1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
function gbtest119
%GBTEST119 test GrB.eunion
%
% C = GrB.eunion (op, A, alpha, B, beta)
% C = GrB.eunion (op, A, alpha, B, beta, desc)
% C = GrB.eunion (C, accum, op, A, alpha, B, beta, desc)
% C = GrB.eunion (C, M, op, A, alpha, B, beta, desc)
% C = GrB.eunion (C, M, accum, op, A, alpha, B, beta, desc)
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
rng ('default')
C = GrB.random (9, 9, 0.5) ;
M = GrB.random (9, 9, 0.5, 'range', logical ([false true])) ;
accum = '+' ;
A = GrB.random (9, 9, 0.5) ;
B = GrB.random (9, 9, 0.5) ;
desc = struct ;
op = '-' ;
alpha = 0 ;
beta = 0 ;
c = double (C) ;
m = logical (M) ;
a = double (A) ;
b = double (B) ;
%----------------------------------------------------------------------
% C = GrB.eunion (op, A, alpha, B, beta)
%----------------------------------------------------------------------
% 4 matrices: A, alpha, B, beta
% 1 string: op
C2 = A-B ;
c2 = a-b ;
assert (isequal (c2, C2)) ;
C1 = GrB.eunion (op, A, alpha, B, beta) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (A, alpha, op, B, beta) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (A, alpha, B, beta, op) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (op, a, alpha, b, beta) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (a, alpha, op, b, beta) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (a, alpha, b, beta, op) ; assert (isequal (C1, C2)) ;
%----------------------------------------------------------------------
% C = GrB.eunion (op, A, alpha, B, beta, desc)
%----------------------------------------------------------------------
% 4 matrices: A, alpha, B, beta
% 1 string: op
C2 = A-B ;
c2 = a-b ;
assert (isequal (c2, C2)) ;
C1 = GrB.eunion (op, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (A, alpha, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (A, alpha, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (op, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (a, alpha, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
%----------------------------------------------------------------------
% C = GrB.eunion (C, accum, op, A, alpha, B, beta, desc)
%----------------------------------------------------------------------
% 5 matrices: C, A, alpha, B, beta
% 2 strings: accum, op
% C = accum (C, op (A,B)) ;
C2 = C + (A-B) ;
c2 = c + (a-b) ;
assert (isequal (c2, C2)) ;
C1 = GrB.eunion (C, accum, op, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, accum, A, alpha, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, accum, A, alpha, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, A, alpha, accum, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, A, alpha, accum, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, A, alpha, B, beta, accum, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, op, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, a, alpha, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, a, alpha, accum, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, a, alpha, accum, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, a, alpha, b, beta, accum, op, desc) ; assert (isequal (C1, C2)) ;
%----------------------------------------------------------------------
% C = GrB.eunion (C, M, op, A, alpha, B, beta, desc)
%----------------------------------------------------------------------
% 6 matrices: C, M, A, alpha, B, beta
% 1 string: op
% C<M> = op (A,B)
T = (A-B) ;
C2 = C ;
C2 (M) = T (M) ;
t = (a-b) ;
c2 = c ;
c2 (m) = t (m) ;
assert (isequal (c2, C2)) ;
C1 = GrB.eunion (op, C, M, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, op, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, A, alpha, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, A, alpha, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (op, c, m, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, op, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, a, alpha, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
%----------------------------------------------------------------------
% C = GrB.eunion (C, M, accum, op, A, alpha, B, beta, desc)
%----------------------------------------------------------------------
% 6 matrices: C, M, A, alpha, B, beta
% 2 string: accum, op
% C<M> = accum (C, A*B) ;
T = C + (A-B) ;
C2 = C ;
C2 (M) = T (M) ;
t = c + (a-b) ;
c2 = c ;
c2 (m) = t (m) ;
assert (isequal (c2, C2)) ;
C1 = GrB.eunion (C, M, accum, op, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, accum, A, alpha, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, accum, A, alpha, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, accum, op, M, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, accum, M, op, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, accum, M, A, alpha, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, accum, M, A, alpha, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, A, alpha, B, beta, accum, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, A, alpha, accum, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (C, M, A, alpha, accum, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, op, C, M, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, C, op, M, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, C, M, op, A, alpha, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, C, M, A, alpha, op, B, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, C, M, A, alpha, B, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, accum, op, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, accum, a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, accum, a, alpha, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, op, m, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, m, op, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, m, a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, accum, m, a, alpha, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, a, alpha, b, beta, accum, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, a, alpha, accum, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (c, m, a, alpha, accum, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, op, c, m, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, c, op, m, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, c, m, op, a, alpha, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, c, m, a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
C1 = GrB.eunion (accum, c, m, a, alpha, b, beta, op, desc) ; assert (isequal (C1, C2)) ;
beta = GrB (beta) ;
alpha = GrB (alpha) ;
C1 = GrB.eunion (accum, c, m, a, alpha, op, b, beta, desc) ; assert (isequal (C1, C2)) ;
fprintf ('gbtest119: all tests passed\n') ;
|