File: gblogassign.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (363 lines) | stat: -rw-r--r-- 12,649 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//------------------------------------------------------------------------------
// gblogassign: logical assignment: C(M) = A
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// gblogassign computes the built-in logical indexing expression C(M) = A.  The
// matrices C and M must be the same size.  M is normally logical but it can be
// of any type in this mexFunction.  M should not have any explicit zeros.  A
// is a sparse vector of size nnz(M)-by-1.  Scalar expansion is not handled.
// Use GrB.subassign (C, M, scalar) for that case.

// Usage:

//      C = gblogassign (C, M, A)

//  This function is the C equivalent of the following m-function:

/*

    function C = gblogassign (C, M_input, A)
    % Computing the built-in logical indexing expression C(M) = A in GraphBLAS.
    % A is a sparse vector of size nnz(M)-by-1 (scalar expansion is not
    % handled). M is normally a sparse logical matrix, either GraphBLAS or
    % built-in, but it can be of any type.  C and M have the same size.

    % make sure all matrices are stored by column
    save = GrB.format ;
    GrB.format ('by col') ;
    M = GrB (m, n, 'logical') ;
    M = GrB.select (M, '2nd', 'nonzero', M_input) ;
    if (isequal (GrB.format (A), 'by row'))
        A = GrB (A) ;
    end

    [m n] = size (C) ;
    mnz = nnz (M) ;         % A must be mnz-by-1
    if (~isequal (size (A), [mnz 1]))
        error ('GrB:error', 'A must be nnz(M)-by-1')
    end

    [ai,  ~, ax] = GrB.extracttuples (A) ;
    [mi, mj,  ~] = GrB.extracttuples (M) ;

    % construct a subset of the entries of the mask M corresponding to the
    % entries in A
    si = mi (ai) ;
    sj = mj (ai) ;
    S = GrB.build (si, sj, ax, m, n) ;

    GrB.format (save) ;

    % C<M> = S
    C = GrB.subassign (C, M, S) ;

*/

// This C mexFunction is faster than the above m-function, since it avoids the
// use of GrB.extracttuples.  Instead, it accesses the internal structure of the
// GrB_Matrix objects.  The m-file above is useful for understanding that this
// C mexFunction does.

// C is always returned as a GrB matrix.

#include "gb_interface.h"

#define USAGE "usage: C = gblogassign (C, M, A)"
#define ERR "A must be a vector of length nnz(M) for logical indexing, C(M)=A"

void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    gb_usage (nargin == 3 && nargout <= 1, USAGE) ;

    //--------------------------------------------------------------------------
    // get a deep copy of C, of any sparsity structure
    //--------------------------------------------------------------------------

    GrB_Matrix C = gb_get_deep (pargin [0]) ;
    GrB_Index nrows, ncols ;
    OK (GrB_Matrix_nrows (&nrows, C)) ;
    OK (GrB_Matrix_ncols (&ncols, C)) ;

    //--------------------------------------------------------------------------
    // get M
    //--------------------------------------------------------------------------

    // make M boolean, sparse/hyper, stored by column, and drop explicit zeros
    GrB_Matrix M_input = gb_get_shallow (pargin [1]) ;
    GrB_Matrix M = gb_new (GrB_BOOL, nrows, ncols, GxB_BY_COL,
        GxB_SPARSE + GxB_HYPERSPARSE) ;
    OK1 (M, GxB_Matrix_select (M, NULL, NULL, GxB_NONZERO, M_input,
        NULL, NULL)) ;

    OK (GrB_Matrix_free (&M_input)) ;
    GrB_Index mnz ;
    OK (GrB_Matrix_nvals (&mnz, M)) ;

    //--------------------------------------------------------------------------
    // get A
    //--------------------------------------------------------------------------

    GrB_Matrix A_input = gb_get_shallow (pargin [2]) ;
    GrB_Matrix A = A_input ;
    GrB_Type atype ;
    GrB_Index anrows, ancols, anz ;
    GxB_Format_Value fmt ;
    int A_sparsity ;
    OK (GrB_Matrix_nrows (&anrows, A)) ;
    OK (GrB_Matrix_ncols (&ancols, A)) ;
    OK (GxB_Matrix_type (&atype, A)) ;
    OK (GrB_Matrix_nvals (&anz, A)) ;
    OK (GxB_Matrix_Option_get (A, GxB_FORMAT, &fmt)) ;
    OK (GxB_Matrix_Option_get (A, GxB_SPARSITY_STATUS, &A_sparsity)) ;

    GrB_Matrix A_copy = NULL ;
    GrB_Matrix A_copy2 = NULL ;

    // make sure A is not bitmap; it can be sparse, hypersparse, or full
    if (A_sparsity == GxB_BITMAP)
    {
        OK (GrB_Matrix_dup (&A_copy2, A)) ;
        OK1 (A_copy2, GxB_Matrix_Option_set (A_copy2, GxB_SPARSITY_CONTROL,
            GxB_SPARSE + GxB_HYPERSPARSE + GxB_FULL)) ;
        A = A_copy2 ;
    }

