File: GraphBLAS.h

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (12911 lines) | stat: -rw-r--r-- 603,009 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
//------------------------------------------------------------------------------
// GraphBLAS.h: definitions for the GraphBLAS package
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS is a complete implementation of the GraphBLAS
// standard, which defines a set of sparse matrix operations on an extended
// algebra of semirings, using an almost unlimited variety of operators and
// types.  When applied to sparse adjacency matrices, these algebraic
// operations are equivalent to computations on graphs.  GraphBLAS provides a
// powerful and expressive framework creating graph algorithms based on the
// elegant mathematics of sparse matrix operations on a semiring.

// This GraphBLAS.h file contains GraphBLAS definitions for user applications
// to #include.  A few functions and variables with the prefix GB_ need to be
// defined in this file and are thus technically visible to the user, but they
// must not be accessed in user code.  They are here only so that the ANSI C11
// _Generic feature can be used in the user-accessible polymorphic functions,
// or to implement a fast GxB_Iterator using macros.

// This implementation conforms to the GraphBLAS API Specification and also
// includes functions and features that are extensions to the spec, which are
// given names of the form GxB_* for functions, built-in objects, and macros,
// so it is clear which are in the spec and which are extensions.  Extensions
// with the name GxB_* are user-accessible in SuiteSparse:GraphBLAS but cannot
// be guaranteed to appear in all GraphBLAS implementations.

// Regarding "historical" functions and symbols:  when a GxB_* function or
// symbol is added to the C API Specification, the new GrB_* name should be
// used instead.  The old GxB_* name will be kept for historical reasons,
// documented here and in working order; it might no longer be mentioned in the
// user guide.  Historical functions and symbols would only be removed in the
// rare case that they cause a serious conflict with future methods.

#ifndef GRAPHBLAS_H
#define GRAPHBLAS_H

//==============================================================================
// include files required by GraphBLAS
//==============================================================================

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <inttypes.h>
#include <stddef.h>
#include <limits.h>
#include <math.h>
#include <stdarg.h>

//==============================================================================
// renaming for use in R2021a or later
//==============================================================================

#define GB_CAT2(x,y) x ## y
#define GB_EVAL2(x,y) GB_CAT2 (x,y)

#ifdef GBRENAME
    // All symbols must be renamed for the @GrB interface when using
    // R2021a and following, since those versions include an earlier
    // version of SuiteSparse:GraphBLAS.
    #define GB(x)   GB_EVAL2 (GM_, x)
    #define GRB(x)  GB_EVAL2 (GrM_, x)
    #define GXB(x)  GB_EVAL2 (GxM_, x)
    #define GrB GrM
    #define GxB GxM
    #include "GB_rename.h"
#else
    // Use the standard GraphBLAS prefix.
    #define GB(x)   GB_EVAL2 (GB_, x)
    #define GRB(x)  GB_EVAL2 (GrB_, x)
    #define GXB(x)  GB_EVAL2 (GxB_, x)
#endif

//==============================================================================
// compiler variations
//==============================================================================

// Exporting/importing symbols for Microsoft Visual Studio

#if ( _MSC_VER && !(__INTEL_COMPILER || __INTEL_CLANG_COMPILER) )
#ifdef GB_LIBRARY
// compiling SuiteSparse:GraphBLAS itself, exporting symbols to user apps
#define GB_PUBLIC extern __declspec ( dllexport )
#else
// compiling the user application, importing symbols from SuiteSparse:GraphBLAS
#define GB_PUBLIC extern __declspec ( dllimport )
#endif
#else
// for other compilers
#define GB_PUBLIC extern
#endif

// GraphBLAS requires an ANSI C11 compiler for its polymorphic functions (using
// the _Generic keyword), but it can be used in an C90 compiler if those
// functions are disabled.

// With ANSI C11 and later, _Generic keyword and polymorphic functions can be
// used.  Earlier versions of the language do not have this feature.

#ifdef __STDC_VERSION__
// ANSI C17: 201710L
// ANSI C11: 201112L
// ANSI C99: 199901L
// ANSI C95: 199409L
#define GxB_STDC_VERSION __STDC_VERSION__
#else
// assume ANSI C90 / C89
#define GxB_STDC_VERSION 199001L
#endif

//------------------------------------------------------------------------------
// definitions for complex types, and restrict keyword
//------------------------------------------------------------------------------

#undef GB_restrict

// See:
// https://www.drdobbs.com/complex-arithmetic-in-the-intersection-o/184401628#

#if defined ( __cplusplus )

    extern "C++"
    {
        // C++ complex types
        #include <cmath>
        #include <complex>
        #undef I
        typedef std::complex<float>  GxB_FC32_t ;
        typedef std::complex<double> GxB_FC64_t ;
    }

    #define GxB_CMPLXF(r,i) GxB_FC32_t(r,i)
    #define GxB_CMPLX(r,i)  GxB_FC64_t(r,i)
    #define GB_restrict

#elif ( _MSC_VER && !(__INTEL_COMPILER || __INTEL_CLANG_COMPILER) )

    // Microsoft Windows complex types
    #include <complex.h>
    #undef I
    typedef _Fcomplex GxB_FC32_t ;
    typedef _Dcomplex GxB_FC64_t ;

    #define GxB_CMPLXF(r,i) (_FCbuild (r,i))
    #define GxB_CMPLX(r,i)  ( _Cbuild (r,i))
    #define GB_restrict __restrict

#else

    // ANSI C11 complex types
    #include <complex.h>
    #undef I
    typedef float  complex GxB_FC32_t ;
    typedef double complex GxB_FC64_t ;

    #ifndef CMPLX
        // gcc 6.2 on the the Mac doesn't #define CMPLX
        #define GxB_CMPLX(r,i) \
        ((GxB_FC64_t)((double)(r)) + (GxB_FC64_t)((double)(i) * _Complex_I))
    #else
        // use the ANSI C11 CMPLX macro
        #define GxB_CMPLX(r,i) CMPLX (r,i)
    #endif

    #ifndef CMPLXF
        // gcc 6.2 on the the Mac doesn't #define CMPLXF
        #define GxB_CMPLXF(r,i) \
        ((GxB_FC32_t)((float)(r)) + (GxB_FC32_t)((float)(i) * _Complex_I))
    #else
        // use the ANSI C11 CMPLXF macro
        #define GxB_CMPLXF(r,i) CMPLXF (r,i)
    #endif

    // restrict keyword
    #if defined ( __NVCC__ )
        // NVIDIA nvcc
        #define GB_restrict __restrict__
    #elif GxB_STDC_VERSION >= 199901L
        // ANSI C99 or later
        #define GB_restrict restrict
    #else
        // ANSI C95 and earlier: no restrict keyword
        #define GB_restrict
    #endif

#endif

//==============================================================================
// version control
//==============================================================================

// There are two version numbers that user codes can check against with
// compile-time #if tests:  the version of this GraphBLAS implementation,
// and the version of the GraphBLAS specification it conforms to.  User code
// can use tests like this:
//
//      #if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)
//      ... use features in GraphBLAS specification 2.0.3 ...
//      #else
//      ... only use features in early specifications
//      #endif
//
//      #if GxB_IMPLEMENTATION > GxB_VERSION (1,4,0)
//      ... use features from version 1.4.0 of a GraphBLAS package
//      #endif

// X_GRAPHBLAS: names this particular implementation:
#define GxB_SUITESPARSE_GRAPHBLAS

// GxB_VERSION: a single integer for comparing spec and version levels
#define GxB_VERSION(major,minor,sub) \
    (((major)*1000ULL + (minor))*1000ULL + (sub))

// The version of this implementation, and the GraphBLAS API version:
#define GxB_IMPLEMENTATION_NAME "SuiteSparse:GraphBLAS"
#define GxB_IMPLEMENTATION_DATE "Dec 23, 2022"
#define GxB_IMPLEMENTATION_MAJOR 7
#define GxB_IMPLEMENTATION_MINOR 4
#define GxB_IMPLEMENTATION_SUB   0
#define GxB_SPEC_DATE "Nov 15, 2021"
#define GxB_SPEC_MAJOR 2
#define GxB_SPEC_MINOR 0
#define GxB_SPEC_SUB   0

// compile-time access to the C API Version number of this library.
#define GRB_VERSION     GxB_SPEC_MAJOR
#define GRB_SUBVERSION  GxB_SPEC_MINOR

#define GxB_IMPLEMENTATION \
        GxB_VERSION (GxB_IMPLEMENTATION_MAJOR, \
                     GxB_IMPLEMENTATION_MINOR, \
                     GxB_IMPLEMENTATION_SUB)

// The 'about' string the describes this particular implementation of GraphBLAS:
#define GxB_IMPLEMENTATION_ABOUT \
"SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved." \
"\nhttp://suitesparse.com  Dept of Computer Sci. & Eng, Texas A&M University.\n"

// The GraphBLAS license for this particular implementation of GraphBLAS:
#define GxB_IMPLEMENTATION_LICENSE \
"SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved." \
"\nLicensed under the Apache License, Version 2.0 (the \"License\"); you may\n"\
"not use SuiteSparse:GraphBLAS except in compliance with the License.  You\n"  \
"may obtain a copy of the License at\n\n"                                      \
"    http://www.apache.org/licenses/LICENSE-2.0\n\n"                           \
"Unless required by applicable law or agreed to in writing, software\n"        \
"distributed under the License is distributed on an \"AS IS\" BASIS,\n"        \
"WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"   \
"See the License for the specific language governing permissions and\n"        \
"limitations under the License.\n"

//------------------------------------------------------------------------------
// GraphBLAS C API version
//------------------------------------------------------------------------------

#define GxB_SPEC_VERSION GxB_VERSION(GxB_SPEC_MAJOR,GxB_SPEC_MINOR,GxB_SPEC_SUB)

// The 'spec' string describes the GraphBLAS spec:
#define GxB_SPEC_ABOUT \
"GraphBLAS C API, by Aydin Buluc, Timothy Mattson, Scott McMillan,\n"         \
"Jose' Moreira, Carl Yang, and Benjamin Brock.  Based on 'GraphBLAS\n"        \
"Mathematics by Jeremy Kepner.  See also 'Graph Algorithms in the Language\n" \
"of Linear Algebra,' edited by J. Kepner and J. Gilbert, SIAM, 2011.\n"

//==============================================================================
// GrB_Index: the GraphBLAS integer
//==============================================================================

// GrB_Index: row or column index, or matrix dimension.  This typedef is used
// for row and column indices, or matrix and vector dimensions.

typedef uint64_t GrB_Index ;

// GrB_INDEX_MAX is the largest permissible index value.  The largest valid
// matrix or vector dimension is GrB_INDEX_MAX+1, or 2^60 in SuiteSparse:GrB.
#define GrB_INDEX_MAX ((GrB_Index) (1ULL << 60) - 1)

// GxB_INDEX_MAX is historical; use GrB_INDEX_MAX+1 instead.  It differs by one
// from GrB_INDEX_MAX, since it defined the largest valid matrix or vector
// dimension.
#define GxB_INDEX_MAX ((GrB_Index) (1ULL << 60))

//==============================================================================
// GraphBLAS error and informational codes
//==============================================================================

// All GraphBLAS functions return a code that indicates if it was successful
// or not.  If more information is required, the GrB_error function can be
// called, which returns a string that provides more information on the last
// return value from GraphBLAS.

// The v1.3 C API did not specify the enum values, but they appear in v2.0.
// Changing them will require SuiteSparse:GraphBLAS to bump to v6.x.
// Error codes GrB_NOT_IMPLEMENTED and GrB_EMPTY_OBJECT are new to v2.0.

typedef enum
{

    GrB_SUCCESS = 0,            // all is well

    //--------------------------------------------------------------------------
    // informational codes, not an error:
    //--------------------------------------------------------------------------

    GrB_NO_VALUE = 1,           // A(i,j) requested but not there
    GxB_EXHAUSTED = 2,          // iterator is exhausted

    //--------------------------------------------------------------------------
    // errors:
    //--------------------------------------------------------------------------

    GrB_UNINITIALIZED_OBJECT = -1,  // object has not been initialized
    GrB_NULL_POINTER = -2,          // input pointer is NULL
    GrB_INVALID_VALUE = -3,         // generic error; some value is bad
    GrB_INVALID_INDEX = -4,         // row or column index is out of bounds
    GrB_DOMAIN_MISMATCH = -5,       // object domains are not compatible
    GrB_DIMENSION_MISMATCH = -6,    // matrix dimensions do not match
    GrB_OUTPUT_NOT_EMPTY = -7,      // output matrix already has values
    GrB_NOT_IMPLEMENTED = -8,       // method not implemented
    GrB_PANIC = -101,               // unknown error
    GrB_OUT_OF_MEMORY = -102,       // out of memory
    GrB_INSUFFICIENT_SPACE = -103,  // output array not large enough
    GrB_INVALID_OBJECT = -104,      // object is corrupted
    GrB_INDEX_OUT_OF_BOUNDS = -105, // row or col index out of bounds
    GrB_EMPTY_OBJECT = -106         // an object does not contain a value

}
GrB_Info ;

//==============================================================================
// GrB_init / GrB_finalize
//==============================================================================

// GrB_init must called before any other GraphBLAS operation.  GrB_finalize
// must be called as the last GraphBLAS operation.

// GrB_init defines the mode that GraphBLAS will use:  blocking or
// non-blocking.  With blocking mode, all operations finish before returning to
// the user application.  With non-blocking mode, operations can be left
// pending, and are computed only when needed.

// The extension GxB_init does the work of GrB_init, but it also defines the
// memory management functions that SuiteSparse:GraphBLAS will use internally.

typedef enum
{
    GrB_NONBLOCKING = 0,        // methods may return with pending computations
    GrB_BLOCKING = 1,           // no computations are ever left pending
//  DRAFT: in progress, do not use:
    GxB_NONBLOCKING_GPU = 2,    // non-blocking mode, allow use of GPU(s)
    GxB_BLOCKING_GPU = 3,       // blocking mode, allow use of GPU(s)
}
GrB_Mode ;

GB_PUBLIC
GrB_Info GrB_init           // start up GraphBLAS
(
    GrB_Mode mode           // blocking or non-blocking mode, no GPU
) ;

GB_PUBLIC
GrB_Info GxB_init           // start up GraphBLAS and also define malloc, etc
(
    GrB_Mode mode,          // blocking or non-blocking mode,
                            // with or without GPU
    // pointers to memory management functions
    void * (* user_malloc_function  ) (size_t),
    void * (* user_calloc_function  ) (size_t, size_t),
    void * (* user_realloc_function ) (void *, size_t),
    void   (* user_free_function    ) (void *)
) ;

GB_PUBLIC
GrB_Info GrB_finalize (void) ;     // finish GraphBLAS

//==============================================================================
// GrB_getVersion: GraphBLAS C API version
//==============================================================================

// GrB_getVersion provides a runtime access of the C API Version.
GB_PUBLIC
GrB_Info GrB_getVersion         // runtime access to C API version number
(
    unsigned int *version,      // returns GRB_VERSION
    unsigned int *subversion    // returns GRB_SUBVERSION
) ;

//==============================================================================
// GrB_Descriptor: the GraphBLAS descriptor
//==============================================================================

