1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
//------------------------------------------------------------------------------
// gbselect: select entries from a GraphBLAS matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// gbselect is an interface to GrB_Matrix_select and GxB_Matrix_select.
// Usage:
// C = gbselect (op, A)
// C = gbselect (op, A, desc)
// C = gbselect (op, A, b, desc)
// C = gbselect (Cin, accum, op, A, desc)
// C = gbselect (Cin, accum, op, A, b, desc)
// C = gbselect (Cin, M, op, A, desc)
// C = gbselect (Cin, M, op, A, b, desc)
// C = gbselect (Cin, M, accum, op, A, desc)
// C = gbselect (Cin, M, accum, op, A, b, desc)
// If Cin is not present then it is implicitly a matrix with no entries, of the
// right size (which depends on A, and the descriptor). The type of Cin, if
// not present, is determined by the ztype of the accum, if present, or
// otherwise it has the same time as A.
// If op is '==' or '~=' and b is a NaN, and A has type GrB_FP32, GrB_FP64,
// GxB_FC32, or GxB_FC64, then a user-defined operator is used instead of
// GxB_EQ_THUNK, GxB_NE_THUNK, GrB_VALUEEQ* or GrB_VALUENE*.
// The 'tril', 'triu', 'diag', 'offdiag', and 2-input operators all require
// the b scalar. The b scalar must not appear for the '*0' operators.
#include "gb_interface.h"
#define USAGE "usage: C = GrB.select (Cin, M, accum, op, A, b, desc)"
//------------------------------------------------------------------------------
// nan functions for GrB_IndexUnaryOp operators
//------------------------------------------------------------------------------
void gb_isnan32 (bool *z, const float *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = (isnan (*aij)) ;
}
void gb_isnan64 (bool *z, const double *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = (isnan (*aij)) ;
}
void gb_isnotnan32 (bool *z, const float *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = (!isnan (*aij)) ;
}
void gb_isnotnan64 (bool *z, const double *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = (!isnan (*aij)) ;
}
void gb_isnanfc32 (bool *z, const GxB_FC32_t *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = GB_cisnanf (*aij) ;
}
void gb_isnanfc64 (bool *z, const GxB_FC64_t *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = GB_cisnan (*aij) ;
}
void gb_isnotnanfc32 (bool *z, const GxB_FC32_t *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = !GB_cisnanf (*aij) ;
}
void gb_isnotnanfc64 (bool *z, const GxB_FC64_t *aij,
int64_t i, int64_t j, const void *thunk)
{
(*z) = !GB_cisnan (*aij) ;
}
//------------------------------------------------------------------------------
// gbselect mexFunction
//------------------------------------------------------------------------------
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
gb_usage (nargin >= 2 && nargin <= 7 && nargout <= 2, USAGE) ;
//--------------------------------------------------------------------------
// find the arguments
//--------------------------------------------------------------------------
mxArray *Matrix [6], *String [2], *Cell [2] ;
base_enum_t base ;
kind_enum_t kind ;
GxB_Format_Value fmt ;
int nmatrices, nstrings, ncells, sparsity ;
GrB_Descriptor desc ;
gb_get_mxargs (nargin, pargin, USAGE, Matrix, &nmatrices, String, &nstrings,
Cell, &ncells, &desc, &base, &kind, &fmt, &sparsity) ;
CHECK_ERROR (nmatrices < 1 || nmatrices > 4 || nstrings < 1 || ncells > 0,
USAGE) ;
//--------------------------------------------------------------------------
// get the select operator; determine the type and ithunk later
//--------------------------------------------------------------------------
int64_t ithunk = 0 ;
GxB_SelectOp selop = NULL ;
GrB_IndexUnaryOp idxunop = NULL ;
bool thunk_required = false ;
bool op_is_positional = false ;
gb_mxstring_to_selectop (&idxunop, &selop, &thunk_required,
&op_is_positional, &ithunk, String [nstrings-1], NULL) ;
//--------------------------------------------------------------------------
// get the matrices
//--------------------------------------------------------------------------
GrB_Type atype, ctype = NULL ;