    // make sure A is a vector of the right size
    if (mnz == 0)
    { 
        // M is empty, so A must have no entries.  The dimensions and format of
        // A are not relevant, since the content of A will not be accessed.
        CHECK_ERROR (anz != 0, ERR) ;
    }
    else if (anrows == 1)
    {
        // A is 1-by-ancols; ensure it is has length nnz(M), and held by row,
        // or transpose to ancols-by-1 and held by column.
        CHECK_ERROR (ancols != mnz, ERR) ;
        if (fmt == GxB_BY_COL)
        { 
            // A is 1-by-ancols and held by column: transpose it
            A_copy = gb_new (atype, mnz, 1, GxB_BY_COL, 
                GxB_SPARSE + GxB_HYPERSPARSE + GxB_FULL) ;
            OK1 (A_copy, GrB_transpose (A_copy, NULL, NULL, A, NULL)) ;
            OK1 (A_copy, GrB_Matrix_wait (A_copy, GrB_MATERIALIZE)) ;
            A = A_copy ;
        }
    }
    else if (ancols == 1)
    {
        // A is anrows-by-1; ensure it is has length nnz(M), and held by col
        // or transpose to 1-by-anrows and held by row.
        CHECK_ERROR (anrows != mnz, ERR) ;
        if (fmt == GxB_BY_ROW)
        { 
            // A is anrows-by-1 and held by row: transpose it
            A_copy = gb_new (atype, 1, mnz, GxB_BY_ROW,
                GxB_SPARSE + GxB_HYPERSPARSE + GxB_FULL) ;
            OK1 (A_copy, GrB_transpose (A_copy, NULL, NULL, A, NULL)) ;
            OK1 (A_copy, GrB_Matrix_wait (A_copy, GrB_MATERIALIZE)) ;
            A = A_copy ;
        }
    }
    else
    {
        ERROR (ERR) ;
    }

    //--------------------------------------------------------------------------
    // extract the values and pattern of A; handle iso case
    //--------------------------------------------------------------------------

    // Tim: use a shallow variant of GxB*export to access content of M and A
    GrB_Index *Ai =            							
        (GrB_Index *) A->i ;   	             	 	                 	
    void *Ax = A->x ;          		 	 	 	 	 	
    char nil [16] =            		 	 	 	 	 	
     "iso logassign  " ;       		 	 	 	 	 	
    if (Ax == NULL) Ax = &nil ;							

    //--------------------------------------------------------------------------
    // extract the pattern of M
    //--------------------------------------------------------------------------

    GrB_Index *Mi = (GrB_Index *) (M->i) ;
    GrB_Index *Mj = mxMalloc (MAX (mnz, 1) * sizeof (GrB_Index)) ;
    OK (GrB_Matrix_extractTuples_BOOL (NULL, Mj, NULL, &mnz, M)) ;

    //--------------------------------------------------------------------------
    // construct a subset of the pattern of M corresponding to the entries of A
    //--------------------------------------------------------------------------

    GrB_Index *Si = mxMalloc (MAX (anz, 1) * sizeof (GrB_Index)) ;
    GrB_Index *Sj = mxMalloc (MAX (anz, 1) * sizeof (GrB_Index)) ;
    GB_helper5 (Si, Sj, Mi, Mj, M->vlen, Ai, A->vlen, anz) ;
    GrB_Matrix S = gb_new (atype, nrows, ncols, GxB_BY_COL, 0) ;