// The GrB_Descriptor is used to modify the behavior of GraphBLAS operations.
//
// GrB_OUTP: can be GxB_DEFAULT or GrB_REPLACE.  If GrB_REPLACE, then C is
//       cleared after taking part in the accum operation but before the mask.
//       In other words, C<Mask> = accum (C,T) is split into Z = accum(C,T) ;
//       C=0 ; C<Mask> = Z.
//
// GrB_MASK: can be GxB_DEFAULT, GrB_COMP, GrB_STRUCTURE, or set to both
//      GrB_COMP and GrB_STRUCTURE.  If GxB_DEFAULT, the mask is used
//      normally, where Mask(i,j)=1 means C(i,j) can be modified by C<Mask>=Z,
//      and Mask(i,j)=0 means it cannot be modified even if Z(i,j) is has been
//      computed and differs from C(i,j).  If GrB_COMP, this is the same as
//      taking the logical complement of the Mask.  If GrB_STRUCTURE is set,
//      the value of the mask is not considered, just its pattern.  The
//      GrB_COMP and GrB_STRUCTURE settings can be combined.
//
// GrB_INP0: can be GxB_DEFAULT or GrB_TRAN.  If GxB_DEFAULT, the first input
//      is used as-is.  If GrB_TRAN, it is transposed.  Only matrices are
//      transposed this way.  Vectors are never transposed via the
//      GrB_Descriptor.
//
// GrB_INP1: the same as GrB_INP0 but for the second input
//
// GxB_NTHREADS: the maximum number of threads to use in the current method.
//      If <= GxB_DEFAULT (which is zero), then the number of threads is
//      determined automatically.  This is the default value.
//
// GxB_CHUNK: an integer parameter that determines the number of threads to use
//      for a small problem.  If w is the work to be performed, and chunk is
//      the value of this parameter, then the # of threads is limited to floor
//      (w/chunk).  The default chunk is currently 64K, but this may change in
//      the future.  If chunk is set to <= GxB_DEFAULT (that is, zero), the
//      default is used.
//
// GxB_AxB_METHOD: this is a hint to SuiteSparse:GraphBLAS on which algorithm
//      it should use to compute C=A*B, in GrB_mxm, GrB_mxv, and GrB_vxm.
//      SuiteSparse:GraphBLAS has four different heuristics, and the default
//      method (GxB_DEFAULT) selects between them automatically.  The complete
//      rule is in the User Guide.  The brief discussion here assumes all
//      matrices are stored by column.  All methods compute the same result,
//      except that floating-point roundoff may differ when working on
//      floating-point data types.
//
//      GxB_AxB_SAXPY:  C(:,j)=A*B(:,j) is computed using a mix of Gustavson
//          and Hash methods.  Each task in the parallel computation makes its
//          own decision between these two methods, via a heuristic.
//
//      GxB_AxB_GUSTAVSON:  This is the same as GxB_AxB_SAXPY, except that
//          every task uses Gustavon's method, computing C(:,j)=A*B(:,j) via a
//          gather/scatter workspace of size equal to the number of rows of A.
//          Very good general-purpose method, but sometimes the workspace can
//          be too large when many threads are used.
//
//      GxB_AxB_HASH: This is the same as GxB_AxB_SAXPY, except that every
//          task uses the Hash method.  It is very good for hypersparse
//          matrices and uses very little workspace, and so it scales well to
//          many threads.
//
//      GxB_AxB_DOT: computes C(i,j) = A(:,i)'*B(:,j), for each entry C(i,j).
//          A very specialized method that works well only if the mask is
//          present, very sparse, and not complemented, or when C is a dense
//          vector or matrix, or when C is small.
//
// GxB_SORT: GrB_mxm and other methods may return a matrix in a 'jumbled'
//      state, with indices out of order.  The sort is left pending.  Some
//      methods can tolerate jumbled matrices on input, so this can be faster.
//      However, in some cases, it can be faster for GrB_mxm to sort its output
//      as it is computed.  With GxB_SORT set to GxB_DEFAULT, the sort is left
//      pending.  With GxB_SORT set to a nonzero value, GrB_mxm typically sorts
//      the resulting matrix C (but not always; this is just a hint).  If
//      GrB_init is called with GrB_BLOCKING mode, the sort will always be
//      done, and this setting has no effect.
//
// GxB_COMPRESSION: compression method for GxB_Matrix_serialize and
//      GxB_Vector_serialize.  The default is ZSTD (level 1).
//
// GxB_IMPORT:  GxB_FAST_IMPORT (faster, for trusted input data) or
//      GxB_SECURE_IMPORT (slower, for untrusted input data), for the
//      GxB*_pack* methods.

// The following are enumerated values in both the GrB_Desc_Field and the
// GxB_Option_Field for global options.  They are defined with the same integer
// value for both enums, so the user can use them for both.
#define GxB_NTHREADS 5
#define GxB_CHUNK 7

// GPU control (DRAFT: in progress, do not use)
#define GxB_GPU_CONTROL 21
#define GxB_GPU_CHUNK   22

typedef enum
{
    GrB_OUTP = 0,   // descriptor for output of a method
    GrB_MASK = 1,   // descriptor for the mask input of a method
    GrB_INP0 = 2,   // descriptor for the first input of a method
    GrB_INP1 = 3,   // descriptor for the second input of a method

    GxB_DESCRIPTOR_NTHREADS = GxB_NTHREADS,     // max number of threads to use.
                    // If <= GxB_DEFAULT, then GraphBLAS selects the number
                    // of threads automatically.

    GxB_DESCRIPTOR_CHUNK = GxB_CHUNK,   // chunk size for small problems.
                    // If <= GxB_DEFAULT, then the default is used.

    // GPU control (DRAFT: in progress, do not use)
    GxB_DESCRIPTOR_GPU_CONTROL = GxB_GPU_CONTROL,
    GxB_DESCRIPTOR_GPU_CHUNK   = GxB_GPU_CHUNK,

    GxB_AxB_METHOD = 1000,  // descriptor for selecting C=A*B algorithm
    GxB_SORT = 35,          // control sort in GrB_mxm
    GxB_COMPRESSION = 36,   // select compression for serialize
    GxB_IMPORT = 37,        // secure vs fast import
}
GrB_Desc_Field ;

typedef enum
{
    // for all GrB_Descriptor fields:
    GxB_DEFAULT = 0,    // default behavior of the method

    // for GrB_OUTP only:
    GrB_REPLACE = 1,    // clear the output before assigning new values to it

    // for GrB_MASK only:
    GrB_COMP = 2,       // use the structural complement of the input
    GrB_STRUCTURE = 4,  // use the only pattern of the mask, not its values

    // for GrB_INP0 and GrB_INP1 only:
    GrB_TRAN = 3,       // use the transpose of the input

    // for GxB_GPU_CONTROL only (DRAFT: in progress, do not use)
    GxB_GPU_ALWAYS  = 2001,
    GxB_GPU_NEVER   = 2002,

    // for GxB_AxB_METHOD only:
    GxB_AxB_GUSTAVSON = 1001,   // gather-scatter saxpy method
    GxB_AxB_DOT       = 1003,   // dot product
    GxB_AxB_HASH      = 1004,   // hash-based saxpy method
    GxB_AxB_SAXPY     = 1005,   // saxpy method (any kind)

    // for GxB_IMPORT only:
    GxB_SECURE_IMPORT = 502     // GxB*_pack* methods trust their input data
}
GrB_Desc_Value ;

// default for GxB pack is to trust the input data
#define GxB_FAST_IMPORT GxB_DEFAULT

typedef struct GB_Descriptor_opaque *GrB_Descriptor ;

GB_PUBLIC
GrB_Info GrB_Descriptor_new     // create a new descriptor
(
    GrB_Descriptor *descriptor  // handle of descriptor to create
) ;

GB_PUBLIC
GrB_Info GrB_Descriptor_set     // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    GrB_Desc_Field field,       // parameter to change
    GrB_Desc_Value val          // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Descriptor_get     // get a parameter from a descriptor
(
    GrB_Desc_Value *val,        // value of the parameter
    GrB_Descriptor desc,        // descriptor to query; NULL means defaults
    GrB_Desc_Field field        // parameter to query
) ;

GB_PUBLIC
GrB_Info GxB_Desc_set           // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    GrB_Desc_Field field,       // parameter to change
    ...                         // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Desc_set_INT32     // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    GrB_Desc_Field field,       // parameter to change
    int32_t value               // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Desc_set_FP64      // set a parameter in a descriptor
(
    GrB_Descriptor desc,        // descriptor to modify
    GrB_Desc_Field field,       // parameter to change
    double value                // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Desc_get           // get a parameter from a descriptor
(
    GrB_Descriptor desc,        // descriptor to query; NULL means defaults
    GrB_Desc_Field field,       // parameter to query
    ...                         // value of the parameter
) ;

GB_PUBLIC
GrB_Info GxB_Desc_get_INT32     // get a parameter from a descriptor
(
    GrB_Descriptor desc,        // descriptor to query; NULL is ok
    GrB_Desc_Field field,       // parameter to query
    int32_t *value              // return value of the descriptor
) ;

GB_PUBLIC
GrB_Info GxB_Desc_get_FP64      // get a parameter from a descriptor
(
    GrB_Descriptor desc,        // descriptor to query; NULL is ok
    GrB_Desc_Field field,       // parameter to query
    double *value               // return value of the descriptor
) ;

GB_PUBLIC
GrB_Info GrB_Descriptor_free    // free a descriptor
(
    GrB_Descriptor *descriptor  // handle of descriptor to free
) ;

// Predefined descriptors and their values:

GB_PUBLIC
GrB_Descriptor     // OUTP         MASK           MASK       INP0      INP1
                   //              structural     complement
                   // ===========  ============== ========== ========  ========

// GrB_NULL        // -            -              -          -         -
GrB_DESC_T1      , // -            -              -          -         GrB_TRAN
GrB_DESC_T0      , // -            -              -          GrB_TRAN  -
GrB_DESC_T0T1    , // -            -              -          GrB_TRAN  GrB_TRAN

GrB_DESC_C       , // -            -              GrB_COMP   -         -
GrB_DESC_CT1     , // -            -              GrB_COMP   -         GrB_TRAN
GrB_DESC_CT0     , // -            -              GrB_COMP   GrB_TRAN  -
GrB_DESC_CT0T1   , // -            -              GrB_COMP   GrB_TRAN  GrB_TRAN

GrB_DESC_S       , // -            GrB_STRUCTURE  -          -         -
GrB_DESC_ST1     , // -            GrB_STRUCTURE  -          -         GrB_TRAN
GrB_DESC_ST0     , // -            GrB_STRUCTURE  -          GrB_TRAN  -
GrB_DESC_ST0T1   , // -            GrB_STRUCTURE  -          GrB_TRAN  GrB_TRAN

GrB_DESC_SC      , // -            GrB_STRUCTURE  GrB_COMP   -         -
GrB_DESC_SCT1    , // -            GrB_STRUCTURE  GrB_COMP   -         GrB_TRAN
GrB_DESC_SCT0    , // -            GrB_STRUCTURE  GrB_COMP   GrB_TRAN  -
GrB_DESC_SCT0T1  , // -            GrB_STRUCTURE  GrB_COMP   GrB_TRAN  GrB_TRAN

GrB_DESC_R       , // GrB_REPLACE  -              -          -         -
GrB_DESC_RT1     , // GrB_REPLACE  -              -          -         GrB_TRAN
GrB_DESC_RT0     , // GrB_REPLACE  -              -          GrB_TRAN  -
GrB_DESC_RT0T1   , // GrB_REPLACE  -              -          GrB_TRAN  GrB_TRAN

GrB_DESC_RC      , // GrB_REPLACE  -              GrB_COMP   -         -
GrB_DESC_RCT1    , // GrB_REPLACE  -              GrB_COMP   -         GrB_TRAN
GrB_DESC_RCT0    , // GrB_REPLACE  -              GrB_COMP   GrB_TRAN  -
GrB_DESC_RCT0T1  , // GrB_REPLACE  -              GrB_COMP   GrB_TRAN  GrB_TRAN

GrB_DESC_RS      , // GrB_REPLACE  GrB_STRUCTURE  -          -         -
GrB_DESC_RST1    , // GrB_REPLACE  GrB_STRUCTURE  -          -         GrB_TRAN
GrB_DESC_RST0    , // GrB_REPLACE  GrB_STRUCTURE  -          GrB_TRAN  -
GrB_DESC_RST0T1  , // GrB_REPLACE  GrB_STRUCTURE  -          GrB_TRAN  GrB_TRAN

GrB_DESC_RSC     , // GrB_REPLACE  GrB_STRUCTURE  GrB_COMP   -         -
GrB_DESC_RSCT1   , // GrB_REPLACE  GrB_STRUCTURE  GrB_COMP   -         GrB_TRAN
GrB_DESC_RSCT0   , // GrB_REPLACE  GrB_STRUCTURE  GrB_COMP   GrB_TRAN  -
GrB_DESC_RSCT0T1 ; // GrB_REPLACE  GrB_STRUCTURE  GrB_COMP   GrB_TRAN  GrB_TRAN

// GrB_NULL is the default descriptor, with all settings at their defaults:
//
//      OUTP: do not replace the output
//      MASK: mask is valued and not complemented
//      INP0: first input not transposed
//      INP1: second input not transposed

// Predefined descriptors may not be modified or freed.  Attempting to modify
// them results in an error (GrB_INVALID_VALUE).  Attempts to free them are
// silently ignored.

//==============================================================================
// GrB_Type: data types
//==============================================================================

typedef struct GB_Type_opaque *GrB_Type ;

// GraphBLAS predefined types and their counterparts in pure C:
GB_PUBLIC GrB_Type
    GrB_BOOL   ,        // in C: bool
    GrB_INT8   ,        // in C: int8_t
    GrB_INT16  ,        // in C: int16_t
    GrB_INT32  ,        // in C: int32_t
    GrB_INT64  ,        // in C: int64_t
    GrB_UINT8  ,        // in C: uint8_t
    GrB_UINT16 ,        // in C: uint16_t
    GrB_UINT32 ,        // in C: uint32_t
    GrB_UINT64 ,        // in C: uint64_t
    GrB_FP32   ,        // in C: float
    GrB_FP64   ,        // in C: double
    GxB_FC32   ,        // in C: float complex
    GxB_FC64   ;        // in C: double complex

//------------------------------------------------------------------------------
// helper macros for polymorphic functions
//------------------------------------------------------------------------------

#define GB_CAT(w,x,y,z) w ## x ## y ## z
#define GB_CONCAT(w,x,y,z) GB_CAT (w, x, y, z)

#if GxB_STDC_VERSION >= 201112L
#define GB_CASES(p,prefix,func)                                         \
        const bool       p : GB_CONCAT ( prefix, _, func, _BOOL   ),    \
              bool       p : GB_CONCAT ( prefix, _, func, _BOOL   ),    \
        const int8_t     p : GB_CONCAT ( prefix, _, func, _INT8   ),    \
              int8_t     p : GB_CONCAT ( prefix, _, func, _INT8   ),    \
        const int16_t    p : GB_CONCAT ( prefix, _, func, _INT16  ),    \
              int16_t    p : GB_CONCAT ( prefix, _, func, _INT16  ),    \
        const int32_t    p : GB_CONCAT ( prefix, _, func, _INT32  ),    \
              int32_t    p : GB_CONCAT ( prefix, _, func, _INT32  ),    \
        const int64_t    p : GB_CONCAT ( prefix, _, func, _INT64  ),    \
              int64_t    p : GB_CONCAT ( prefix, _, func, _INT64  ),    \
        const uint8_t    p : GB_CONCAT ( prefix, _, func, _UINT8  ),    \
              uint8_t    p : GB_CONCAT ( prefix, _, func, _UINT8  ),    \
        const uint16_t   p : GB_CONCAT ( prefix, _, func, _UINT16 ),    \
              uint16_t   p : GB_CONCAT ( prefix, _, func, _UINT16 ),    \
        const uint32_t   p : GB_CONCAT ( prefix, _, func, _UINT32 ),    \
              uint32_t   p : GB_CONCAT ( prefix, _, func, _UINT32 ),    \
        const uint64_t   p : GB_CONCAT ( prefix, _, func, _UINT64 ),    \
              uint64_t   p : GB_CONCAT ( prefix, _, func, _UINT64 ),    \
        const float      p : GB_CONCAT ( prefix, _, func, _FP32   ),    \
              float      p : GB_CONCAT ( prefix, _, func, _FP32   ),    \
        const double     p : GB_CONCAT ( prefix, _, func, _FP64   ),    \
              double     p : GB_CONCAT ( prefix, _, func, _FP64   ),    \
        const GxB_FC32_t p : GB_CONCAT ( GxB   , _, func, _FC32   ),    \
              GxB_FC32_t p : GB_CONCAT ( GxB   , _, func, _FC32   ),    \
        const GxB_FC64_t p : GB_CONCAT ( GxB   , _, func, _FC64   ),    \
              GxB_FC64_t p : GB_CONCAT ( GxB   , _, func, _FC64   ),    \
        const void       * : GB_CONCAT ( prefix, _, func, _UDT    ),    \
              void       * : GB_CONCAT ( prefix, _, func, _UDT    )
#endif

//------------------------------------------------------------------------------
// GrB_Type_new:  create a new type
//------------------------------------------------------------------------------

// GrB_Type_new is implemented both as a macro and a function.  Both are
// user-callable.  The default is to use the macro, since this allows the name
// of the type to be saved as a string, for subsequent error reporting by
// GrB_error.

#undef GrB_Type_new
#undef GrM_Type_new

GB_PUBLIC
GrB_Info GRB (Type_new)         // create a new GraphBLAS type
(
    GrB_Type *type,             // handle of user type to create
    size_t sizeof_ctype         // size = sizeof (ctype) of the C type
) ;

// user code should not directly use GB_STR or GB_XSTR
// GB_STR: convert the content of x into a string "x"
#define GB_XSTR(x) GB_STR(x)
#define GB_STR(x) #x

// GrB_Type_new as a user-callable macro, which allows the name of the ctype
// to be added to the new type.  The type_defn is unknown.
#define GrB_Type_new(utype, sizeof_ctype) \
        GxB_Type_new(utype, sizeof_ctype, GB_STR(sizeof_ctype), NULL)
#define GrM_Type_new(utype, sizeof_ctype) \
        GxB_Type_new(utype, sizeof_ctype, GB_STR(sizeof_ctype), NULL)

// GxB_Type_new creates a type with a name and definition that are known to
// GraphBLAS, as strings.  The type_name is any valid string (max length of 128
// characters, including the required null-terminating character) that may
// appear as the name of a C type created by a C "typedef" statement.  It must
// not contain any white-space characters.  Example, creating a type of size
// 16*4+4 = 68 bytes, with a 4-by-4 dense float array and a 32-bit integer:
//
//      typedef struct { float x [4][4] ; int color ; } myquaternion ;
//      GrB_Type MyQtype ;
//      GxB_Type_new (&MyQtype, sizeof (myquaternion), "myquaternion",
//          "typedef struct { float x [4][4] ; int color ; } myquaternion ;") ;
//
// The type_name and type_defn are both null-terminated strings.  Currently,
// type_defn is unused, but it will be required for best performance when a JIT
// is implemented in SuiteSparse:GraphBLAS (both on the CPU and GPU).  User
// defined types created by GrB_Type_new will not work with a JIT.
//
// At most GxB_MAX_NAME_LEN characters are accessed in type_name; characters
// beyond that limit are silently ignored.