GrB_Matrix C = NULL, M = NULL, A, b = NULL ;
if (thunk_required)
{
if (nmatrices == 1)
{
ERROR ("select operator input is missing") ;
}
else if (nmatrices == 2)
{
A = gb_get_shallow (Matrix [0]) ;
b = gb_get_shallow (Matrix [1]) ;
}
else if (nmatrices == 3)
{
C = gb_get_deep (Matrix [0]) ;
A = gb_get_shallow (Matrix [1]) ;
b = gb_get_shallow (Matrix [2]) ;
}
else // if (nmatrices == 4)
{
C = gb_get_deep (Matrix [0]) ;
M = gb_get_shallow (Matrix [1]) ;
A = gb_get_shallow (Matrix [2]) ;
b = gb_get_shallow (Matrix [3]) ;
}
}
else
{
if (nmatrices == 1)
{
A = gb_get_shallow (Matrix [0]) ;
}
else if (nmatrices == 2)
{
C = gb_get_deep (Matrix [0]) ;
A = gb_get_shallow (Matrix [1]) ;
}
else if (nmatrices == 3)
{
C = gb_get_deep (Matrix [0]) ;
M = gb_get_shallow (Matrix [1]) ;
A = gb_get_shallow (Matrix [2]) ;
}
else // if (nmatrices == 4)
{
ERROR (USAGE) ;
}
}
OK (GxB_Matrix_type (&atype, A)) ;
if (C != NULL)
{
OK (GxB_Matrix_type (&ctype, C)) ;
}
//--------------------------------------------------------------------------
// finalize the select operator and ithunk
//--------------------------------------------------------------------------
ithunk = 0 ;
GrB_Type btype = NULL ;
if (b != NULL)
{
OK (GxB_Matrix_type (&btype, b)) ;
if (op_is_positional)
{
// get ithunk from the b scalar
OK0 (GrB_Matrix_extractElement_INT64 (&ithunk, b, 0, 0)) ;
}
}
gb_mxstring_to_selectop (&idxunop, &selop, &thunk_required,
&op_is_positional, &ithunk, String [nstrings-1], atype) ;
//--------------------------------------------------------------------------
// get the accum operator
//--------------------------------------------------------------------------
GrB_BinaryOp accum = NULL ;
if (nstrings > 1)
{
// if accum appears, then Cin must also appear
CHECK_ERROR (C == NULL, USAGE) ;
accum = gb_mxstring_to_binop (String [0], ctype, ctype) ;
}
//--------------------------------------------------------------------------
// construct C if not present on input
//--------------------------------------------------------------------------
// If C is NULL, then it is not present on input.
// Construct C of the right size and type.
if (C == NULL)
{
// get the descriptor contents to determine if A is transposed
GrB_Desc_Value in0 ;
OK (GxB_Desc_get (desc, GrB_INP0, &in0)) ;
bool A_transpose = (in0 == GrB_TRAN) ;
// get the size of A
GrB_Index anrows, ancols ;
OK (GrB_Matrix_nrows (&anrows, A)) ;
OK (GrB_Matrix_ncols (&ancols, A)) ;
// determine the size of C
GrB_Index cnrows = (A_transpose) ? ancols : anrows ;
GrB_Index cncols = (A_transpose) ? anrows : ancols ;
// C has the same type as A
OK (GxB_Matrix_type (&ctype, A)) ;
// create the matrix C and set its format and sparsity
fmt = gb_get_format (cnrows, cncols, A, NULL, fmt) ;
sparsity = gb_get_sparsity (A, NULL, sparsity) ;
C = gb_new (ctype, cnrows, cncols, fmt, sparsity) ;
}
//--------------------------------------------------------------------------
// handle the NaN case
//--------------------------------------------------------------------------
GrB_IndexUnaryOp nan_test = NULL ;
GrB_Matrix b2 = b ;
GrB_Matrix b3 = NULL, b4 = NULL ;
if (op_is_positional)
{
// construct a new int64 thunk scalar for positional ops
OK (GrB_Matrix_new (&b3, GrB_INT64, 1, 1)) ;
OK (GrB_Matrix_setElement_INT64 (b3, ithunk, 0, 0)) ;
b2 = b3 ;
}
else if (b != NULL)
{
// check if b is NaN
bool b_is_nan = false ;
if (btype == GrB_FP32)
{
float b_value = 0 ;
OK0 (GrB_Matrix_extractElement_FP32 (&b_value, b, 0, 0)) ;
b_is_nan = isnan (b_value) ;
}
else if (btype == GrB_FP64)
{
double b_value = 0 ;
OK0 (GrB_Matrix_extractElement_FP64 (&b_value, b, 0, 0)) ;
b_is_nan = isnan (b_value) ;
}
else if (btype == GxB_FC32)
{
GxB_FC32_t b_value = GxB_CMPLXF (0, 0) ;
OK0 (GxB_Matrix_extractElement_FC32 (&b_value, b, 0, 0)) ;
b_is_nan = GB_cisnanf (b_value) ;
}
else if (btype == GxB_FC64)
{
GxB_FC64_t b_value = GxB_CMPLX (0, 0) ;
OK0 (GxB_Matrix_extractElement_FC64 (&b_value, b, 0, 0)) ;
b_is_nan = GB_cisnan (b_value) ;
}
if (b_is_nan)
{
// b is NaN; create a new nan_test operator if it should be used
// instead of the built-in GxB_EQ_THUNK, GxB_NE_THUNK, GrB_VALUEEQ*
// or GrB_VALUENE* operators.
