1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
//------------------------------------------------------------------------------
// gbreduce: reduce a sparse matrix to a scalar
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// gbreduce is an interface to GrB_Matrix_reduce_Monoid_Scalar.
// Usage:
// cout = gbreduce (op, A)
// cout = gbreduce (op, A, desc)
// cout = gbreduce (cin, accum, op, A, desc)
// If cin is not present then it is implicitly a 1-by-1 matrix with no entries.
#include "gb_interface.h"
#define USAGE "usage: C = GrB.reduce (cin, accum, op, A, desc)"
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
gb_usage (nargin >= 2 && nargin <= 5 && nargout <= 2, USAGE) ;
//--------------------------------------------------------------------------
// find the arguments
//--------------------------------------------------------------------------
mxArray *Matrix [6], *String [2], *Cell [2] ;
base_enum_t base ;
kind_enum_t kind ;
GxB_Format_Value fmt ;
int nmatrices, nstrings, ncells, sparsity ;
GrB_Descriptor desc ;
gb_get_mxargs (nargin, pargin, USAGE, Matrix, &nmatrices, String, &nstrings,
Cell, &ncells, &desc, &base, &kind, &fmt, &sparsity) ;
CHECK_ERROR (nmatrices < 1 || nmatrices > 2 || nstrings < 1 || ncells > 0,
USAGE) ;
//--------------------------------------------------------------------------
// get the matrices
//--------------------------------------------------------------------------
GrB_Type atype, ctype = NULL ;
GrB_Matrix C = NULL, A ;
if (nmatrices == 1)
{
A = gb_get_shallow (Matrix [0]) ;
}
else // if (nmatrices == 2)
{
C = gb_get_deep (Matrix [0]) ;
A = gb_get_shallow (Matrix [1]) ;
}
OK (GxB_Matrix_type (&atype, A)) ;
if (C != NULL)
{
OK (GxB_Matrix_type (&ctype, C)) ;
}
//--------------------------------------------------------------------------
// get the operators
//--------------------------------------------------------------------------
GrB_BinaryOp accum = NULL ;
GrB_Monoid monoid ;
if (nstrings == 1)
{
monoid = gb_mxstring_to_monoid (String [0], atype) ;
}
else
{
// if accum appears, then Cin must also appear
CHECK_ERROR (C == NULL, USAGE) ;
accum = gb_mxstring_to_binop (String [0], ctype, ctype) ;
monoid = gb_mxstring_to_monoid (String [1], atype) ;
}
//--------------------------------------------------------------------------
// construct C if not present on input
//--------------------------------------------------------------------------
// If C is NULL, then it is not present on input.
// Construct C of the right size and type.
if (C == NULL)
{
// use the ztype of the monoid as the type of C
GrB_BinaryOp binop ;
OK (GxB_Monoid_operator (&binop, monoid)) ;
OK (GxB_BinaryOp_ztype (&ctype, binop)) ;
fmt = gb_get_format (1, 1, A, NULL, fmt) ;
sparsity = gb_get_sparsity (A, NULL, sparsity) ;
C = gb_new (ctype, 1, 1, fmt, sparsity) ;
}
//--------------------------------------------------------------------------
// ensure C is 1-by-1
//--------------------------------------------------------------------------
GrB_Index cnrows, cncols ;
OK (GrB_Matrix_nrows (&cnrows, C)) ;
OK (GrB_Matrix_ncols (&cncols, C)) ;
if (cnrows != 1 || cncols != 1)
{
ERROR ("cin must be a scalar") ;
}
//--------------------------------------------------------------------------
// compute C += reduce(A)
//--------------------------------------------------------------------------
OK (GrB_Matrix_reduce_Monoid_Scalar ((GrB_Scalar) C, accum, monoid, A, desc)) ;
//--------------------------------------------------------------------------
// free shallow copies
//--------------------------------------------------------------------------
OK (GrB_Matrix_free (&A)) ;
OK (GrB_Descriptor_free (&desc)) ;
//--------------------------------------------------------------------------
// export the output matrix C
//--------------------------------------------------------------------------
pargout [0] = gb_export (&C, kind) ;
pargout [1] = mxCreateDoubleScalar (kind) ;
GB_WRAPUP ;
}
|