#define GxB_MAX_NAME_LEN 128

GB_PUBLIC
GrB_Info GxB_Type_new           // create a new named GraphBLAS type
(
    GrB_Type *type,             // handle of user type to create
    size_t sizeof_ctype,        // size = sizeof (ctype) of the C type
    const char *type_name,      // name of the type (max 128 characters)
    const char *type_defn       // typedef for the type (no max length)
) ;

// GB_Type_new is historical: use GxB_Type_new instead
GB_PUBLIC
GrB_Info GB_Type_new            // not user-callable
(
    GrB_Type *type,             // handle of user type to create
    size_t sizeof_ctype,        // size of the user type
    const char *type_name       // name of the type, as "sizeof (ctype)"
) ;

GB_PUBLIC
GrB_Info GxB_Type_name      // return the name of a GraphBLAS type
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Type type
) ;

GB_PUBLIC
GrB_Info GxB_Type_size          // determine the size of the type
(
    size_t *size,               // the sizeof the type
    const GrB_Type type         // type to determine the sizeof
) ;

GB_PUBLIC
GrB_Info GxB_Type_from_name     // return the built-in GrB_Type from a name
(
    GrB_Type *type,             // built-in type, or NULL if user-defined
    const char *type_name       // array of size at least GxB_MAX_NAME_LEN
) ;

GB_PUBLIC
GrB_Info GrB_Type_free          // free a user-defined type
(
    GrB_Type *type              // handle of user-defined type to free
) ;

//==============================================================================
// GrB_UnaryOp: unary operators
//==============================================================================

// GrB_UnaryOp: a function z=f(x).  The function f must have the signature:

//      void f (void *z, const void *x) ;

// The pointers are void * but they are always of pointers to objects of type
// ztype and xtype, respectively.  The function must typecast its arguments as
// needed from void* to ztype* and xtype*.

typedef struct GB_UnaryOp_opaque *GrB_UnaryOp ;

//------------------------------------------------------------------------------
// built-in unary operators, z = f(x)
//------------------------------------------------------------------------------

GB_PUBLIC GrB_UnaryOp
    // For these functions z=f(x), z and x have the same type.
    // The suffix in the name is the type of x and z.
    // z = x             z = -x             z = 1/x             z = ! (x != 0)
    // identity          additive           multiplicative      logical
    //                   inverse            inverse             negation
    GrB_IDENTITY_BOOL,   GrB_AINV_BOOL,     GrB_MINV_BOOL,      GxB_LNOT_BOOL,
    GrB_IDENTITY_INT8,   GrB_AINV_INT8,     GrB_MINV_INT8,      GxB_LNOT_INT8,
    GrB_IDENTITY_INT16,  GrB_AINV_INT16,    GrB_MINV_INT16,     GxB_LNOT_INT16,
    GrB_IDENTITY_INT32,  GrB_AINV_INT32,    GrB_MINV_INT32,     GxB_LNOT_INT32,
    GrB_IDENTITY_INT64,  GrB_AINV_INT64,    GrB_MINV_INT64,     GxB_LNOT_INT64,
    GrB_IDENTITY_UINT8,  GrB_AINV_UINT8,    GrB_MINV_UINT8,     GxB_LNOT_UINT8,
    GrB_IDENTITY_UINT16, GrB_AINV_UINT16,   GrB_MINV_UINT16,    GxB_LNOT_UINT16,
    GrB_IDENTITY_UINT32, GrB_AINV_UINT32,   GrB_MINV_UINT32,    GxB_LNOT_UINT32,
    GrB_IDENTITY_UINT64, GrB_AINV_UINT64,   GrB_MINV_UINT64,    GxB_LNOT_UINT64,
    GrB_IDENTITY_FP32,   GrB_AINV_FP32,     GrB_MINV_FP32,      GxB_LNOT_FP32,
    GrB_IDENTITY_FP64,   GrB_AINV_FP64,     GrB_MINV_FP64,      GxB_LNOT_FP64,
    // complex unary operators:
    GxB_IDENTITY_FC32,   GxB_AINV_FC32,     GxB_MINV_FC32,      // no LNOT
    GxB_IDENTITY_FC64,   GxB_AINV_FC64,     GxB_MINV_FC64,      // for complex

    // z = 1             z = abs(x)         z = bnot(x)         z = signum
    // one               absolute value     bitwise negation
    GxB_ONE_BOOL,        GrB_ABS_BOOL,
    GxB_ONE_INT8,        GrB_ABS_INT8,      GrB_BNOT_INT8,
    GxB_ONE_INT16,       GrB_ABS_INT16,     GrB_BNOT_INT16,
    GxB_ONE_INT32,       GrB_ABS_INT32,     GrB_BNOT_INT32,
    GxB_ONE_INT64,       GrB_ABS_INT64,     GrB_BNOT_INT64,
    GxB_ONE_UINT8,       GrB_ABS_UINT8,     GrB_BNOT_UINT8,
    GxB_ONE_UINT16,      GrB_ABS_UINT16,    GrB_BNOT_UINT16,
    GxB_ONE_UINT32,      GrB_ABS_UINT32,    GrB_BNOT_UINT32,
    GxB_ONE_UINT64,      GrB_ABS_UINT64,    GrB_BNOT_UINT64,
    GxB_ONE_FP32,        GrB_ABS_FP32,
    GxB_ONE_FP64,        GrB_ABS_FP64,
    // complex unary operators:
    GxB_ONE_FC32,        // for complex types, z = abs(x)
    GxB_ONE_FC64,        // is real; listed below.

    // Boolean negation, z = !x, where both z and x are boolean.  There is no
    // suffix since z and x are only boolean.  This operator is identical to
    // GxB_LNOT_BOOL; it just has a different name.
    GrB_LNOT ;

// GxB_ABS is now in the v1.3 spec, the following names are historical:
GB_PUBLIC GrB_UnaryOp

    // z = abs(x)
    GxB_ABS_BOOL,
    GxB_ABS_INT8,
    GxB_ABS_INT16,
    GxB_ABS_INT32,
    GxB_ABS_INT64,
    GxB_ABS_UINT8,
    GxB_ABS_UINT16,
    GxB_ABS_UINT32,
    GxB_ABS_UINT64,
    GxB_ABS_FP32,
    GxB_ABS_FP64 ;

//------------------------------------------------------------------------------
// Unary operators for floating-point types only
//------------------------------------------------------------------------------

// The following floating-point unary operators and their ANSI C11 equivalents,
// are only defined for floating-point (real and complex) types.

GB_PUBLIC GrB_UnaryOp

    //--------------------------------------------------------------------------
    // z = f(x) where z and x have the same type (all 4 floating-point types)
    //--------------------------------------------------------------------------

    // z = sqrt (x)     z = log (x)         z = exp (x)         z = log2 (x)
    GxB_SQRT_FP32,      GxB_LOG_FP32,       GxB_EXP_FP32,       GxB_LOG2_FP32,
    GxB_SQRT_FP64,      GxB_LOG_FP64,       GxB_EXP_FP64,       GxB_LOG2_FP64,
    GxB_SQRT_FC32,      GxB_LOG_FC32,       GxB_EXP_FC32,       GxB_LOG2_FC32,
    GxB_SQRT_FC64,      GxB_LOG_FC64,       GxB_EXP_FC64,       GxB_LOG2_FC64,

    // z = sin (x)      z = cos (x)         z = tan (x)
    GxB_SIN_FP32,       GxB_COS_FP32,       GxB_TAN_FP32,
    GxB_SIN_FP64,       GxB_COS_FP64,       GxB_TAN_FP64,
    GxB_SIN_FC32,       GxB_COS_FC32,       GxB_TAN_FC32,
    GxB_SIN_FC64,       GxB_COS_FC64,       GxB_TAN_FC64,

    // z = acos (x)     z = asin (x)        z = atan (x)
    GxB_ACOS_FP32,      GxB_ASIN_FP32,      GxB_ATAN_FP32,
    GxB_ACOS_FP64,      GxB_ASIN_FP64,      GxB_ATAN_FP64,
    GxB_ACOS_FC32,      GxB_ASIN_FC32,      GxB_ATAN_FC32,
    GxB_ACOS_FC64,      GxB_ASIN_FC64,      GxB_ATAN_FC64,

    // z = sinh (x)     z = cosh (x)        z = tanh (x)
    GxB_SINH_FP32,      GxB_COSH_FP32,      GxB_TANH_FP32,
    GxB_SINH_FP64,      GxB_COSH_FP64,      GxB_TANH_FP64,
    GxB_SINH_FC32,      GxB_COSH_FC32,      GxB_TANH_FC32,
    GxB_SINH_FC64,      GxB_COSH_FC64,      GxB_TANH_FC64,

    // z = acosh (x)    z = asinh (x)       z = atanh (x)       z = signum (x)
    GxB_ACOSH_FP32,     GxB_ASINH_FP32,     GxB_ATANH_FP32,     GxB_SIGNUM_FP32,
    GxB_ACOSH_FP64,     GxB_ASINH_FP64,     GxB_ATANH_FP64,     GxB_SIGNUM_FP64,
    GxB_ACOSH_FC32,     GxB_ASINH_FC32,     GxB_ATANH_FC32,     GxB_SIGNUM_FC32,
    GxB_ACOSH_FC64,     GxB_ASINH_FC64,     GxB_ATANH_FC64,     GxB_SIGNUM_FC64,

    // z = ceil (x)     z = floor (x)       z = round (x)       z = trunc (x)
    GxB_CEIL_FP32,      GxB_FLOOR_FP32,     GxB_ROUND_FP32,     GxB_TRUNC_FP32,
    GxB_CEIL_FP64,      GxB_FLOOR_FP64,     GxB_ROUND_FP64,     GxB_TRUNC_FP64,
    GxB_CEIL_FC32,      GxB_FLOOR_FC32,     GxB_ROUND_FC32,     GxB_TRUNC_FC32,
    GxB_CEIL_FC64,      GxB_FLOOR_FC64,     GxB_ROUND_FC64,     GxB_TRUNC_FC64,

    // z = exp2 (x)     z = expm1 (x)       z = log10 (x)       z = log1p (x)
    GxB_EXP2_FP32,      GxB_EXPM1_FP32,     GxB_LOG10_FP32,     GxB_LOG1P_FP32,
    GxB_EXP2_FP64,      GxB_EXPM1_FP64,     GxB_LOG10_FP64,     GxB_LOG1P_FP64,
    GxB_EXP2_FC32,      GxB_EXPM1_FC32,     GxB_LOG10_FC32,     GxB_LOG1P_FC32,
    GxB_EXP2_FC64,      GxB_EXPM1_FC64,     GxB_LOG10_FC64,     GxB_LOG1P_FC64,

    //--------------------------------------------------------------------------
    // z = f(x) where z and x are the same type (floating-point real only)
    //--------------------------------------------------------------------------

    // z = lgamma (x)   z = tgamma (x)      z = erf (x)         z = erfc (x)
    GxB_LGAMMA_FP32,    GxB_TGAMMA_FP32,    GxB_ERF_FP32,       GxB_ERFC_FP32,
    GxB_LGAMMA_FP64,    GxB_TGAMMA_FP64,    GxB_ERF_FP64,       GxB_ERFC_FP64,

    // z = cbrt (x)
    GxB_CBRT_FP32,
    GxB_CBRT_FP64,

    // frexpx and frexpe return the mantissa and exponent, respectively,
    // from the ANSI C11 frexp function.  The exponent is returned as a
    // floating-point value, not an integer.

    // z = frexpx (x)   z = frexpe (x)
    GxB_FREXPX_FP32,    GxB_FREXPE_FP32,
    GxB_FREXPX_FP64,    GxB_FREXPE_FP64,

    //--------------------------------------------------------------------------
    // z = f(x) where z and x are the same type (complex only)
    //--------------------------------------------------------------------------

    // z = conj (x)
    GxB_CONJ_FC32,
    GxB_CONJ_FC64,

    //--------------------------------------------------------------------------
    // z = f(x) where z is real and x is complex:
    //--------------------------------------------------------------------------

    // z = creal (x)    z = cimag (x)       z = carg (x)       z = abs (x)
    GxB_CREAL_FC32,     GxB_CIMAG_FC32,     GxB_CARG_FC32,     GxB_ABS_FC32,
    GxB_CREAL_FC64,     GxB_CIMAG_FC64,     GxB_CARG_FC64,     GxB_ABS_FC64,

    //--------------------------------------------------------------------------
    // z = f(x) where z is bool and x is any floating-point type
    //--------------------------------------------------------------------------

    // z = isinf (x)
    GxB_ISINF_FP32,
    GxB_ISINF_FP64,
    GxB_ISINF_FC32,     // isinf (creal (x)) || isinf (cimag (x))
    GxB_ISINF_FC64,     // isinf (creal (x)) || isinf (cimag (x))

    // z = isnan (x)
    GxB_ISNAN_FP32,
    GxB_ISNAN_FP64,
    GxB_ISNAN_FC32,     // isnan (creal (x)) || isnan (cimag (x))
    GxB_ISNAN_FC64,     // isnan (creal (x)) || isnan (cimag (x))

    // z = isfinite (x)
    GxB_ISFINITE_FP32,
    GxB_ISFINITE_FP64,
    GxB_ISFINITE_FC32,  // isfinite (real (x)) && isfinite (cimag (x))
    GxB_ISFINITE_FC64 ; // isfinite (real (x)) && isfinite (cimag (x))

//------------------------------------------------------------------------------
// methods for unary operators
//------------------------------------------------------------------------------

typedef void (*GxB_unary_function)  (void *, const void *) ;

// GrB_UnaryOp_new creates a user-defined unary op, with an automatic
// detection of the operator name.
#undef GrB_UnaryOp_new
#undef GrM_UnaryOp_new
GB_PUBLIC
GrB_Info GRB (UnaryOp_new)           // create a new user-defined unary operator
(
    GrB_UnaryOp *unaryop,           // handle for the new unary operator
    GxB_unary_function function,    // pointer to the unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype                  // type of input x
) ;
#define GrB_UnaryOp_new(op,f,z,x) \
        GxB_UnaryOp_new(op,f,z,x, GB_STR(f), NULL)
#define GrM_UnaryOp_new(op,f,z,x) \
        GxM_UnaryOp_new(op,f,z,x, GB_STR(f), NULL)

// GxB_UnaryOp_new creates a named user-defined unary op.
GB_PUBLIC
GrB_Info GxB_UnaryOp_new            // create a new user-defined unary operator
(
    GrB_UnaryOp *unaryop,           // handle for the new unary operator
    GxB_unary_function function,    // pointer to the unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    const char *unop_name,          // name of the user function
    const char *unop_defn           // definition of the user function
) ;

// GB_UnaryOp_new is historical: use GxB_UnaryOp_new instead
GB_PUBLIC
GrB_Info GB_UnaryOp_new             // not user-callable
(
    GrB_UnaryOp *unaryop,           // handle for the new unary operator
    GxB_unary_function function,    // pointer to the unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    const char *unop_name           // name of the user function
) ;

// GxB_UnaryOp_ztype is historical.  Use GxB_UnaryOp_ztype_name instead.
GB_PUBLIC
GrB_Info GxB_UnaryOp_ztype          // return the type of z
(
    GrB_Type *ztype,                // return type of output z
    GrB_UnaryOp unaryop             // unary operator
) ;
GB_PUBLIC
GrB_Info GxB_UnaryOp_ztype_name     // return the type_name of z
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_UnaryOp unaryop       // unary operator
) ;

// GxB_UnaryOp_xtype is historical.  Use GxB_UnaryOp_xtype_name instead.
GB_PUBLIC
GrB_Info GxB_UnaryOp_xtype          // return the type of x
(
    GrB_Type *xtype,                // return type of input x
    GrB_UnaryOp unaryop             // unary operator
) ;
GB_PUBLIC
GrB_Info GxB_UnaryOp_xtype_name     // return the type_name of x
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_UnaryOp unaryop       // unary operator
) ;

GB_PUBLIC
GrB_Info GrB_UnaryOp_free           // free a user-created unary operator
(
    GrB_UnaryOp *unaryop            // handle of unary operator to free
) ;

//==============================================================================
// GrB_BinaryOp: binary operators
//==============================================================================

// GrB_BinaryOp: a function z=f(x,y).  The function f must have the signature:

//      void f (void *z, const void *x, const void *y) ;

// The pointers are void * but they are always of pointers to objects of type
// ztype, xtype, and ytype, respectively.  See Demo/usercomplex.c for examples.

typedef struct GB_BinaryOp_opaque *GrB_BinaryOp ;

//------------------------------------------------------------------------------
// built-in binary operators, z = f(x,y), where x,y,z all have the same type
//------------------------------------------------------------------------------

GB_PUBLIC GrB_BinaryOp

    // operators for all 13 types (including complex):

    // GxB_PAIR_T and GrB_ONEB_T are identical; the latter was added to the
    // v2.0 C API Specification.

