1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
function gbtest29
%GBTEST29 test subsref and subsasgn with logical indexing
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
rng ('default') ;
have_octave = gb_octave ;
types = gbtest_types ;
for k = 1:length (types)
type = types {k} ;
C = gbtest_cast (magic (3), type) ;
M = logical (C > 3) ;
A = gbtest_cast (2 * magic (3), type) ;
C (M) = A (M) ;
G = GrB (magic (3), type) ;
G (M) = A (M) ;
assert (gbtest_err (G, C) == 0) ;
if (isreal (C) && isreal (G))
assert (gbtest_eq (G, C)) ;
else
assert (gbtest_eq (real (G), real (C))) ;
assert (gbtest_eq (imag (G), imag (C))) ;
end
C0 = GrB.random (3, 3, inf, 'range', GrB ([0 1], type)) ;
M = true (3) ;
A = GrB (1:9, type) ;
C1 = C0 ;
C1 (M) = A ;
C2 = double (C0) ;
C2 (M) = double (A) ;
assert (isequal (double (C1), C2)) ;
A = GrB (A, 'by row') ;
C1 = C0 ;
C1 (M) = A ;
assert (isequal (double (C1), C2)) ;
A = GrB (A', 'by row') ;
C1 = C0 ;
C1 (M) = A ;
assert (isequal (double (C1), C2)) ;
end
for trial = 1:40
fprintf ('.')
for m = 0:5
for n = 0:5
A = sprand (m, n, 0.5) ;
C = sprand (m, n, 0.5) ;
M = sprand (m, n, 0.5) ~= 0 ;
G = GrB (A) ;
x1 = A (M) ; %#ok<*NASGU>
x2 = G (M) ;
% With built-in vectors, if A and M are row vectors then A(M)
% is also a row vector.
C1 = C ;
C1 (M) = A (M) ;%#ok<*SPRIX> % C1(M) builtin, A(M) is built-in
C2 = GrB (C) ;
C2 (M) = A (M) ; % C2(M) is GrB, A(M) is built-in
C3 = GrB (C) ;
C3 (M) = G (M) ; % C3(M) is GrB, and G(M) is GrB
assert (gbtest_eq (C1, C2)) ;
assert (gbtest_eq (C1, C3)) ;
% using the built-in subsasgn
C4 = C ;
if (have_octave)
% Octave does not do the auto typecast.
C4 (M) = double (G (M)) ;
else
% This uses the built-in subsasgn, after typecasting G(M) from
% class GrB to class double, using GrB/double. MATLAB does the
% automatic typecasting of G(M), since it sees that GrB has a
% "double" method.
C4 (M) = G (M) ;
end
assert (gbtest_eq (C1, C4)) ;
% test assignment with A iso
G = spones (GrB (A)) ;
A = double (G) ;
C1 = C ;
C1 (M) = A (M) ;%#ok<*SPRIX> % C1(M) builtin, A(M) is built-in
C2 = GrB (C) ;
C2 (M) = G (M) ;
assert (gbtest_eq (C1, C2)) ;
% also try with a GrB mask matrix M
M = GrB (M) ;
C5 = GrB (C) ;
C5 (M) = G (M) ;
assert (gbtest_eq (C1, C5)) ;
% test scalar assigment with logical indexing
K = logical (M) ;
C1 (K) = pi ;
C2 (M) = pi ;
C3 (M) = GrB (pi) ;
if (have_octave)
% See above for the Octave vs MATLAB difference in casting.
C4 (K) = double (GrB (pi)) ;
else
C4 (K) = GrB (pi) ;
end
assert (gbtest_eq (C1, C4)) ;
C5 (M) = pi ;
assert (gbtest_eq (C1, C2)) ;
assert (gbtest_eq (C1, C3)) ;
assert (gbtest_eq (C1, C5)) ;
end
end
end
fprintf ('\ngbtest29: all tests passed\n') ;
|