1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
function gbtest105
%GBTEST105 test logical assignment with iso matrices
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
rng ('default') ;
types = gbtest_types ;
X = magic (5) ;
Y = 10 * rand (5) ;
M = logical (rand (5) > 0.5) ;
for k = 1:length (types)
type = types {k} ;
if (isequal (type, 'logical'))
A = (mod (X,2) == 0) ;
C = (Y > 5) ;
elseif (isequal (type, 'single complex'))
A = cast (X, 'single') + 1i * rand (5, 'single') ;
C = cast (Y, 'single') + 1i * rand (5, 'single') ;
elseif (isequal (type, 'double complex'))
A = cast (X, 'double') + 1i * rand (5) ;
C = cast (Y, 'double') + 1i * rand (5) ;
else
A = cast (X, type) ;
C = cast (Y, type) ;
end
% pure MATLAB
C1 = C ;
C1 (M) = A (M) ;
% pure GraphBLAS
G1 = GrB (C) ;
H = GrB (A) ;
G1 (M) = H (M) ;
assert (isequal (G1, C1)) ;
% now make the A and H matrices iso
if (gb_contains (type, 'complex'))
A (A ~= 0) = 1i ;
H (H ~= 0) = 1i ;
H = GrB.prune (H) ;
H = spones (H) ;
H = H * 1i ;
H = GrB (H, type) ;
else
A (A ~= 0) = 1 ;
H (H ~= 0) = 1 ;
H = GrB.prune (H) ;
H = spones (H) ;
end
assert (isequal (full (H), A)) ;
% pure MATLAB
C1 = C ;
C1 (M) = A (M) ;
% pure GraphBLAS
G1 = GrB (C) ;
G1 (M) = H (M) ;
G1 = GrB.prune (G1) ;
assert (isequal (full (G1), C1)) ;
end
fprintf ('\ngbtest105: all tests passed\n') ;
|