    // z = x            z = y               z = 1               z = pow (x,y)
    GrB_FIRST_BOOL,     GrB_SECOND_BOOL,    GrB_ONEB_BOOL,      GxB_POW_BOOL,
    GrB_FIRST_INT8,     GrB_SECOND_INT8,    GrB_ONEB_INT8,      GxB_POW_INT8,
    GrB_FIRST_INT16,    GrB_SECOND_INT16,   GrB_ONEB_INT16,     GxB_POW_INT16,
    GrB_FIRST_INT32,    GrB_SECOND_INT32,   GrB_ONEB_INT32,     GxB_POW_INT32,
    GrB_FIRST_INT64,    GrB_SECOND_INT64,   GrB_ONEB_INT64,     GxB_POW_INT64,
    GrB_FIRST_UINT8,    GrB_SECOND_UINT8,   GrB_ONEB_UINT8,     GxB_POW_UINT8,
    GrB_FIRST_UINT16,   GrB_SECOND_UINT16,  GrB_ONEB_UINT16,    GxB_POW_UINT16,
    GrB_FIRST_UINT32,   GrB_SECOND_UINT32,  GrB_ONEB_UINT32,    GxB_POW_UINT32,
    GrB_FIRST_UINT64,   GrB_SECOND_UINT64,  GrB_ONEB_UINT64,    GxB_POW_UINT64,
    GrB_FIRST_FP32,     GrB_SECOND_FP32,    GrB_ONEB_FP32,      GxB_POW_FP32,
    GrB_FIRST_FP64,     GrB_SECOND_FP64,    GrB_ONEB_FP64,      GxB_POW_FP64,
    // complex:
    GxB_FIRST_FC32,     GxB_SECOND_FC32,    GxB_ONEB_FC32,      GxB_POW_FC32,
    GxB_FIRST_FC64,     GxB_SECOND_FC64,    GxB_ONEB_FC64,      GxB_POW_FC64,

    // z = x+y          z = x-y             z = x*y             z = x/y
    GrB_PLUS_BOOL,      GrB_MINUS_BOOL,     GrB_TIMES_BOOL,     GrB_DIV_BOOL,
    GrB_PLUS_INT8,      GrB_MINUS_INT8,     GrB_TIMES_INT8,     GrB_DIV_INT8,
    GrB_PLUS_INT16,     GrB_MINUS_INT16,    GrB_TIMES_INT16,    GrB_DIV_INT16,
    GrB_PLUS_INT32,     GrB_MINUS_INT32,    GrB_TIMES_INT32,    GrB_DIV_INT32,
    GrB_PLUS_INT64,     GrB_MINUS_INT64,    GrB_TIMES_INT64,    GrB_DIV_INT64,
    GrB_PLUS_UINT8,     GrB_MINUS_UINT8,    GrB_TIMES_UINT8,    GrB_DIV_UINT8,
    GrB_PLUS_UINT16,    GrB_MINUS_UINT16,   GrB_TIMES_UINT16,   GrB_DIV_UINT16,
    GrB_PLUS_UINT32,    GrB_MINUS_UINT32,   GrB_TIMES_UINT32,   GrB_DIV_UINT32,
    GrB_PLUS_UINT64,    GrB_MINUS_UINT64,   GrB_TIMES_UINT64,   GrB_DIV_UINT64,
    GrB_PLUS_FP32,      GrB_MINUS_FP32,     GrB_TIMES_FP32,     GrB_DIV_FP32,
    GrB_PLUS_FP64,      GrB_MINUS_FP64,     GrB_TIMES_FP64,     GrB_DIV_FP64,
    // complex:
    GxB_PLUS_FC32,      GxB_MINUS_FC32,     GxB_TIMES_FC32,     GxB_DIV_FC32,
    GxB_PLUS_FC64,      GxB_MINUS_FC64,     GxB_TIMES_FC64,     GxB_DIV_FC64,

    // z = y-x          z = y/x             z = 1               z = any(x,y)
    GxB_RMINUS_BOOL,    GxB_RDIV_BOOL,      GxB_PAIR_BOOL,      GxB_ANY_BOOL,
    GxB_RMINUS_INT8,    GxB_RDIV_INT8,      GxB_PAIR_INT8,      GxB_ANY_INT8,
    GxB_RMINUS_INT16,   GxB_RDIV_INT16,     GxB_PAIR_INT16,     GxB_ANY_INT16,
    GxB_RMINUS_INT32,   GxB_RDIV_INT32,     GxB_PAIR_INT32,     GxB_ANY_INT32,
    GxB_RMINUS_INT64,   GxB_RDIV_INT64,     GxB_PAIR_INT64,     GxB_ANY_INT64,
    GxB_RMINUS_UINT8,   GxB_RDIV_UINT8,     GxB_PAIR_UINT8,     GxB_ANY_UINT8,
    GxB_RMINUS_UINT16,  GxB_RDIV_UINT16,    GxB_PAIR_UINT16,    GxB_ANY_UINT16,
    GxB_RMINUS_UINT32,  GxB_RDIV_UINT32,    GxB_PAIR_UINT32,    GxB_ANY_UINT32,
    GxB_RMINUS_UINT64,  GxB_RDIV_UINT64,    GxB_PAIR_UINT64,    GxB_ANY_UINT64,
    GxB_RMINUS_FP32,    GxB_RDIV_FP32,      GxB_PAIR_FP32,      GxB_ANY_FP32,
    GxB_RMINUS_FP64,    GxB_RDIV_FP64,      GxB_PAIR_FP64,      GxB_ANY_FP64,
    // complex:
    GxB_RMINUS_FC32,    GxB_RDIV_FC32,      GxB_PAIR_FC32,      GxB_ANY_FC32,
    GxB_RMINUS_FC64,    GxB_RDIV_FC64,      GxB_PAIR_FC64,      GxB_ANY_FC64,

    // The GxB_IS* comparators z=f(x,y) return the same type as their
    // inputs.  Each of them compute z = (x OP y), where x, y, and z all have
    // the same type.  The value z is either 1 for true or 0 for false, but it
    // is a value with the same type as x and y.

    // z = (x == y)     z = (x != y)
    GxB_ISEQ_BOOL,      GxB_ISNE_BOOL,
    GxB_ISEQ_INT8,      GxB_ISNE_INT8,
    GxB_ISEQ_INT16,     GxB_ISNE_INT16,
    GxB_ISEQ_INT32,     GxB_ISNE_INT32,
    GxB_ISEQ_INT64,     GxB_ISNE_INT64,
    GxB_ISEQ_UINT8,     GxB_ISNE_UINT8,
    GxB_ISEQ_UINT16,    GxB_ISNE_UINT16,
    GxB_ISEQ_UINT32,    GxB_ISNE_UINT32,
    GxB_ISEQ_UINT64,    GxB_ISNE_UINT64,
    GxB_ISEQ_FP32,      GxB_ISNE_FP32,
    GxB_ISEQ_FP64,      GxB_ISNE_FP64,
    // complex:
    GxB_ISEQ_FC32,      GxB_ISNE_FC32,
    GxB_ISEQ_FC64,      GxB_ISNE_FC64,

    // z = (x > y)      z = (x < y)         z = (x >= y)     z = (x <= y)
    GxB_ISGT_BOOL,      GxB_ISLT_BOOL,      GxB_ISGE_BOOL,      GxB_ISLE_BOOL,
    GxB_ISGT_INT8,      GxB_ISLT_INT8,      GxB_ISGE_INT8,      GxB_ISLE_INT8,
    GxB_ISGT_INT16,     GxB_ISLT_INT16,     GxB_ISGE_INT16,     GxB_ISLE_INT16,
    GxB_ISGT_INT32,     GxB_ISLT_INT32,     GxB_ISGE_INT32,     GxB_ISLE_INT32,
    GxB_ISGT_INT64,     GxB_ISLT_INT64,     GxB_ISGE_INT64,     GxB_ISLE_INT64,
    GxB_ISGT_UINT8,     GxB_ISLT_UINT8,     GxB_ISGE_UINT8,     GxB_ISLE_UINT8,
    GxB_ISGT_UINT16,    GxB_ISLT_UINT16,    GxB_ISGE_UINT16,    GxB_ISLE_UINT16,
    GxB_ISGT_UINT32,    GxB_ISLT_UINT32,    GxB_ISGE_UINT32,    GxB_ISLE_UINT32,
    GxB_ISGT_UINT64,    GxB_ISLT_UINT64,    GxB_ISGE_UINT64,    GxB_ISLE_UINT64,
    GxB_ISGT_FP32,      GxB_ISLT_FP32,      GxB_ISGE_FP32,      GxB_ISLE_FP32,
    GxB_ISGT_FP64,      GxB_ISLT_FP64,      GxB_ISGE_FP64,      GxB_ISLE_FP64,

    // z = min(x,y)     z = max (x,y)
    GrB_MIN_BOOL,       GrB_MAX_BOOL,
    GrB_MIN_INT8,       GrB_MAX_INT8,
    GrB_MIN_INT16,      GrB_MAX_INT16,
    GrB_MIN_INT32,      GrB_MAX_INT32,
    GrB_MIN_INT64,      GrB_MAX_INT64,
    GrB_MIN_UINT8,      GrB_MAX_UINT8,
    GrB_MIN_UINT16,     GrB_MAX_UINT16,
    GrB_MIN_UINT32,     GrB_MAX_UINT32,
    GrB_MIN_UINT64,     GrB_MAX_UINT64,
    GrB_MIN_FP32,       GrB_MAX_FP32,
    GrB_MIN_FP64,       GrB_MAX_FP64,

    // Binary operators for each of the 11 real types:

    // The operators convert non-boolean types internally to boolean and return
    // a value 1 or 0 in the same type, for true or false.  Each computes z =
    // ((x != 0) OP (y != 0)), where x, y, and z all the same type.  These
    // operators are useful as multiplicative operators when combined with
    // non-boolean monoids of the same type.

    // z = (x || y)     z = (x && y)        z = (x != y)
    GxB_LOR_BOOL,       GxB_LAND_BOOL,      GxB_LXOR_BOOL,
    GxB_LOR_INT8,       GxB_LAND_INT8,      GxB_LXOR_INT8,
    GxB_LOR_INT16,      GxB_LAND_INT16,     GxB_LXOR_INT16,
    GxB_LOR_INT32,      GxB_LAND_INT32,     GxB_LXOR_INT32,
    GxB_LOR_INT64,      GxB_LAND_INT64,     GxB_LXOR_INT64,
    GxB_LOR_UINT8,      GxB_LAND_UINT8,     GxB_LXOR_UINT8,
    GxB_LOR_UINT16,     GxB_LAND_UINT16,    GxB_LXOR_UINT16,
    GxB_LOR_UINT32,     GxB_LAND_UINT32,    GxB_LXOR_UINT32,
    GxB_LOR_UINT64,     GxB_LAND_UINT64,    GxB_LXOR_UINT64,
    GxB_LOR_FP32,       GxB_LAND_FP32,      GxB_LXOR_FP32,
    GxB_LOR_FP64,       GxB_LAND_FP64,      GxB_LXOR_FP64,

    // Binary operators that operate only on boolean types: LOR, LAND, LXOR,
    // and LXNOR.  The naming convention differs (_BOOL is not appended to the
    // name).  They are the same as GxB_LOR_BOOL, GxB_LAND_BOOL, and
    // GxB_LXOR_BOOL, and GrB_EQ_BOOL, respectively.

    // z = (x || y)     z = (x && y)        z = (x != y)        z = (x == y)
    GrB_LOR,            GrB_LAND,           GrB_LXOR,           GrB_LXNOR,

    // Operators for floating-point reals:

    // z = atan2(x,y)   z = hypot(x,y)      z = fmod(x,y)   z = remainder(x,y)
    GxB_ATAN2_FP32,     GxB_HYPOT_FP32,     GxB_FMOD_FP32,  GxB_REMAINDER_FP32,
    GxB_ATAN2_FP64,     GxB_HYPOT_FP64,     GxB_FMOD_FP64,  GxB_REMAINDER_FP64,

    // z = ldexp(x,y)   z = copysign (x,y)
    GxB_LDEXP_FP32,     GxB_COPYSIGN_FP32,
    GxB_LDEXP_FP64,     GxB_COPYSIGN_FP64,

    // Bitwise operations on signed and unsigned integers: note that
    // bitwise operations on signed integers can lead to different results,
    // depending on your compiler; results are implementation-defined.

    // z = (x | y)      z = (x & y)         z = (x ^ y)        z = ~(x ^ y)
    GrB_BOR_INT8,       GrB_BAND_INT8,      GrB_BXOR_INT8,     GrB_BXNOR_INT8,
    GrB_BOR_INT16,      GrB_BAND_INT16,     GrB_BXOR_INT16,    GrB_BXNOR_INT16,
    GrB_BOR_INT32,      GrB_BAND_INT32,     GrB_BXOR_INT32,    GrB_BXNOR_INT32,
    GrB_BOR_INT64,      GrB_BAND_INT64,     GrB_BXOR_INT64,    GrB_BXNOR_INT64,
    GrB_BOR_UINT8,      GrB_BAND_UINT8,     GrB_BXOR_UINT8,    GrB_BXNOR_UINT8,
    GrB_BOR_UINT16,     GrB_BAND_UINT16,    GrB_BXOR_UINT16,   GrB_BXNOR_UINT16,
    GrB_BOR_UINT32,     GrB_BAND_UINT32,    GrB_BXOR_UINT32,   GrB_BXNOR_UINT32,
    GrB_BOR_UINT64,     GrB_BAND_UINT64,    GrB_BXOR_UINT64,   GrB_BXNOR_UINT64,

    // z = bitget(x,y)  z = bitset(x,y)     z = bitclr(x,y)
    GxB_BGET_INT8,      GxB_BSET_INT8,      GxB_BCLR_INT8,
    GxB_BGET_INT16,     GxB_BSET_INT16,     GxB_BCLR_INT16,
    GxB_BGET_INT32,     GxB_BSET_INT32,     GxB_BCLR_INT32,
    GxB_BGET_INT64,     GxB_BSET_INT64,     GxB_BCLR_INT64,
    GxB_BGET_UINT8,     GxB_BSET_UINT8,     GxB_BCLR_UINT8,
    GxB_BGET_UINT16,    GxB_BSET_UINT16,    GxB_BCLR_UINT16,
    GxB_BGET_UINT32,    GxB_BSET_UINT32,    GxB_BCLR_UINT32,
    GxB_BGET_UINT64,    GxB_BSET_UINT64,    GxB_BCLR_UINT64 ;

//------------------------------------------------------------------------------
// z=f(x,y) where z and x have the same type, but y is GrB_INT8
//------------------------------------------------------------------------------

    // z = bitshift (x,y) computes z = x left-shifted by y bits if y >= 0, or z
    // = x right-shifted by (-y) bits if y < 0.  z is equal to x if y is zero.
    // z and x have the same type, as given by the suffix on the operator name.
    // Since y must be signed, it cannot have the same type as x when x is
    // unsigned; it is always GrB_INT8 for all 8 versions of this operator.
    // The GxB_BSHIFT_* operators compute the arithmetic shift, and produce the
    // same results as the bitshift.m function, for all possible inputs.

GB_PUBLIC GrB_BinaryOp

    // z = bitshift(x,y)
    GxB_BSHIFT_INT8,
    GxB_BSHIFT_INT16,
    GxB_BSHIFT_INT32,
    GxB_BSHIFT_INT64,
    GxB_BSHIFT_UINT8,
    GxB_BSHIFT_UINT16,
    GxB_BSHIFT_UINT32,
    GxB_BSHIFT_UINT64 ;

//------------------------------------------------------------------------------
// z=f(x,y) where z is BOOL and the type of x,y is given by the suffix
//------------------------------------------------------------------------------

GB_PUBLIC GrB_BinaryOp

    // Six comparators z=f(x,y) return their result as boolean, but
    // where x and y have the same type.  The suffix in their names refers to
    // the type of x and y since z is always boolean.  If used as multiply
    // operators in a semiring, they can only be combined with boolean monoids.
    // The _BOOL versions of these operators give the same results as their
    // IS*_BOOL counterparts.  GrB_EQ_BOOL and GrB_LXNOR are identical.

