1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
//------------------------------------------------------------------------------
// gbmtimes: sparse matrix-matrix multiplication over the standard semiring
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// gbmtimes provides the mexFunction for computing the overloaded method C =
// mtimes (A,B) using the standard PLUS_TIMES_* semiring, and (mostly) the
// standard Octave/MATLAB rules for the sparsity of C.
// The standard rules state that if A or B are full, then C is always full.
// The rules here are slightly different: C is full for (sparse or bitmap)
// times full, or full times (sparse or bitmap), using this full. C is not
// full for hypersparse times full or full times hypersparse. Instead, it is
// left sparse (or whatever format GraphBLAS decides to use).
// This method also allows for the inputs A and/or B to be transposed, but
// this parameter is not passed by MATLAB to the mtimes method.
// Usage:
// C = gbmtimes (A, B)
// C = gbmtimes (A, B, desc)
#include "gb_interface.h"
#define USAGE "usage: C = gbmtimes (A, B, desc)"
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
gb_usage (nargin >= 2 && nargin <= 3 && nargout <= 2, USAGE) ;
//--------------------------------------------------------------------------
// find the arguments
//--------------------------------------------------------------------------
mxArray *Matrix [6], *String [2], *Cell [2] ;
base_enum_t base ;
kind_enum_t kind ;
GxB_Format_Value fmt ;
int nmatrices, nstrings, ncells, sparsity ;
GrB_Descriptor desc ;
gb_get_mxargs (nargin, pargin, USAGE, Matrix, &nmatrices, String, &nstrings,
Cell, &ncells, &desc, &base, &kind, &fmt, &sparsity) ;
CHECK_ERROR (nmatrices != 2 || nstrings > 0 || ncells > 0, USAGE) ;
// ensure the descriptor is present, and set GxB_SORT to true
if (desc == NULL)
{
OK (GrB_Descriptor_new (&desc)) ;
}
OK (GxB_Desc_set (desc, GxB_SORT, true)) ;
//--------------------------------------------------------------------------
// get the matrices
//--------------------------------------------------------------------------
GrB_Type atype, btype, ctype ;
GrB_Matrix C = NULL, A, B ;
A = gb_get_shallow (Matrix [0]) ;
B = gb_get_shallow (Matrix [1]) ;
OK (GxB_Matrix_type (&atype, A)) ;
OK (GxB_Matrix_type (&btype, B)) ;
//--------------------------------------------------------------------------
// get the operators
//--------------------------------------------------------------------------
GrB_BinaryOp plus = NULL, times = NULL ;
GrB_Monoid plus_monoid = NULL ;
GrB_Semiring plus_times = NULL ;
char semiring_string [8] ;
strcpy (semiring_string, "+.*") ;
plus_times = gb_string_to_semiring (semiring_string, atype, btype) ;
OK (GxB_Semiring_add (&plus_monoid, plus_times)) ;
OK (GxB_Semiring_multiply (×, plus_times)) ;
OK (GxB_Monoid_operator (&plus, plus_monoid)) ;
OK (GxB_BinaryOp_ztype (&ctype, plus)) ;
//--------------------------------------------------------------------------
// construct C
//--------------------------------------------------------------------------
// get the size of A and B
GrB_Index anrows, ancols, bnrows, bncols, cnrows, cncols ;
OK (GrB_Matrix_nrows (&anrows, A)) ;
OK (GrB_Matrix_ncols (&ancols, A)) ;
OK (GrB_Matrix_nrows (&bnrows, B)) ;
OK (GrB_Matrix_ncols (&bncols, B)) ;
// get the descriptor contents to determine if A and B are transposed
GrB_Desc_Value in0, in1 ;
OK (GxB_Desc_get (desc, GrB_INP0, &in0)) ;
OK (GxB_Desc_get (desc, GrB_INP1, &in1)) ;
bool A_transpose = (in0 == GrB_TRAN) ;
bool B_transpose = (in1 == GrB_TRAN) ;
// determine the size of C
GrB_Scalar scalar = NULL, zero = NULL ;
bool binop_bind1st = false ;
if (anrows == 1 && ancols == 1)
{
// C = alpha * B