    if (A->iso)
    {
        // build S as an iso matrix
        GrB_Scalar s = NULL ;
        OK (GrB_Scalar_new (&s, atype)) ;
        if (atype == GrB_BOOL)
        { 
            OK (GrB_Scalar_setElement_BOOL (s, (* ((bool *) Ax)))) ;
        }
        else if (atype == GrB_INT8)
        { 
            OK (GrB_Scalar_setElement_INT8 (s, (* ((int8_t *) Ax)))) ;
        }
        else if (atype == GrB_INT16)
        { 
            OK (GrB_Scalar_setElement_INT16 (s, (* ((int16_t *) Ax)))) ;
        }
        else if (atype == GrB_INT32)
        { 
            OK (GrB_Scalar_setElement_INT32 (s, (* ((int32_t *) Ax)))) ;
        }
        else if (atype == GrB_INT64)
        { 
            OK (GrB_Scalar_setElement_INT64 (s, (* ((int64_t *) Ax)))) ;
        }
        else if (atype == GrB_UINT8)
        { 
            OK (GrB_Scalar_setElement_UINT8 (s, (* ((uint8_t *) Ax)))) ;
        }
        else if (atype == GrB_UINT16)
        { 
            OK (GrB_Scalar_setElement_UINT16 (s, (* ((uint16_t *) Ax)))) ;
        }
        else if (atype == GrB_UINT32)
        { 
            OK (GrB_Scalar_setElement_UINT32 (s, (* ((uint32_t *) Ax)))) ;
        }
        else if (atype == GrB_UINT64)
        { 
            OK (GrB_Scalar_setElement_UINT64 (s, (* ((uint64_t *) Ax)))) ;
        }
        else if (atype == GrB_FP32)
        { 
            OK (GrB_Scalar_setElement_FP32 (s, (* ((float *) Ax)))) ;
        }
        else if (atype == GrB_FP64)
        { 
            OK (GrB_Scalar_setElement_FP64 (s, (* ((double *) Ax)))) ;
        }
        else if (atype == GxB_FC32)
        { 
            OK (GxB_Scalar_setElement_FC32 (s, (* ((GxB_FC32_t *) Ax)))) ;
        }
        else if (atype == GxB_FC64)
        { 
            OK (GxB_Scalar_setElement_FC64 (s, (* ((GxB_FC64_t *) Ax)))) ;
        }
        else
        {
            ERROR ("unsupported type") ;
        }
        OK1 (S, GxB_Matrix_build_Scalar (S, Si, Sj, s, anz)) ;
        OK (GrB_Scalar_free (&s)) ;
    }
    else if (atype == GrB_BOOL)
    { 
        OK1 (S, GrB_Matrix_build_BOOL (S, Si, Sj, Ax, anz, GrB_LOR)) ;
    }
    else if (atype == GrB_INT8)
    { 
        OK1 (S, GrB_Matrix_build_INT8 (S, Si, Sj, Ax, anz, GrB_PLUS_INT8)) ;
    }
    else if (atype == GrB_INT16)
    { 
        OK1 (S, GrB_Matrix_build_INT16 (S, Si, Sj, Ax, anz, GrB_PLUS_INT16)) ;
    }
    else if (atype == GrB_INT32)
    { 
        OK1 (S, GrB_Matrix_build_INT32 (S, Si, Sj, Ax, anz, GrB_PLUS_INT32)) ;
    }
    else if (atype == GrB_INT64)
    { 
        OK1 (S, GrB_Matrix_build_INT64 (S, Si, Sj, Ax, anz, GrB_PLUS_INT64)) ;
    }
    else if (atype == GrB_UINT8)
    { 
        OK1 (S, GrB_Matrix_build_UINT8 (S, Si, Sj, Ax, anz, GrB_PLUS_UINT8)) ;
    }
    else if (atype == GrB_UINT16)
    { 
        OK1 (S, GrB_Matrix_build_UINT16 (S, Si, Sj, Ax, anz, GrB_PLUS_UINT16)) ;
    }
    else if (atype == GrB_UINT32)
    { 
        OK1 (S, GrB_Matrix_build_UINT32 (S, Si, Sj, Ax, anz, GrB_PLUS_UINT32)) ;
    }
    else if (atype == GrB_UINT64)
    { 
        OK1 (S, GrB_Matrix_build_UINT64 (S, Si, Sj, Ax, anz, GrB_PLUS_UINT64)) ;
    }
    else if (atype == GrB_FP32)
    { 
        OK1 (S, GrB_Matrix_build_FP32 (S, Si, Sj, Ax, anz, GrB_PLUS_FP32)) ;
    }
    else if (atype == GrB_FP64)
    { 
        OK1 (S, GrB_Matrix_build_FP64 (S, Si, Sj, Ax, anz, GrB_PLUS_FP64)) ;
    }
    else if (atype == GxB_FC32)
    { 
        OK1 (S, GxB_Matrix_build_FC32 (S, Si, Sj, Ax, anz, GxB_PLUS_FC32)) ;
    }
    else if (atype == GxB_FC64)
    { 
        OK1 (S, GxB_Matrix_build_FC64 (S, Si, Sj, Ax, anz, GxB_PLUS_FC64)) ;
    }
    else
    {
        ERROR ("unsupported type") ;
    }

    OK (GrB_Matrix_free (&A_copy)) ;
    OK (GrB_Matrix_free (&A_copy2)) ;

    //--------------------------------------------------------------------------
    // C<M> = S
    //--------------------------------------------------------------------------

    OK1 (C, GxB_Matrix_subassign (C, M, NULL,
        S, GrB_ALL, nrows, GrB_ALL, ncols, NULL)) ;

    //--------------------------------------------------------------------------
    // free shallow copies and temporary matrices
    //--------------------------------------------------------------------------

    // OK: Si, Sj, and Mj were allocated above from mxMalloc, never in a
    // GrB_Matrix
    gb_mxfree ((void **) (&Si)) ;
    gb_mxfree ((void **) (&Sj)) ;
    gb_mxfree ((void **) (&Mj)) ;
    OK (GrB_Matrix_free (&S)) ;
    OK (GrB_Matrix_free (&M)) ;
    OK (GrB_Matrix_free (&A_input)) ;

    //--------------------------------------------------------------------------
    // export the output matrix C as a GraphBLAS matrix
    //--------------------------------------------------------------------------

    pargout [0] = gb_export (&C, KIND_GRB) ;
    GB_WRAPUP ;
}