    // z = (x == y)     z = (x != y)        z = (x > y)         z = (x < y)
    GrB_EQ_BOOL,        GrB_NE_BOOL,        GrB_GT_BOOL,        GrB_LT_BOOL,
    GrB_EQ_INT8,        GrB_NE_INT8,        GrB_GT_INT8,        GrB_LT_INT8,
    GrB_EQ_INT16,       GrB_NE_INT16,       GrB_GT_INT16,       GrB_LT_INT16,
    GrB_EQ_INT32,       GrB_NE_INT32,       GrB_GT_INT32,       GrB_LT_INT32,
    GrB_EQ_INT64,       GrB_NE_INT64,       GrB_GT_INT64,       GrB_LT_INT64,
    GrB_EQ_UINT8,       GrB_NE_UINT8,       GrB_GT_UINT8,       GrB_LT_UINT8,
    GrB_EQ_UINT16,      GrB_NE_UINT16,      GrB_GT_UINT16,      GrB_LT_UINT16,
    GrB_EQ_UINT32,      GrB_NE_UINT32,      GrB_GT_UINT32,      GrB_LT_UINT32,
    GrB_EQ_UINT64,      GrB_NE_UINT64,      GrB_GT_UINT64,      GrB_LT_UINT64,
    GrB_EQ_FP32,        GrB_NE_FP32,        GrB_GT_FP32,        GrB_LT_FP32,
    GrB_EQ_FP64,        GrB_NE_FP64,        GrB_GT_FP64,        GrB_LT_FP64,
    // complex:
    GxB_EQ_FC32,        GxB_NE_FC32,
    GxB_EQ_FC64,        GxB_NE_FC64,

    // z = (x >= y)     z = (x <= y)
    GrB_GE_BOOL,        GrB_LE_BOOL,
    GrB_GE_INT8,        GrB_LE_INT8,
    GrB_GE_INT16,       GrB_LE_INT16,
    GrB_GE_INT32,       GrB_LE_INT32,
    GrB_GE_INT64,       GrB_LE_INT64,
    GrB_GE_UINT8,       GrB_LE_UINT8,
    GrB_GE_UINT16,      GrB_LE_UINT16,
    GrB_GE_UINT32,      GrB_LE_UINT32,
    GrB_GE_UINT64,      GrB_LE_UINT64,
    GrB_GE_FP32,        GrB_LE_FP32,
    GrB_GE_FP64,        GrB_LE_FP64 ;

//------------------------------------------------------------------------------
// z=f(x,y) where z is complex and the type of x,y is given by the suffix
//------------------------------------------------------------------------------

GB_PUBLIC GrB_BinaryOp

    // z = cmplx (x,y)
    GxB_CMPLX_FP32,
    GxB_CMPLX_FP64 ;

//==============================================================================
// positional GrB_UnaryOp and GrB_BinaryOp operators
//==============================================================================

// Positional operators do not depend on the value of an entry, but its row or
// column index in the matrix instead.  For example, for an entry A(i,j),
// first_i(A(i,j),y) is equal to i.  These operators are useful for returning
// node id's as the result of a semiring operation.  If used as a mask, zero
// has a special value, and thus z=first_i1(A(i,j),j) returns i+1 instead of i.
// This can be useful when using a positional operator to construct a mask
// matrix or vector for another GraphBLAS operation.  It is also essential for
// the @GrB interface, since the user view of matrix indices in @GrB is
// 1-based, not 0-based.

// When applied to a vector, j is always equal to 0.  For a GxB_SCALAR,
// both i and j are always zero.

// GraphBLAS defines a GrB_Index as uint64_t, but these operators return a
// GrB_INT32 or GrB_INT64 type, which is more flexible to use because the
// result of this operator can be negated, to flag an entry for example.  The
// value -1 can be used to denote "no node" or "no position".  GrB_INT32 is
// useful for graphs smaller than 2^31 nodes.  If the row or column index
// exceeds INT32_MAX, the result is determined by the typecast from the
// 64-bit index to the smaller 32-bit index.

// Positional operators cannot be used to construct monoids.  They can be used
// as multiplicative operators in semirings, and as operators for GrB_eWise*,
// and GrB_apply (bind first or second).  For the latter, the operator cannot
// depend on the bound scalar.

// When used as multiplicative operators in a semiring, FIRSTJ and SECONDI
// are identical.  If C(i,j) += t is computed where t = A(i,k)*B(k,j), then
// t = k in both cases.  Likewise, FIRSTJ1 and SECONDI1 are identical.

GB_PUBLIC GrB_BinaryOp

    GxB_FIRSTI_INT32,   GxB_FIRSTI_INT64,    // z = first_i(A(i,j),y) == i
    GxB_FIRSTI1_INT32,  GxB_FIRSTI1_INT64,   // z = first_i1(A(i,j),y) == i+1
    GxB_FIRSTJ_INT32,   GxB_FIRSTJ_INT64,    // z = first_j(A(i,j),y) == j
    GxB_FIRSTJ1_INT32,  GxB_FIRSTJ1_INT64,   // z = first_j1(A(i,j),y) == j+1
    GxB_SECONDI_INT32,  GxB_SECONDI_INT64,   // z = second_i(x,B(i,j)) == i
    GxB_SECONDI1_INT32, GxB_SECONDI1_INT64,  // z = second_i1(x,B(i,j)) == i+1
    GxB_SECONDJ_INT32,  GxB_SECONDJ_INT64,   // z = second_j(x,B(i,j)) == j
    GxB_SECONDJ1_INT32, GxB_SECONDJ1_INT64 ; // z = second_j1(x,B(i,j)) == j+1

GB_PUBLIC GrB_UnaryOp

    GxB_POSITIONI_INT32,  GxB_POSITIONI_INT64,  // z=position_i(A(i,j)) == i
    GxB_POSITIONI1_INT32, GxB_POSITIONI1_INT64, // z=position_i1(A(i,j)) == i+1
    GxB_POSITIONJ_INT32,  GxB_POSITIONJ_INT64,  // z=position_j(A(i,j)) == j
    GxB_POSITIONJ1_INT32, GxB_POSITIONJ1_INT64 ;// z=position_j1(A(i,j)) == j+1

//==============================================================================
// special GrB_BinaryOp for build methods only
//==============================================================================

// In GrB*build* methods, passing dup as NULL means that no duplicates are
// tolerated.  If duplicates appear, an error is returned.  If dup is a binary
// operator, it is applied to reduce duplicates to a single value.  The
// GxB_IGNORE_DUP is a special case.  It is not an operator, but an indication
// that any duplicates are to be ignored.

GB_PUBLIC GrB_BinaryOp GxB_IGNORE_DUP ;

//==============================================================================
// About boolean and bitwise binary operators
//==============================================================================

// Some of the boolean operators compute the same thing with different names.
// For example, x*y and x&&y give the same results for boolean x and y.
// Operations such as x < y when x and y are boolean are treated as if true=1
// and false=0.  Below is the truth table for all binary operators with boolean
// inputs.  This table is defined by how C typecasts boolean values for
// non-boolean operations.  For example, if x, y, and z are boolean, x = true,
// and y = true, then z = x + y = true + true = true.  DIV (x/y) is defined
// below.  RDIV (y/x) is shown as \ in the table; it is the same as 2nd.

//  x y  1st 2nd min max +  -  *  /  or and xor eq ne > < ge le \ pow pair
//  0 0  0   0   0   0   0  0  0  0  0  0   0   1  0  0 0 1  1  0 1   1
//  0 1  0   1   0   1   1  1  0  0  1  0   1   0  1  0 1 0  1  1 0   1
//  1 0  1   0   0   1   1  1  0  1  1  0   1   0  1  1 0 1  0  0 1   1
//  1 1  1   1   1   1   1  0  1  1  1  1   0   1  0  0 0 1  1  1 1   1

// GraphBLAS includes a GrB_DIV_BOOL operator in its specification, but does
// not define what boolean "division" means.  SuiteSparse:GraphBLAS makes the
// following interpretation.

// GraphBLAS does not generate exceptions for divide-by-zero.  Floating-point
// divide-by-zero follows the IEEE 754 standard: 1/0 is +Inf, -1/0 is -Inf, and
// 0/0 is NaN.  For integer division by zero, if x is positive, x/0 is the
// largest integer, -x/0 is the integer minimum (zero for unsigned integers),
// and 0/0 is zero.  For example, for int8, 1/0 is 127, and -1/0 is -128.  For
// uint8, 1/0 is 255 and 0/0 is zero.

// Boolean division is treated as if it were an unsigned integer type with
// true=1 and false=0, and with the max and min value being 1 and 0.  As a
// result, GrB_IDENTITY_BOOL, GrB_AINV_BOOL, and GrB_MINV_BOOL all give the
// same result (z = x).

// With this convention for boolean "division", there are 11 unique binary
// operators that are purely boolean.  Other named *_BOOL operators are
// redundant but are included in GraphBLAS so that the name space of operators
// is complete.  Below is a list of all operators and their equivalents.

//                   x: 0 0 1 1
//                   y: 0 1 0 1
//                   z: see below
//
//      z = 0           0 0 0 0     (zero function, not predefined)
//      z = (x && y)    0 0 0 1     AND, MIN, TIMES
//      z = (x > y)     0 0 1 0     GT, ISGT, and set diff (x\y)
//      z = x           0 0 1 1     FIRST, DIV
//
//      z = (x < y)     0 1 0 0     LT, ISLT, and set diff (y\x)
//      z = y           0 1 0 1     SECOND, RDIV
//      z = (x != y)    0 1 1 0     XOR, MINUS, RMINUS, NE, ISNE
//      z = (x || y)    0 1 1 1     OR, MAX, PLUS
//
//      z = ~(x || y)   1 0 0 0     (nor(x,y) function, not predefined)
//      z = (x == y)    1 0 0 1     LXNOR, EQ, ISEQ
//      z = ~y          1 0 1 0     (not(y), not predefined)
//      z = (x >= y)    1 0 1 1     GE, ISGE, POW, and "x implies y"
//
//      z = ~x          1 1 0 0     (not(x), not predefined)
//      z = (x <= y)    1 1 0 1     LE, ISLE, and "y implies x"
//      z = ~(x && y)   1 1 1 0     (nand(x,y) function, not predefined)
//      z = 1           1 1 1 1     PAIR, ONEB
//
//      z = any(x,y)    0 . . 1     ANY (pick x or y arbitrarily)

// Four more that have no _BOOL suffix are also redundant with the operators
// of the form GxB_*_BOOL (GrB_LOR, GrB_LAND, GrB_LXOR, and GrB_LXNOR).

// Note that the boolean binary operator space is not complete.  Five other
// boolean functions could be pre-defined as well:  z = 0, nor(x,y),
// nand(x,y), not(x), and not(y).

// Four of the possible 16 bitwise operators are pre-defined: BOR, BAND,
// BXOR, and BXNOR.  This assumes that the computations for each bit are
// entirely independent (so BSHIFT would not fit in the table above).

//------------------------------------------------------------------------------
// methods for binary operators
//------------------------------------------------------------------------------

typedef void (*GxB_binary_function) (void *, const void *, const void *) ;

// GrB_BinaryOp_new creates a user-defined binary op, with an automatic
// detection of the operator name.
#undef GrB_BinaryOp_new
#undef GrM_BinaryOp_new
GB_PUBLIC
GrB_Info GRB (BinaryOp_new)
(
    GrB_BinaryOp *binaryop,         // handle for the new binary operator
    GxB_binary_function function,   // pointer to the binary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    GrB_Type ytype                  // type of input y
) ;
#define GrB_BinaryOp_new(op,f,z,x,y) \
        GxB_BinaryOp_new(op,f,z,x,y, GB_STR(f), NULL)
#define GrM_BinaryOp_new(op,f,z,x,y) \
        GxM_BinaryOp_new(op,f,z,x,y, GB_STR(f), NULL)

// GxB_BinaryOp_new creates a named user-defined binary op.
GB_PUBLIC
GrB_Info GxB_BinaryOp_new
(
    GrB_BinaryOp *op,               // handle for the new binary operator
    GxB_binary_function function,   // pointer to the binary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    GrB_Type ytype,                 // type of input y
    const char *binop_name,         // name of the user function
    const char *binop_defn          // definition of the user function
) ;

// GB_BinaryOp_new is historical: use GxB_BinaryOp_new instead
GB_PUBLIC
GrB_Info GB_BinaryOp_new            // not user-callable
(
    GrB_BinaryOp *binaryop,         // handle for the new binary operator
    GxB_binary_function function,   // pointer to the binary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x
    GrB_Type ytype,                 // type of input y
    const char *binop_name          // name of the user function
) ;

// NOTE: GxB_BinaryOp_ztype is historical.  Use GxB_BinaryOp_ztype_name instead.
GB_PUBLIC
GrB_Info GxB_BinaryOp_ztype         // return the type of z
(
    GrB_Type *ztype,                // return type of output z
    GrB_BinaryOp binaryop           // binary operator to query
) ;
GB_PUBLIC
GrB_Info GxB_BinaryOp_ztype_name    // return the type_name of z
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_BinaryOp binaryop     // binary operator to query
) ;

// NOTE: GxB_BinaryOp_xtype is historical.  Use GxB_BinaryOp_xtype_name instead.
GB_PUBLIC
GrB_Info GxB_BinaryOp_xtype         // return the type of x
(
    GrB_Type *xtype,                // return type of input x
    GrB_BinaryOp binaryop           // binary operator to query
) ;
GB_PUBLIC
GrB_Info GxB_BinaryOp_xtype_name    // return the type_name of x
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_BinaryOp binaryop     // binary operator to query
) ;

// NOTE: GxB_BinaryOp_ytype is historical.  Use GxB_BinaryOp_ytype_name instead.
GB_PUBLIC
GrB_Info GxB_BinaryOp_ytype         // return the type of y
(
    GrB_Type *ytype,                // return type of input y
    GrB_BinaryOp binaryop           // binary operator to query
) ;
GB_PUBLIC
GrB_Info GxB_BinaryOp_ytype_name    // return the type_name of y
(
    char *type_name,                // user array of size GxB_MAX_NAME_LEN
    const GrB_BinaryOp binaryop     // binary operator to query
) ;

GB_PUBLIC
GrB_Info GrB_BinaryOp_free          // free a user-created binary operator
(
    GrB_BinaryOp *binaryop          // handle of binary operator to free
) ;

//==============================================================================
// GxB_SelectOp: select operators (historical)
//==============================================================================

// GrB_IndexUnaryOp should be used instead of GxB_SelectOp.

// GxB_SelectOp is an operator used by GxB_select to select entries from an
// input matrix A that are kept in the output C.  If an entry A(i,j) in the
// matrix A, of size nrows-by-ncols, has the value aij, then it calls the
// select function as result = f (i, j, aij, thunk).  If the function returns
// true, the entry is kept in the output C.  If f returns false, the entry is
// not kept in C.  The type of x for the GxB_SelectOp operator may be any of
// the 11 built-in types, or any user-defined type.  It may also be GrB_NULL,
// to indicate that the function is type-generic and does not depend at all on
// the value aij.  In this case, x is passed to f as a NULL pointer.

// The optional Thunk parameter to GxB_select is a GrB_Scalar.  For built-in
// select operators (TRIL, TRIU, DIAG, and OFFDIAG), Thunk must have any
// built-in type, and thunk = (int64_t) Thunk is used to specify the diagonal
// for these operators.  Thunk may be NULL, in which case its value is treated
// as zero, if it has a built-in type. The value of Thunk (if present) is not
// modified by any built-in select operator.

// For user-defined select operators, Thunk is not typecasted at all.  If
// the user operator is defined with a non-NULL Thunk input, then it must
// be non-NULL and of the same type, when calling GxB_select.

// GxB_SelectOp:  a function z=f(i,j,x,thunk) for the GxB_Select operation.
// The function f must have the signature:

//      bool f (GrB_Index i, GrB_Index j, const void *x, const void *thunk) ;

// The values of i and j are guaranteed to be in the range 0 to
// GrB_INDEX_MAX, and they can be safely typecasted to int64_t then negated,
// if desired, without any risk of integer overflow.

typedef struct GB_SelectOp_opaque *GxB_SelectOp ;

//------------------------------------------------------------------------------
// built-in select operators (historical)
//------------------------------------------------------------------------------

// GxB_select (C, Mask, accum, op, A, Thunk, desc) always returns a matrix C of
// the same size as A (or A' if GrB_TRAN is in the descriptor).