if (idxunop == GrB_VALUEEQ_FP32 ||
selop == GxB_EQ_THUNK && atype == GrB_FP32)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnan32,
GrB_BOOL, GrB_FP32, GrB_FP32)) ;
}
else if (idxunop == GrB_VALUEEQ_FP64 ||
selop == GxB_EQ_THUNK && atype == GrB_FP64)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnan64,
GrB_BOOL, GrB_FP64, GrB_FP64)) ;
}
else if (idxunop == GxB_VALUEEQ_FC32 ||
selop == GxB_EQ_THUNK && atype == GxB_FC32)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnanfc32,
GrB_BOOL, GxB_FC32, GxB_FC32)) ;
}
else if (idxunop == GxB_VALUEEQ_FC64 ||
selop == GxB_EQ_THUNK && atype == GxB_FC64)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnanfc64,
GrB_BOOL, GxB_FC64, GxB_FC64)) ;
}
else if (idxunop == GrB_VALUENE_FP32 ||
selop == GxB_NE_THUNK && atype == GrB_FP32)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnotnan32,
GrB_BOOL, GrB_FP32, GrB_FP32)) ;
}
else if (idxunop == GrB_VALUENE_FP64 ||
selop == GxB_NE_THUNK && atype == GrB_FP64)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnotnan64,
GrB_BOOL, GrB_FP64, GrB_FP64)) ;
}
else if (idxunop == GxB_VALUENE_FC32 ||
selop == GxB_NE_THUNK && atype == GxB_FC32)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnotnanfc32,
GrB_BOOL, GxB_FC32, GxB_FC32)) ;
}
else if (idxunop == GxB_VALUENE_FC64 ||
selop == GxB_NE_THUNK && atype == GxB_FC64)
{
OK (GrB_IndexUnaryOp_new (&nan_test,
(GxB_index_unary_function) gb_isnotnanfc64,
GrB_BOOL, GxB_FC64, GxB_FC64)) ;
}
}
if (nan_test != NULL)
{
// use the new operator instead of the built-in one
selop = NULL ;
idxunop = nan_test ;
}
}
//--------------------------------------------------------------------------
// compute C<M> += select (A, b2)
//--------------------------------------------------------------------------
if (selop != NULL)
{
OK1 (C, GxB_Matrix_select (C, M, accum, selop, A,
(GrB_Scalar) b2, desc)) ;
}
else
{
// typecast the b2 scalar to the idxunop->ytype
GrB_Type ytype ;
char ytype_name [GxB_MAX_NAME_LEN] ;
OK (GxB_IndexUnaryOp_ytype_name (ytype_name, idxunop)) ;
OK (GxB_Type_from_name (&ytype, ytype_name)) ;
OK (GrB_Matrix_new (&b4, ytype, 1, 1)) ;
OK (GrB_Matrix_assign (b4, NULL, NULL, b2, GrB_ALL, 1, GrB_ALL, 1,
NULL)) ;
OK1 (C, GrB_Matrix_select_Scalar (C, M, accum, idxunop, A,
(GrB_Scalar) b4, desc)) ;
}
//--------------------------------------------------------------------------
// free shallow copies
//--------------------------------------------------------------------------
OK (GrB_Matrix_free (&M)) ;
OK (GrB_Matrix_free (&A)) ;
OK (GrB_Matrix_free (&b)) ;
OK (GrB_Matrix_free (&b3)) ;
OK (GrB_Matrix_free (&b4)) ;
OK (GrB_Descriptor_free (&desc)) ;
OK (GrB_IndexUnaryOp_free (&nan_test)) ;
//--------------------------------------------------------------------------
// export the output matrix C
//--------------------------------------------------------------------------
pargout [0] = gb_export (&C, kind) ;
pargout [1] = mxCreateDoubleScalar (kind) ;
GB_WRAPUP ;
}
|