binop_bind1st = true ;
cnrows = (B_transpose) ? bncols : bnrows ;
cncols = (B_transpose) ? bnrows : bncols ;
scalar = (GrB_Scalar) A ;
}
else if (bnrows == 1 && bncols == 1)
{
// C = A * beta
binop_bind1st = false ;
cnrows = (A_transpose) ? ancols : anrows ;
cncols = (A_transpose) ? anrows : ancols ;
scalar = (GrB_Scalar) B ;
}
else
{
// C = A * B where A and B are both matrices or vectors
cnrows = (A_transpose) ? ancols : anrows ;
cncols = (B_transpose) ? bnrows : bncols ;
}
// create the matrix C and set its format and sparsity
fmt = gb_get_format (cnrows, cncols, A, B, fmt) ;
sparsity = gb_get_sparsity (A, B, sparsity) ;
C = gb_new (ctype, cnrows, cncols, fmt, sparsity) ;
//--------------------------------------------------------------------------
// compute C = A*B
//--------------------------------------------------------------------------
if (scalar != NULL)
{
//----------------------------------------------------------------------
// C = alpha * B or C = A * beta
//----------------------------------------------------------------------
GrB_Index nvals ;
OK (GrB_Scalar_nvals (&nvals, scalar)) ;
if (nvals == 0)
{
// zero = (ctype) 0
OK (GrB_Scalar_new (&zero, ctype)) ;
OK (GrB_Scalar_setElement_FP64 (zero, 0)) ;
scalar = zero ;
}
if (binop_bind1st)
{
// C = alpha * B
OK1 (C, GrB_Matrix_apply_BinaryOp1st_Scalar (C, NULL, NULL, times,
scalar, B, desc)) ;
}
else
{
// C = A * beta
OK1 (C, GrB_Matrix_apply_BinaryOp2nd_Scalar (C, NULL, NULL, times,
A, scalar, desc)) ;
}
}
else
{
//----------------------------------------------------------------------
// C = A*B, overriding the sparsity of C for sparse*full and full*sparse
//----------------------------------------------------------------------
int A_sparsity, B_sparsity ;
OK (GxB_Matrix_Option_get (A, GxB_SPARSITY_STATUS, &A_sparsity)) ;
OK (GxB_Matrix_Option_get (B, GxB_SPARSITY_STATUS, &B_sparsity)) ;
bool A_full = (A_sparsity == GxB_FULL) ;
bool A_sparse = (A_sparsity == GxB_BITMAP || A_sparsity == GxB_SPARSE) ;
bool B_full = (B_sparsity == GxB_FULL) ;
bool B_sparse = (B_sparsity == GxB_BITMAP || B_sparsity == GxB_SPARSE) ;
if ((A_full && B_sparse) || (A_sparse && B_full))
{
//------------------------------------------------------------------
// sparse-times-full or full-times-sparse
//------------------------------------------------------------------
// ensure C can be held as a full matrix
sparsity = sparsity | GxB_FULL ;
OK (GxB_Matrix_Option_set (C, GxB_SPARSITY_CONTROL, sparsity)) ;
// C = 0
// zero = (ctype) 0
OK (GrB_Scalar_new (&zero, ctype)) ;
OK (GrB_Scalar_setElement_FP64 (zero, 0)) ;
OK (GrB_Matrix_assign_Scalar (C, NULL, NULL, zero, GrB_ALL, cnrows,
GrB_ALL, cncols, NULL)) ;
// C += A*B
OK1 (C, GrB_mxm (C, NULL, plus, plus_times, A, B, desc)) ;
}
else
{
//------------------------------------------------------------------
// C = A*B for everything else
//------------------------------------------------------------------
// If A and/or B are hypersparse, then C is not computed as full,
// since it would likely be too large. Instead, it is computed
// as sparse.
OK1 (C, GrB_mxm (C, NULL, NULL, plus_times, A, B, desc)) ;
}
}
//--------------------------------------------------------------------------
// free shallow copies
//--------------------------------------------------------------------------
OK (GrB_Matrix_free (&A)) ;
OK (GrB_Matrix_free (&B)) ;
OK (GrB_Scalar_free (&zero)) ;
OK (GrB_Descriptor_free (&desc)) ;
//--------------------------------------------------------------------------
// export the output matrix C
//--------------------------------------------------------------------------
pargout [0] = gb_export (&C, kind) ;
pargout [1] = mxCreateDoubleScalar (kind) ;
GB_WRAPUP ;
}
|