GB_PUBLIC GxB_SelectOp

    GxB_TRIL,       // C=tril(A,thunk):   returns true if ((j-i) <= thunk)
    GxB_TRIU,       // C=triu(A,thunk):   returns true if ((j-i) >= thunk)
    GxB_DIAG,       // C=diag(A,thunk):   returns true if ((j-i) == thunk)
    GxB_OFFDIAG,    // C=A-diag(A,thunk): returns true if ((j-i) != thunk)

    GxB_NONZERO,    // C=A(A ~= 0)
    GxB_EQ_ZERO,    // C=A(A == 0)
    GxB_GT_ZERO,    // C=A(A >  0)
    GxB_GE_ZERO,    // C=A(A >= 0)
    GxB_LT_ZERO,    // C=A(A <  0)
    GxB_LE_ZERO,    // C=A(A <= 0)

    GxB_NE_THUNK,   // C=A(A ~= thunk)
    GxB_EQ_THUNK,   // C=A(A == thunk)
    GxB_GT_THUNK,   // C=A(A >  thunk)
    GxB_GE_THUNK,   // C=A(A >= thunk)
    GxB_LT_THUNK,   // C=A(A <  thunk)
    GxB_LE_THUNK ;  // C=A(A <= thunk)

// For GxB_TRIL, GxB_TRIU, GxB_DIAG, and GxB_OFFDIAG, the parameter Thunk is a
// GrB_Scalar of any built-in type.  If GrB_NULL, or empty, Thunk is treated as
// zero.  Otherwise, the single entry is typecasted as (int64_t) Thunk.
// These select operators do not depend on the values of A, but just their
// position, and they work on matrices of any type.

// For GxB_*ZERO, the result depends only on the value of A(i,j).  The Thunk
// parameter to GxB_select is ignored and may be GrB_NULL.

// The operators GxB_TRIL, GxB_TRIU, GxB_DIAG, GxB_OFFDIAG, GxB_NONZERO,
// GxB_EQ_ZERO, GxB_NE_THUNK, and GxB_EQ_THUNK work on all built-in types and
// all user-defined types.

// GxB_GT_*, GxB_GE_*, GxB_LT_*, and GxB_LE_* only work on the 11 built-in
// types (not complex).  They cannot be used for user-defined types.

//------------------------------------------------------------------------------
// select operators: (historical)
//------------------------------------------------------------------------------

// User-defined GxB_SelectOps are historical.  New code should use
// GrB_IndexUnaryOp_new instead.

typedef bool (*GxB_select_function)      // return true if A(i,j) is kept
(
    GrB_Index i,                // row index of A(i,j)
    GrB_Index j,                // column index of A(i,j)
    const void *x,              // value of A(i,j)
    const void *thunk           // optional input for select function
) ;

#undef GxB_SelectOp_new
#undef GxM_SelectOp_new

GB_PUBLIC
GrB_Info GXB (SelectOp_new)     // create a new user-defined select operator
(
    GxB_SelectOp *selectop,     // handle for the new select operator
    GxB_select_function function,// pointer to the select function
    GrB_Type xtype,             // type of input x, or NULL if type-generic
    GrB_Type ttype              // type of thunk, or NULL if not used
) ;

#define GxB_SelectOp_new(op,f,x,t) GB_SelectOp_new (op,f,x,t, GB_STR(f))
#define GxM_SelectOp_new(op,f,x,t) GM_SelectOp_new (op,f,x,t, GB_STR(f))

// GB_SelectOp_new should not be called directly, but only through the
// GxB_SelectOp_new macro (but use GrB_IndexUnaryOp_new instead).
GB_PUBLIC
GrB_Info GB_SelectOp_new        // not user-callable
(
    GxB_SelectOp *selectop,     // handle for the new select operator
    GxB_select_function function,// pointer to the select function
    GrB_Type xtype,             // type of input x
    GrB_Type ttype,             // type of thunk, or NULL if not used
    const char *name            // name of the underlying function
) ;

// GxB_SelectOp_xtype is historical.  Use a GrB_IndexUnaryOp instead.
GB_PUBLIC
GrB_Info GxB_SelectOp_xtype     // return the type of x
(
    GrB_Type *xtype,            // return type of input x
    GxB_SelectOp selectop       // select operator
) ;

// GxB_SelectOp_ttype is historical.  Use a GrB_IndexUnaryOp instead.
GB_PUBLIC
GrB_Info GxB_SelectOp_ttype     // return the type of thunk
(
    GrB_Type *ttype,            // return type of input thunk
    GxB_SelectOp selectop       // select operator
) ;

GB_PUBLIC
GrB_Info GxB_SelectOp_free      // free a user-created select operator
(
    GxB_SelectOp *selectop      // handle of select operator to free
) ;

//==============================================================================
// GrB_IndexUnaryOp: a unary operator that depends on the row/col indices
//==============================================================================

// The indexop has the form z = f(aij, i, j, y) where aij is the numerical
// value of the A(i,j) entry, i and j are its row and column index, and y
// is a scalar.  For vectors, it has the form z = f(vi, i, 0, y).

typedef struct GB_IndexUnaryOp_opaque *GrB_IndexUnaryOp ;

typedef void (*GxB_index_unary_function)
(
    void *z,            // output value z, of type ztype
    const void *x,      // input value x of type xtype; value of v(i) or A(i,j)
    GrB_Index i,        // row index of A(i,j)
    GrB_Index j,        // column index of A(i,j), or zero for v(i)
    const void *y       // input scalar y
) ;

// GrB_IndexUnaryOp_new creates a user-defined unary op, with an automatic
// detection of the operator name.
#undef GrB_IndexUnaryOp_new
#undef GrM_IndexUnaryOp_new

GB_PUBLIC
GrB_Info GRB (IndexUnaryOp_new)     // create a new user-defined IndexUnary op
(
    GrB_IndexUnaryOp *op,           // handle for the new IndexUnary operator
    GxB_index_unary_function function,    // pointer to IndexUnary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x (the A(i,j) entry)
    GrB_Type ytype                  // type of input y (the scalar)
) ;

#define GrB_IndexUnaryOp_new(op,f,z,x,y) \
        GxB_IndexUnaryOp_new(op,f,z,x,y, GB_STR(f), NULL)
#define GrM_IndexUnaryOp_new(op,f,z,x,y) \
        GxM_IndexUnaryOp_new(op,f,z,x,y, GB_STR(f), NULL)

GB_PUBLIC
GrB_Info GxB_IndexUnaryOp_new   // create a named user-created IndexUnaryOp
(
    GrB_IndexUnaryOp *op,           // handle for the new IndexUnary operator
    GxB_index_unary_function function,    // pointer to index_unary function
    GrB_Type ztype,                 // type of output z
    GrB_Type xtype,                 // type of input x (the A(i,j) entry)
    GrB_Type ytype,                 // type of input y (the scalar)
    const char *idxop_name,         // name of the user function
    const char *idxop_defn          // definition of the user function
) ;

GB_PUBLIC
GrB_Info GxB_IndexUnaryOp_ztype_name    // return the type_name of z
(
    char *type_name,                    // user array of size GxB_MAX_NAME_LEN
    const GrB_IndexUnaryOp op           // IndexUnary operator
) ;

// For TRIL, TRIU, DIAG, OFFDIAG, COLLE, COLGT, ROWLE, and ROWGT,
// the xtype_name is an empty string (""), since these functions do not depend
// on the type of the matrix input.
GB_PUBLIC
GrB_Info GxB_IndexUnaryOp_xtype_name    // return the type_name of x
(
    char *type_name,                    // user array of size GxB_MAX_NAME_LEN
    const GrB_IndexUnaryOp op           // select operator
) ;

GB_PUBLIC
GrB_Info GxB_IndexUnaryOp_ytype_name    // return the type_name of the scalary y
(
    char *type_name,                    // user array of size GxB_MAX_NAME_LEN
    const GrB_IndexUnaryOp op           // select operator
) ;

GB_PUBLIC
GrB_Info GrB_IndexUnaryOp_free  // free a user-created IndexUnaryOp
(
    GrB_IndexUnaryOp *op        // handle of IndexUnary to free
) ;

//------------------------------------------------------------------------------
// built-in IndexUnaryOps
//------------------------------------------------------------------------------

// To facilitate computations with negative integers, the indices i and j are
// of type int64_t.  The scalar y has the type corresponding to the suffix
// of the name of the operator.

GB_PUBLIC GrB_IndexUnaryOp

    //--------------------------------------------------------------------------
    // Result has the integer type INT32 or INT64, the same as the suffix
    //--------------------------------------------------------------------------

    // These operators work on any data type, including user-defined.

    // ROWINDEX: (i+y): row index plus y
    GrB_ROWINDEX_INT32,  GrB_ROWINDEX_INT64,

    // COLINDEX: (j+y): col index plus y
    GrB_COLINDEX_INT32,  GrB_COLINDEX_INT64,

    // DIAGINDEX: (j-(i+y)): diagonal index plus y
    GrB_DIAGINDEX_INT32, GrB_DIAGINDEX_INT64,

    //--------------------------------------------------------------------------
    // Result is bool, depending only on the indices i,j, and y
    //--------------------------------------------------------------------------

    // These operators work on any data type, including user-defined.
    // The scalar y is int64.

    // TRIL: (j <= (i+y)): lower triangular part
    GrB_TRIL,

    // TRIU: (j >= (i+y)): upper triangular part
    GrB_TRIU,

    // DIAG: (j == (i+y)): diagonal
    GrB_DIAG,

    // OFFDIAG: (j != (i+y)): offdiagonal
    GrB_OFFDIAG,

    // COLLE: (j <= y): columns 0:y
    GrB_COLLE,

    // COLGT: (j > y): columns y+1:ncols-1
    GrB_COLGT,

    // ROWLE: (i <= y): rows 0:y
    GrB_ROWLE,

    // ROWGT: (i > y): rows y+1:nrows-1
    GrB_ROWGT,

    //--------------------------------------------------------------------------
    // Result is bool, depending only on the value aij
    //--------------------------------------------------------------------------

    // These operators work on matrices and vectors of any built-in type,
    // including complex types.  aij and the scalar y have the same type as the
    // operator suffix.

    // VALUEEQ: (aij == y)
    GrB_VALUEEQ_INT8,  GrB_VALUEEQ_UINT8,  GrB_VALUEEQ_FP32, GrB_VALUEEQ_BOOL,
    GrB_VALUEEQ_INT16, GrB_VALUEEQ_UINT16, GrB_VALUEEQ_FP64,
    GrB_VALUEEQ_INT32, GrB_VALUEEQ_UINT32, GxB_VALUEEQ_FC32,
    GrB_VALUEEQ_INT64, GrB_VALUEEQ_UINT64, GxB_VALUEEQ_FC64,

    // VALUENE: (aij != y)
    GrB_VALUENE_INT8,  GrB_VALUENE_UINT8,  GrB_VALUENE_FP32, GrB_VALUENE_BOOL,
    GrB_VALUENE_INT16, GrB_VALUENE_UINT16, GrB_VALUENE_FP64,
    GrB_VALUENE_INT32, GrB_VALUENE_UINT32, GxB_VALUENE_FC32,
    GrB_VALUENE_INT64, GrB_VALUENE_UINT64, GxB_VALUENE_FC64,

    // These operators work on matrices and vectors of any real (non-complex)
    // built-in type.

    // VALUELT: (aij < y)
    GrB_VALUELT_INT8,  GrB_VALUELT_UINT8,  GrB_VALUELT_FP32, GrB_VALUELT_BOOL,
    GrB_VALUELT_INT16, GrB_VALUELT_UINT16, GrB_VALUELT_FP64,
    GrB_VALUELT_INT32, GrB_VALUELT_UINT32,
    GrB_VALUELT_INT64, GrB_VALUELT_UINT64,

    // VALUELE: (aij <= y)
    GrB_VALUELE_INT8,  GrB_VALUELE_UINT8,  GrB_VALUELE_FP32, GrB_VALUELE_BOOL,
    GrB_VALUELE_INT16, GrB_VALUELE_UINT16, GrB_VALUELE_FP64,
    GrB_VALUELE_INT32, GrB_VALUELE_UINT32,
    GrB_VALUELE_INT64, GrB_VALUELE_UINT64,

    // VALUEGT: (aij > y)
    GrB_VALUEGT_INT8,  GrB_VALUEGT_UINT8,  GrB_VALUEGT_FP32, GrB_VALUEGT_BOOL,
    GrB_VALUEGT_INT16, GrB_VALUEGT_UINT16, GrB_VALUEGT_FP64,
    GrB_VALUEGT_INT32, GrB_VALUEGT_UINT32,
    GrB_VALUEGT_INT64, GrB_VALUEGT_UINT64,

    // VALUEGE: (aij >= y)
    GrB_VALUEGE_INT8,  GrB_VALUEGE_UINT8,  GrB_VALUEGE_FP32, GrB_VALUEGE_BOOL,
    GrB_VALUEGE_INT16, GrB_VALUEGE_UINT16, GrB_VALUEGE_FP64,
    GrB_VALUEGE_INT32, GrB_VALUEGE_UINT32,
    GrB_VALUEGE_INT64, GrB_VALUEGE_UINT64 ;

//==============================================================================
// GrB_Monoid
//==============================================================================

// A monoid is an associative operator z=op(x,y) where all three types of z, x,
// and y are identical.  The monoid also has an identity element, such that
// op(x,identity) = op(identity,x) = x.

typedef struct GB_Monoid_opaque *GrB_Monoid ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_BOOL        // create a new boolean monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    bool identity                   // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_INT8        // create a new int8 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int8_t identity                 // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_UINT8       // create a new uint8 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint8_t identity                // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_INT16       // create a new int16 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int16_t identity                // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_UINT16      // create a new uint16 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint16_t identity               // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_INT32       // create a new int32 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int32_t identity                // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_UINT32      // create a new uint32 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint32_t identity               // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_INT64       // create a new int64 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int64_t identity                // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_UINT64      // create a new uint64 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint64_t identity               // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_FP32        // create a new float monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    float identity                  // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_FP64        // create a new double monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    double identity                 // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_new_FC32        // create a new float complex monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    GxB_FC32_t identity             // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_new_FC64        // create a new double complex monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    GxB_FC64_t identity             // identity value of the monoid
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_new_UDT         // create a monoid with a user-defined type
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    void *identity                  // identity value of the monoid
) ;

// Type-generic method for creating a new monoid:

/*

GB_PUBLIC
GrB_Info GrB_Monoid_new             // create a monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,          // binary operator of the monoid
    <type> identity           // identity value of the monoid
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Monoid_new(monoid,op,identity)      \
    _Generic                                    \
    (                                           \
        (identity),                             \
            GB_CASES (, GrB, Monoid_new)        \
    )                                           \
    (monoid, op, identity)
#endif

// GxB_Monoid_terminal_new is identical to GrB_Monoid_new, except that a
// terminal value can be specified.  The terminal may be NULL, which indicates
// no terminal value (and in this case, it is identical to GrB_Monoid_new).
// The terminal value, if not NULL, must have the same type as the identity.

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_BOOL        // create a new boolean monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    bool identity,                  // identity value of the monoid
    bool terminal                   // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_INT8        // create a new int8 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int8_t identity,                // identity value of the monoid
    int8_t terminal                 // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_UINT8       // create a new uint8 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint8_t identity,               // identity value of the monoid
    uint8_t terminal                // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_INT16       // create a new int16 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int16_t identity,               // identity value of the monoid
    int16_t terminal                // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_UINT16      // create a new uint16 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint16_t identity,              // identity value of the monoid
    uint16_t terminal               // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_INT32       // create a new int32 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int32_t identity,               // identity value of the monoid
    int32_t terminal                // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_UINT32      // create a new uint32 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint32_t identity,              // identity value of the monoid
    uint32_t terminal               // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_INT64       // create a new int64 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    int64_t identity,               // identity value of the monoid
    int64_t terminal                // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_UINT64      // create a new uint64 monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    uint64_t identity,              // identity value of the monoid
    uint64_t terminal               // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_FP32        // create a new float monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    float identity,                 // identity value of the monoid
    float terminal                  // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_FP64        // create a new double monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    double identity,                // identity value of the monoid
    double terminal                 // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_FC32   // create a new float complex monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    GxB_FC32_t identity,            // identity value of the monoid
    GxB_FC32_t terminal             // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_FC64   // create a new double complex monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    GxB_FC64_t identity,            // identity value of the monoid
    GxB_FC64_t terminal             // terminal value of the monoid
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new_UDT    // create a monoid with a user type
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    void *identity,                 // identity value of the monoid
    void *terminal                  // terminal value of the monoid
) ;

// Type-generic method for creating a new monoid with a terminal value:

/*

GB_PUBLIC
GrB_Info GxB_Monoid_terminal_new             // create a monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    <type> identity,                // identity value of the monoid
    <type> terminal                 // terminal value of the monoid
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GxB_Monoid_terminal_new(monoid,op,identity,terminal)    \
    _Generic                                                    \
    (                                                           \
        (identity),                                             \
            GB_CASES (, GxB, Monoid_terminal_new)               \
    )                                                           \
    (monoid, op, identity, terminal)
#endif

GB_PUBLIC
GrB_Info GxB_Monoid_operator        // return the monoid operator
(
    GrB_BinaryOp *op,               // returns the binary op of the monoid
    GrB_Monoid monoid               // monoid to query
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_identity        // return the monoid identity
(
    void *identity,                 // returns the identity of the monoid
    GrB_Monoid monoid               // monoid to query
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_terminal        // return the monoid terminal
(
    bool *has_terminal,             // true if the monoid has a terminal value
    void *terminal,                 // returns the terminal of the monoid,
                                    // unmodified if has_terminal is false
    GrB_Monoid monoid               // monoid to query
) ;

GB_PUBLIC
GrB_Info GrB_Monoid_free            // free a user-created monoid
(
    GrB_Monoid *monoid              // handle of monoid to free
) ;

//==============================================================================
// GrB_Semiring
//==============================================================================

typedef struct GB_Semiring_opaque *GrB_Semiring ;

GB_PUBLIC
GrB_Info GrB_Semiring_new           // create a semiring
(
    GrB_Semiring *semiring,         // handle of semiring to create
    GrB_Monoid add,                 // add monoid of the semiring
    GrB_BinaryOp multiply           // multiply operator of the semiring
) ;

GB_PUBLIC
GrB_Info GxB_Semiring_add           // return the add monoid of a semiring
(
    GrB_Monoid *add,                // returns add monoid of the semiring
    GrB_Semiring semiring           // semiring to query
) ;

GB_PUBLIC
GrB_Info GxB_Semiring_multiply      // return multiply operator of a semiring
(
    GrB_BinaryOp *multiply,         // returns multiply operator of the semiring
    GrB_Semiring semiring           // semiring to query
) ;

GB_PUBLIC
GrB_Info GrB_Semiring_free          // free a user-created semiring
(
    GrB_Semiring *semiring          // handle of semiring to free
) ;

//==============================================================================
// GrB_Scalar: a GraphBLAS scalar
//==============================================================================

// GxB_Scalar has become GrB_Scalar. The older name GxB_Scalar is kept as
// historical, but GrB_Scalar should be used instead.

typedef struct GB_Scalar_opaque *GxB_Scalar ;   // historical: use GrB_Scalar
typedef struct GB_Scalar_opaque *GrB_Scalar ;   // use this instead

// These methods create, free, copy, and clear a GrB_Scalar.  The nvals,
// and type methods return basic information about a GrB_Scalar.

