------------------------------
    // free shallow copies
    //--------------------------------------------------------------------------

    OK (GrB_Matrix_free (&M)) ;
    OK (GrB_Matrix_free (&A)) ;
    OK (GrB_Descriptor_free (&desc)) ;
    if (I_allocated) gb_mxfree ((void **) (&I)) ;
    if (J_allocated) gb_mxfree ((void **) (&J)) ;

    //--------------------------------------------------------------------------
    // export the output matrix C
    //--------------------------------------------------------------------------

    pargout [0] = gb_export (&C, kind) ;
    pargout [1] = mxCreateDoubleScalar (kind) ;
    GB_WRAPUP ;
}