File: gbtest81.m

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (172 lines) | stat: -rw-r--r-- 5,570 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function gbtest81
%GBTEST81 test complex operators

% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0

fprintf ('gbtest81: test complex operators\n') ;
rng ('default')
have_octave = gb_octave ;

% min and max for complex matrices are not supported in GraphBLAS:
% a = min (GrB (complex(1)), 1i, 1)  ;
% b = min (complex (1), 1i)  ;
% assert (isequal (a, complex (b))) ;
% a = max (GrB (complex (1)), -1i, 1)  ;
% b = max (complex (1), -1i)  ;
% assert (isequal (a, b)) ;

A = sparse (rand (2) + 1i * rand (2))  ;

C = GrB (A)    %#ok<NOPRT,NASGU>

B = sparse (rand (2) + 1i * rand (2))  ;

A = full (A) ;
B = full (B) ;

C1 = GrB (A) + GrB (B) ;
C2 = A+B ;

assert (isequal (C1,C2)) ;

E = rand (2) ;
F = rand (2) ;

C1 = complex (GrB (E), GrB (F)) ;
C2 = complex (E,F) ;
assert (isequal (C1,C2)) ;

[complex_binary, complex_unary] = gbtest_complex ;

A (2,1) = B (2,1) ;

% create some complex test matrices

for m = [1 5 10 ]
    for n = [ 1 5 10 ]

        for akind = 1:5
            fprintf ('.') ;
            switch (akind)
                case 1
                    A = complex (zeros (m,n), 0) ;
                case 2
                    A = complex (ones (m,n), 0) ;
                case 3
                    A = complex (-ones (m,n), ones(m,n)) ;
                case 4
                    x = full (sprand(m,n,0.3)) ;
                    y = full (sprand(m,n,0.3)) ;
                    A = complex (x,y) ;
                case 5
                    A = complex (rand (m,n), rand (m,n)) ;
            end

            % test unary ops with complex x
            for k = 1:length (complex_unary)
                op = complex_unary {k} ;
                C1 = GrB.apply (op, A) ;
                % try built-in methods
                switch (op)
                    case { 'minv' }
                        C2 = 1./A ;
                    case { 'one' }
                        C2 = complex (ones (m, n), 0) ;
                    otherwise
                        C2 = feval (op, A) ;
                end
                err = gbtest_err (C1, C2) ;
                if (~isreal (A) && ...
                    (isequal (op, 'expm1') || isequal (op, 'log1p')))
                    % log1p and expm1 are not accurate in GraphBLAS
                    % for the complex case
                    if (~have_octave)
                        % octave fails here, unsure why
                        assert (err < 1e-5)
                    end
                else
                    assert (err < 1e-13)
                end
            end

            for bkind = 1:6
                switch (bkind)
                    case 1
                        B = complex (zeros (m,n), 0) ;
                    case 2
                        B = complex (ones (m,n), 0) ;
                    case 3
                        B = complex (-ones (m,n), ones(m,n)) ;
                    case 4
                        x = full (sprand(m,n,0.3)) ;
                        y = full (sprand(m,n,0.3)) ;
                        B = complex (x,y) ;
                    case 5
                        B = complex (rand (m,n), rand (m,n)) ;
                    case 6
                        B = A ;
                end

                % test all but the last one, 'cmplex', which requires
                % x,y real
                for k = 1:length (complex_binary)
                    op = complex_binary {k} ;
                    if (isequal (op, 'cmplx'))
                        continue
                    end
                    C1 = GrB.emult (op, A, B) ;
                    % try built-in methods
                    switch (op)
                        case { '1st' }
                            C2 = A ;
                        case { '2nd', 'any' }
                            C2 = B ;
                        case { 'pair', 'oneb' }
                            C2 = complex (ones (m, n), 0) ;
                        case { '+' }
                            C2 = A+B ;
                        case { '-' }
                            C2 = A-B ;
                        case { 'rminus' }
                            C2 = B-A ;
                        case { '*' }
                            C2 = A .* B ;
                        case { '/' }
                            C2 = A ./ B ;
                        case { '\' }
                            C2 = A .\ B ;
                        case { 'iseq' }
                            C2 = complex (double (A == B), 0) ;
                        case { 'isne' }
                            C2 = complex (double (A ~= B), 0) ;
                        case { '==' }
                            C2 = A == B ;
                        case { '~=' }
                            C2 = A ~= B ;
                        case { 'pow' }
                            C2 = A .^ B ;
                        otherwise
                            error ('unknown') ;
                    end
                    if (have_octave && isequal (op, 'pow'))
                        % skip the error check for octave; it has
                        % different cases for NaNs
                    else
                        assert (gbtest_err (C1, C2) < 1e-12)
                    end
                end

                % test complex(A,B)
                C1 = GrB.emult ('cmplx', real (A), real (B)) ;
                C2 = complex (real (A), real (B)) ;
                assert (isequal (C1, C2)) 

            end
        end
    end
end

fprintf ('\ngbtest81: all tests passed\n') ;