GB_PUBLIC
GrB_Info GrB_Scalar_new     // create a new GrB_Scalar with no entry
(
    GrB_Scalar *s,          // handle of GrB_Scalar to create
    GrB_Type type           // type of GrB_Scalar to create
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_dup     // make an exact copy of a GrB_Scalar
(
    GrB_Scalar *s,          // handle of output GrB_Scalar to create
    const GrB_Scalar t      // input GrB_Scalar to copy
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_clear   // clear a GrB_Scalar of its entry
(                           // type remains unchanged.
    GrB_Scalar s            // GrB_Scalar to clear
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_nvals   // get the number of entries in a GrB_Scalar
(
    GrB_Index *nvals,       // GrB_Scalar has nvals entries (0 or 1)
    const GrB_Scalar s      // GrB_Scalar to query
) ;

// NOTE: GxB_Scalar_type is historical.  Use GxB_Scalar_type_name instead.
GB_PUBLIC
GrB_Info GxB_Scalar_type    // get the type of a GrB_Scalar
(
    GrB_Type *type,         // returns the type of the GrB_Scalar
    const GrB_Scalar s      // GrB_Scalar to query
) ;
GB_PUBLIC
GrB_Info GxB_Scalar_type_name      // return the name of the type of a scalar
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Scalar s      // GrB_Scalar to query
) ;

GB_PUBLIC
GrB_Info GxB_Scalar_memoryUsage  // return # of bytes used for a scalar
(
    size_t *size,           // # of bytes used by the scalar s
    const GrB_Scalar s      // GrB_Scalar to query
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_free    // free a GrB_Scalar
(
    GrB_Scalar *s           // handle of GrB_Scalar to free
) ;

// historical names identical to GrB_Scalar_methods above:
GB_PUBLIC GrB_Info GxB_Scalar_new   (GrB_Scalar *s, GrB_Type type) ;
GB_PUBLIC GrB_Info GxB_Scalar_dup   (GrB_Scalar *s, const GrB_Scalar t) ;
GB_PUBLIC GrB_Info GxB_Scalar_clear (GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_nvals (GrB_Index *nvals, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_free  (GrB_Scalar *s) ;

//------------------------------------------------------------------------------
// GrB_Scalar_setElement
//------------------------------------------------------------------------------

// Set a single GrB_Scalar s, from a user scalar x: s = x, typecasting from the
// type of x to the type of w as needed.

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_BOOL     // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    bool x                              // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_INT8     // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    int8_t x                            // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_UINT8    // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    uint8_t x                           // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_INT16    // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    int16_t x                           // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_UINT16   // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    uint16_t x                          // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_INT32    // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    int32_t x                           // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_UINT32   // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    uint32_t x                          // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_INT64    // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    int64_t x                           // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_UINT64   // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    uint64_t x                          // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_FP32     // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    float x                             // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_FP64     // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    double x                            // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GxB_Scalar_setElement_FC32     // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    GxB_FC32_t x                        // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GxB_Scalar_setElement_FC64     // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    GxB_FC64_t x                        // user scalar to assign to s
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_setElement_UDT      // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    void *x                             // user scalar to assign to s
) ;

// historical names identical to GrB_Scalar_methods above:
GB_PUBLIC GrB_Info GxB_Scalar_setElement_BOOL   (GrB_Scalar s, bool     x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_INT8   (GrB_Scalar s, int8_t   x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_INT16  (GrB_Scalar s, int16_t  x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_INT32  (GrB_Scalar s, int32_t  x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_INT64  (GrB_Scalar s, int64_t  x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_UINT8  (GrB_Scalar s, uint8_t  x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_UINT16 (GrB_Scalar s, uint16_t x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_UINT32 (GrB_Scalar s, uint32_t x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_UINT64 (GrB_Scalar s, uint64_t x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_FP32   (GrB_Scalar s, float    x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_FP64   (GrB_Scalar s, double   x) ;
GB_PUBLIC GrB_Info GxB_Scalar_setElement_UDT    (GrB_Scalar s, void    *x) ;

// Type-generic version:  x can be any supported C type or void * for a
// user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Scalar_setElement          // s = x
(
    GrB_Scalar s,                       // GrB_Scalar to modify
    <type> x                            // user scalar to assign to s
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Scalar_setElement(s,x)                  \
    _Generic                                        \
    (                                               \
        (x),                                        \
            GB_CASES (, GrB, Scalar_setElement)     \
    )                                               \
    (s, x)

#define GxB_Scalar_setElement(s,x) GrB_Scalar_setElement (s, x)
#endif

//------------------------------------------------------------------------------
// GrB_Scalar_extractElement
//------------------------------------------------------------------------------

// Extract a single entry from a GrB_Scalar, x = s, typecasting from the type
// of s to the type of x as needed.

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_BOOL     // x = s
(
    bool *x,                        // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_INT8     // x = s
(
    int8_t *x,                      // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_UINT8    // x = s
(
    uint8_t *x,                     // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_INT16    // x = s
(
    int16_t *x,                     // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_UINT16   // x = s
(
    uint16_t *x,                    // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_INT32    // x = s
(
    int32_t *x,                     // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_UINT32   // x = s
(
    uint32_t *x,                    // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_INT64    // x = s
(
    int64_t *x,                     // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_UINT64   // x = s
(
    uint64_t *x,                    // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_FP32     // x = s
(
    float *x,                       // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_FP64     // x = s
(
    double *x,                      // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GxB_Scalar_extractElement_FC32     // x = s
(
    GxB_FC32_t *x,                  // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GxB_Scalar_extractElement_FC64     // x = s
(
    GxB_FC64_t *x,                  // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement_UDT      // x = s
(
    void *x,                        // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

// historical names identical to GrB_Scalar_methods above:
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_BOOL   (bool     *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_INT8   (int8_t   *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_INT16  (int16_t  *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_INT32  (int32_t  *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_INT64  (int64_t  *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_UINT8  (uint8_t  *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_UINT16 (uint16_t *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_UINT32 (uint32_t *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_UINT64 (uint64_t *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_FP32   (float    *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_FP64   (double   *x, const GrB_Scalar s) ;
GB_PUBLIC GrB_Info GxB_Scalar_extractElement_UDT    (void     *x, const GrB_Scalar s) ;

// Type-generic version:  x can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Scalar_extractElement  // x = s
(
    <type> *x,                      // user scalar extracted
    const GrB_Scalar s              // GrB_Scalar to extract an entry from
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Scalar_extractElement(x,s)                  \
    _Generic                                            \
    (                                                   \
        (x),                                            \
            GB_CASES (*, GrB, Scalar_extractElement)    \
    )                                                   \
    (x, s)

#define GxB_Scalar_extractElement(x,s) GrB_Scalar_extractElement (x, s)
#endif

//==============================================================================
// GrB_Vector: a GraphBLAS vector
//==============================================================================

typedef struct GB_Vector_opaque *GrB_Vector ;

// These methods create, free, copy, and clear a vector.  The size, nvals,
// and type methods return basic information about a vector.

GB_PUBLIC
GrB_Info GrB_Vector_new     // create a new vector with no entries
(
    GrB_Vector *v,          // handle of vector to create
    GrB_Type type,          // type of vector to create
    GrB_Index n             // vector dimension is n-by-1
                            // (n must be <= GrB_INDEX_MAX+1)
) ;

GB_PUBLIC
GrB_Info GrB_Vector_dup     // make an exact copy of a vector
(
    GrB_Vector *w,          // handle of output vector to create
    const GrB_Vector u      // input vector to copy
) ;

GB_PUBLIC
GrB_Info GrB_Vector_clear   // clear a vector of all entries;
(                           // type and dimension remain unchanged.
    GrB_Vector v            // vector to clear
) ;

GB_PUBLIC
GrB_Info GrB_Vector_size    // get the dimension of a vector
(
    GrB_Index *n,           // vector dimension is n-by-1
    const GrB_Vector v      // vector to query
) ;

GB_PUBLIC
GrB_Info GrB_Vector_nvals   // get the number of entries in a vector
(
    GrB_Index *nvals,       // vector has nvals entries
    const GrB_Vector v      // vector to query
) ;

// NOTE: GxB_Vector_type is historical.  Use GxB_Vector_type_name instead.
GB_PUBLIC
GrB_Info GxB_Vector_type    // get the type of a vector
(
    GrB_Type *type,         // returns the type of the vector
    const GrB_Vector v      // vector to query
) ;
GB_PUBLIC
GrB_Info GxB_Vector_type_name      // return the name of the type of a vector
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Vector v      // vector to query
) ;

GB_PUBLIC
GrB_Info GxB_Vector_memoryUsage  // return # of bytes used for a vector
(
    size_t *size,           // # of bytes used by the vector v
    const GrB_Vector v      // vector to query
) ;

GB_PUBLIC
GrB_Info GxB_Vector_iso     // return iso status of a vector
(
    bool *iso,              // true if the vector is iso-valued
    const GrB_Vector v      // vector to query
) ;

GB_PUBLIC
GrB_Info GrB_Vector_free    // free a vector
(
    GrB_Vector *v           // handle of vector to free
) ;

//------------------------------------------------------------------------------
// GrB_Vector_build
//------------------------------------------------------------------------------

// GrB_Vector_build:  w = sparse (I,1,X), but using any
// associative operator to assemble duplicate entries.

GB_PUBLIC
GrB_Info GrB_Vector_build_BOOL      // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const bool *X,                  // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_INT8      // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const int8_t *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_UINT8     // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const uint8_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_INT16     // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const int16_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_UINT16    // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const uint16_t *X,              // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_INT32     // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const int32_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_UINT32    // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const uint32_t *X,              // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_INT64     // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const int64_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_UINT64    // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const uint64_t *X,              // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_FP32      // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const float *X,                 // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_FP64      // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const double *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GxB_Vector_build_FC32      // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const GxB_FC32_t *X,            // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GxB_Vector_build_FC64      // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const GxB_FC64_t *X,            // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Vector_build_UDT       // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const void *X,                  // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GxB_Vector_build_Scalar    // build a vector from (i,scalar) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    GrB_Scalar scalar,              // value for all tuples
    GrB_Index nvals                 // number of tuples
) ;

// Type-generic version:  X can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Vector_build           // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const <type> *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Vector_build(w,I,X,nvals,dup)               \
    _Generic                                            \
    (                                                   \
        (X),                                            \
            GB_CASES (*, GrB, Vector_build)             \
    )                                                   \
    (w, I, ((const void *) (X)), nvals, dup)
#endif

//------------------------------------------------------------------------------
// GrB_Vector_setElement
//------------------------------------------------------------------------------

// Set a single scalar in a vector, w(i) = x, typecasting from the type of x to
// the type of w as needed.

GB_PUBLIC
GrB_Info GrB_Vector_setElement_BOOL     // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    bool x,                             // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_INT8     // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    int8_t x,                           // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_UINT8    // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    uint8_t x,                          // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_INT16    // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    int16_t x,                          // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_UINT16   // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    uint16_t x,                         // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_INT32    // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    int32_t x,                          // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_UINT32   // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    uint32_t x,                         // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_INT64    // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    int64_t x,                          // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_UINT64   // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    uint64_t x,                         // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_FP32     // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    float x,                            // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_FP64     // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    double x,                           // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GxB_Vector_setElement_FC32     // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    GxB_FC32_t x,                       // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GxB_Vector_setElement_FC64     // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    GxB_FC64_t x,                       // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_UDT      // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    void *x,                            // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_setElement_Scalar   // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    GrB_Scalar x,                       // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

// Type-generic version:  x can be any supported C type or void * for a
// user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Vector_setElement          // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    <type> x,                           // scalar to assign to w(i)
    GrB_Index i                         // row index
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Vector_setElement(w,x,i)                        \
    _Generic                                                \
    (                                                       \
        (x),                                                \
            GB_CASES (, GrB, Vector_setElement),            \
            default:  GrB_Vector_setElement_Scalar          \
    )                                                       \
    (w, x, i)
#endif

//------------------------------------------------------------------------------
// GrB_Vector_extractElement
//------------------------------------------------------------------------------

// Extract a single entry from a vector, x = v(i), typecasting from the type of
// v to the type of x as needed.

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_BOOL     // x = v(i)
(
    bool *x,                        // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_INT8     // x = v(i)
(
    int8_t *x,                      // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_UINT8    // x = v(i)
(
    uint8_t *x,                     // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_INT16    // x = v(i)
(
    int16_t *x,                     // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_UINT16   // x = v(i)
(
    uint16_t *x,                    // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_INT32    // x = v(i)
(
    int32_t *x,                     // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_UINT32   // x = v(i)
(
    uint32_t *x,                    // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_INT64    // x = v(i)
(
    int64_t *x,                     // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_UINT64   // x = v(i)
(
    uint64_t *x,                    // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_FP32     // x = v(i)
(
    float *x,                       // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_FP64     // x = v(i)
(
    double *x,                      // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GxB_Vector_extractElement_FC32     // x = v(i)
(
    GxB_FC32_t *x,                  // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GxB_Vector_extractElement_FC64     // x = v(i)
(
    GxB_FC64_t *x,                  // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_UDT      // x = v(i)
(
    void *x,                        // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractElement_Scalar   // x = v(i)
(
    GrB_Scalar x,                   // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

// Type-generic version:  x can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Vector_extractElement  // x = v(i)
(
    <type> *x,                      // scalar extracted
    const GrB_Vector v,             // vector to extract an entry from
    GrB_Index i                     // row index
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Vector_extractElement(x,v,i)                        \
    _Generic                                                    \
    (                                                           \
        (x),                                                    \
            GB_CASES (*, GrB, Vector_extractElement),           \
            default:  GrB_Vector_extractElement_Scalar          \
    )                                                           \
    (x, v, i)
#endif

// GxB_Vector_isStoredElement determines if v(i) is present in the structure
// of the vector v, as a stored element.  It does not return the value.  It
// returns GrB_SUCCESS if the element is present, or GrB_NO_VALUE otherwise.

GB_PUBLIC
GrB_Info GxB_Vector_isStoredElement // determine if v(i) is a stored element
(
    const GrB_Vector v,             // vector to check
    GrB_Index i                     // row index
) ;

//------------------------------------------------------------------------------
// GrB_Vector_removeElement
//------------------------------------------------------------------------------

// GrB_Vector_removeElement (v,i) removes the element v(i) from the vector v.

GB_PUBLIC
GrB_Info GrB_Vector_removeElement
(
    GrB_Vector v,                   // vector to remove an element from
    GrB_Index i                     // index
) ;

//------------------------------------------------------------------------------
// GrB_Vector_extractTuples
//------------------------------------------------------------------------------

// Extracts all tuples from a vector, like [I,~,X] = find (v).  If
// any parameter I and/or X is NULL, then that component is not extracted.  For
// example, to extract just the row indices, pass I as non-NULL, and X as NULL.
// This is like [I,~,~] = find (v).

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_BOOL      // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    bool *X,                    // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_INT8      // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    int8_t *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_UINT8     // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    uint8_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_INT16     // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    int16_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_UINT16    // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    uint16_t *X,                // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_INT32     // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    int32_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_UINT32    // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    uint32_t *X,                // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_INT64     // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    int64_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_UINT64    // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    uint64_t *X,                // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_FP32      // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    float *X,                   // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_FP64      // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    double *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GxB_Vector_extractTuples_FC32      // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GxB_FC32_t *X,              // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GxB_Vector_extractTuples_FC64      // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GxB_FC64_t *X,              // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples_UDT       // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    void *X,                    // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

// Type-generic version:  X can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Vector_extractTuples           // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    <type> *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Vector_extractTuples(I,X,nvals,v)           \
    _Generic                                            \
    (                                                   \
        (X),                                            \
            GB_CASES (*, GrB, Vector_extractTuples)     \
    )                                                   \
    (I, X, nvals, v)
#endif

//==============================================================================
// GrB_Matrix: a GraphBLAS matrix
//==============================================================================

typedef struct GB_Matrix_opaque *GrB_Matrix ;

// These methods create, free, copy, and clear a matrix.  The nrows, ncols,
// nvals, and type methods return basic information about a matrix.

GB_PUBLIC
GrB_Info GrB_Matrix_new     // create a new matrix with no entries
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create
    GrB_Index nrows,        // matrix dimension is nrows-by-ncols
    GrB_Index ncols         // (nrows and ncols must be <= GrB_INDEX_MAX+1)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_dup     // make an exact copy of a matrix
(
    GrB_Matrix *C,          // handle of output matrix to create
    const GrB_Matrix A      // input matrix to copy
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_clear   // clear a matrix of all entries;
(                           // type and dimensions remain unchanged
    GrB_Matrix A            // matrix to clear
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_nrows   // get the number of rows of a matrix
(
    GrB_Index *nrows,       // matrix has nrows rows
    const GrB_Matrix A      // matrix to query
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_ncols   // get the number of columns of a matrix
(
    GrB_Index *ncols,       // matrix has ncols columns
    const GrB_Matrix A      // matrix to query
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_nvals   // get the number of entries in a matrix
(
    GrB_Index *nvals,       // matrix has nvals entries
    const GrB_Matrix A      // matrix to query
) ;

// NOTE: GxB_Matrix_type is historical.  Use GxB_Matrix_type_name instead.
GB_PUBLIC
GrB_Info GxB_Matrix_type    // get the type of a matrix
(
    GrB_Type *type,         // returns the type of the matrix
    const GrB_Matrix A      // matrix to query
) ;
GB_PUBLIC
GrB_Info GxB_Matrix_type_name      // return the name of the type of a matrix
(
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    const GrB_Matrix A      // matrix to query
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_memoryUsage  // return # of bytes used for a matrix
(
    size_t *size,           // # of bytes used by the matrix A
    const GrB_Matrix A      // matrix to query
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_iso     // return iso status of a matrix
(
    bool *iso,              // true if the matrix is iso-valued
    const GrB_Matrix A      // matrix to query
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_free    // free a matrix
(
    GrB_Matrix *A           // handle of matrix to free
) ;

//------------------------------------------------------------------------------
// GrB_Matrix_build
//------------------------------------------------------------------------------

// GrB_Matrix_build:  C = sparse (I,J,X), but using any
// associative operator to assemble duplicate entries.

GB_PUBLIC
GrB_Info GrB_Matrix_build_BOOL      // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const bool *X,                  // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_INT8      // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const int8_t *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_UINT8     // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const uint8_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_INT16     // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const int16_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_UINT16    // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const uint16_t *X,              // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_INT32     // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const int32_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_UINT32    // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const uint32_t *X,              // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_INT64     // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const int64_t *X,               // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_UINT64    // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const uint64_t *X,              // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_FP32      // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const float *X,                 // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_FP64      // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const double *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_build_FC32      // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const GxB_FC32_t *X,            // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_build_FC64      // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const GxB_FC64_t *X,            // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_build_UDT       // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const void *X,                  // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_build_Scalar    // build a matrix from (I,J,scalar) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    GrB_Scalar scalar,              // value for all tuples
    GrB_Index nvals                 // number of tuples
) ;

// Type-generic version:  X can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Matrix_build           // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const <type> *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Matrix_build(C,I,J,X,nvals,dup)             \
    _Generic                                            \
    (                                                   \
        (X),                                            \
            GB_CASES (*, GrB, Matrix_build)             \
    )                                                   \
    (C, I, J, ((const void *) (X)), nvals, dup)
#endif

//------------------------------------------------------------------------------
// GrB_Matrix_setElement
//------------------------------------------------------------------------------

// Set a single entry in a matrix, C(i,j) = x, typecasting
// from the type of x to the type of C, as needed.

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_BOOL     // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    bool x,                             // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_INT8     // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    int8_t x,                           // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_UINT8    // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    uint8_t x,                          // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_INT16    // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    int16_t x,                          // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_UINT16   // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    uint16_t x,                         // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_INT32    // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    int32_t x,                          // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_UINT32   // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    uint32_t x,                         // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_INT64    // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    int64_t x,                          // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_UINT64   // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    uint64_t x,                         // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_FP32     // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    float x,                            // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_FP64     // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    double x,                           // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_setElement_FC32     // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    GxB_FC32_t x,                       // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_setElement_FC64     // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    GxB_FC64_t x,                       // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_UDT      // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    void *x,                            // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_setElement_Scalar   // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    GrB_Scalar x,                       // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

// Type-generic version:  x can be any supported C type or void * for a
// user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Matrix_setElement          // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    <type> x,                           // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Matrix_setElement(C,x,i,j)                      \
    _Generic                                                \
    (                                                       \
        (x),                                                \
            GB_CASES (, GrB, Matrix_setElement),            \
            default:  GrB_Matrix_setElement_Scalar          \
    )                                                       \
    (C, x, i, j)
#endif

//------------------------------------------------------------------------------
// GrB_Matrix_extractElement
//------------------------------------------------------------------------------

// Extract a single entry from a matrix, x = A(i,j), typecasting from the type
// of A to the type of x, as needed.

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_BOOL     // x = A(i,j)
(
    bool *x,                            // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_INT8     // x = A(i,j)
(
    int8_t *x,                          // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_UINT8    // x = A(i,j)
(
    uint8_t *x,                         // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_INT16    // x = A(i,j)
(
    int16_t *x,                         // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_UINT16   // x = A(i,j)
(
    uint16_t *x,                        // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_INT32    // x = A(i,j)
(
    int32_t *x,                         // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_UINT32   // x = A(i,j)
(
    uint32_t *x,                        // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_INT64    // x = A(i,j)
(
    int64_t *x,                         // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_UINT64   // x = A(i,j)
(
    uint64_t *x,                        // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_FP32     // x = A(i,j)
(
    float *x,                           // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_FP64     // x = A(i,j)
(
    double *x,                          // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_extractElement_FC32     // x = A(i,j)
(
    GxB_FC32_t *x,                      // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_extractElement_FC64     // x = A(i,j)
(
    GxB_FC64_t *x,                      // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_UDT      // x = A(i,j)
(
    void *x,                            // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement_Scalar   // x = A(i,j)
(
    GrB_Scalar x,                       // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

// Type-generic version:  x can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Matrix_extractElement      // x = A(i,j)
(
    <type> *x,                          // extracted scalar
    const GrB_Matrix A,                 // matrix to extract a scalar from
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Matrix_extractElement(x,A,i,j)                      \
    _Generic                                                    \
    (                                                           \
        (x),                                                    \
            GB_CASES (*, GrB, Matrix_extractElement),           \
            default:  GrB_Matrix_extractElement_Scalar          \
    )                                                           \
    (x, A, i, j)
#endif

// GxB_Matrix_isStoredElement determines if A(i,j) is present in the structure
// of the matrix A, as a stored element.  It does not return the value.  It
// returns GrB_SUCCESS if the element is present, or GrB_NO_VALUE otherwise.

GB_PUBLIC
GrB_Info GxB_Matrix_isStoredElement // determine if A(i,j) is a stored element
(
    const GrB_Matrix A,                 // matrix to check
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;

//------------------------------------------------------------------------------
// GrB_Matrix_removeElement
//------------------------------------------------------------------------------

// GrB_Matrix_removeElement (A,i,j) removes the entry A(i,j) from the matrix A.

GB_PUBLIC
GrB_Info GrB_Matrix_removeElement
(
    GrB_Matrix C,                   // matrix to remove entry from
    GrB_Index i,                    // row index
    GrB_Index j                     // column index
) ;

//------------------------------------------------------------------------------
// GrB_Matrix_extractTuples
//------------------------------------------------------------------------------

// Extracts all tuples from a matrix, like [I,J,X] = find (A).  If
// any parameter I, J and/or X is NULL, then that component is not extracted.
// For example, to extract just the row and col indices, pass I and J as
// non-NULL, and X as NULL.  This is like [I,J,~] = find (A).

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_BOOL      // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    bool *X,                    // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_INT8      // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    int8_t *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_UINT8     // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    uint8_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_INT16     // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    int16_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_UINT16    // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    uint16_t *X,                // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_INT32     // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    int32_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_UINT32    // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    uint32_t *X,                // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_INT64     // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    int64_t *X,                 // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_UINT64    // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    uint64_t *X,                // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_FP32      // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    float *X,                   // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_FP64      // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    double *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_extractTuples_FC32      // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    GxB_FC32_t *X,              // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_extractTuples_FC64      // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    GxB_FC64_t *X,              // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples_UDT       // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    void *X,                    // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

// Type-generic version:  X can be a pointer to any supported C type or void *
// for a user-defined type.

/*

GB_PUBLIC
GrB_Info GrB_Matrix_extractTuples           // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    <type> *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;

*/

#if GxB_STDC_VERSION >= 201112L
#define GrB_Matrix_extractTuples(I,J,X,nvals,A)         \
    _Generic                                            \
    (                                                   \
        (X),                                            \
            GB_CASES (*, GrB, Matrix_extractTuples)     \
    )                                                   \
    (I, J, X, nvals, A)
#endif

//------------------------------------------------------------------------------
// GxB_Matrix_concat and GxB_Matrix_split
//------------------------------------------------------------------------------

// GxB_Matrix_concat concatenates an array of matrices (Tiles) into a single
// GrB_Matrix C.

// Tiles is an m-by-n dense array of matrices held in row-major format, where
// Tiles [i*n+j] is the (i,j)th tile, and where m > 0 and n > 0 must hold.  Let
// A{i,j} denote the (i,j)th tile.  The matrix C is constructed by
// concatenating these tiles together, as:

//  C = [ A{0,0}   A{0,1}   A{0,2}   ... A{0,n-1}
//        A{1,0}   A{1,1}   A{1,2}   ... A{1,n-1}
//        ...
//        A{m-1,0} A{m-1,1} A{m-1,2} ... A{m-1,n-1} ]

// On input, the matrix C must already exist.  Any existing entries in C are
// discarded.  C must have dimensions nrows by ncols where nrows is the sum of
// # of rows in the matrices A{i,0} for all i, and ncols is the sum of the # of
// columns in the matrices A{0,j} for all j.  All matrices in any given tile
// row i must have the same number of rows (that is, nrows(A{i,0}) must equal
// nrows(A{i,j}) for all j), and all matrices in any given tile column j must
// have the same number of columns (that is, ncols(A{0,j}) must equal
// ncols(A{i,j}) for all i).

// The type of C is unchanged, and all matrices A{i,j} are typecasted into the
// type of C.  Any settings made to C by GxB_Matrix_Option_set (format by row
// or by column, bitmap switch, hyper switch, and sparsity control) are
// unchanged.

GB_PUBLIC
GrB_Info GxB_Matrix_concat          // concatenate a 2D array of matrices
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix *Tiles,        // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    const GrB_Descriptor desc       // unused, except threading control
) ;

// GxB_Matrix_split does the opposite of GxB_Matrix_concat.  It splits a single
// input matrix A into a 2D array of tiles.  On input, the Tiles array must be
// a non-NULL pointer to a previously allocated array of size at least m*n
// where both m and n must be > 0.  The Tiles_nrows array has size m, and
// Tiles_ncols has size n.  The (i,j)th tile has dimension
// Tiles_nrows[i]-by-Tiles_ncols[j].  The sum of Tiles_nrows [0:m-1] must equal
// the number of rows of A, and the sum of Tiles_ncols [0:n-1] must equal the
// number of columns of A.  The type of each tile is the same as the type of A;
// no typecasting is done.

GB_PUBLIC
GrB_Info GxB_Matrix_split           // split a matrix into 2D array of matrices
(
    GrB_Matrix *Tiles,              // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    const GrB_Index *Tile_nrows,    // array of size m
    const GrB_Index *Tile_ncols,    // array of size n
    const GrB_Matrix A,             // input matrix to split
    const GrB_Descriptor desc       // unused, except threading control
) ;

//------------------------------------------------------------------------------
// GxB_Matrix_diag, GxB_Vector_diag, GrB_Matrix_diag
//------------------------------------------------------------------------------

// GrB_Matrix_diag constructs a new matrix from a vector.  Let n be the length
// of the v vector, from GrB_Vector_size (&n, v).  If k = 0, then C is an
// n-by-n diagonal matrix with the entries from v along the main diagonal of C,
// with C(i,i) = v(i).  If k is nonzero, C is square with dimension n+abs(k).
// If k is positive, it denotes diagonals above the main diagonal, with
// C(i,i+k) = v(i).  If k is negative, it denotes diagonals below the main
// diagonal of C, with C(i-k,i) = v(i).  C is constructed with the same type
// as v.

GB_PUBLIC
GrB_Info GrB_Matrix_diag    // build a diagonal matrix from a vector
(
    GrB_Matrix *C,                  // output matrix
    const GrB_Vector v,             // input vector
    int64_t k
) ;

// GrB_Matrix_diag is like GxB_Matrix_diag (&C, v, k, NULL), except that C must
// already exist on input, of the correct size.  Any existing entries in C are
// discarded.  The type of C is preserved, so that if the type of C and v
// differ, the entries are typecasted into the type of C.  Any settings made to
// C by GxB_Matrix_Option_set (format by row or by column, bitmap switch, hyper
// switch, and sparsity control) are unchanged.

GB_PUBLIC
GrB_Info GxB_Matrix_diag    // construct a diagonal matrix from a vector
(
    GrB_Matrix C,                   // output matrix
    const GrB_Vector v,             // input vector
    int64_t k,
    const GrB_Descriptor desc       // to specify # of threads
) ;

// GxB_Vector_diag extracts a vector v from an input matrix A, which may be
// rectangular.  If k = 0, the main diagonal of A is extracted; k > 0 denotes
// diagonals above the main diagonal of A, and k < 0 denotes diagonals below
// the main diagonal of A.  Let A have dimension m-by-n.  If k is in the range
// 0 to n-1, then v has length min(m,n-k).  If k is negative and in the range
// -1 to -m+1, then v has length min(m+k,n).  If k is outside these ranges,
// v has length 0 (this is not an error).

// v must already exist on input, of the correct length; that is
// GrB_Vector_size (&len,v) must return len = 0 if k >= n or k <= -m, len =
// min(m,n-k) if k is in the range 0 to n-1, and len = min(m+k,n) if k is in
// the range -1 to -m+1.  Any existing entries in v are discarded.  The type of
// v is preserved, so that if the type of A and v differ, the entries are
// typecasted into the type of v.  Any settings made to v by
// GxB_Vector_Option_set (bitmap switch and sparsity control) are unchanged.

GB_PUBLIC
GrB_Info GxB_Vector_diag    // extract a diagonal from a matrix, as a vector
(
    GrB_Vector v,                   // output vector
    const GrB_Matrix A,             // input matrix
    int64_t k,
    const GrB_Descriptor desc       // unused, except threading control
) ;

//==============================================================================
// SuiteSparse:GraphBLAS options
//==============================================================================

// The following options modify how SuiteSparse:GraphBLAS stores and operates
// on its matrices.  The GxB_*Option* methods allow the user to suggest how the
// internal representation of a matrix, or all matrices, should be held.  These
// options have no effect on the result (except for minor roundoff differences
// for floating-point types). They only affect the time and memory usage of the
// computations.

//      GxB_Matrix_Option_set:  sets an option for a specific matrix
//      GxB_Matrix_Option_get:  queries the current option of a specific matrix
//      GxB_Vector_Option_set:  sets an option for a specific vector
//      GxB_Vector_Option_get:  queries the current option of a specific vector
//      GxB_Global_Option_set:  sets an option for all future matrices
//      GxB_Global_Option_get:  queries current option for all future matrices

#define GxB_HYPER 0     // (historical, use GxB_HYPER_SWITCH)

typedef enum            // for global options or matrix options
{

    //------------------------------------------------------------
    // for GxB_Matrix_Option_get/set and GxB_Global_Option_get/set:
    //------------------------------------------------------------

    GxB_HYPER_SWITCH = 0,   // defines switch to hypersparse (a double value)
    GxB_BITMAP_SWITCH = 34, // defines switch to bitmap (a double value)
    GxB_FORMAT = 1,         // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL

    //------------------------------------------------------------
    // for GxB_Global_Option_get only:
    //------------------------------------------------------------

    GxB_MODE = 2,       // mode passed to GrB_init (blocking or non-blocking)
    GxB_LIBRARY_NAME = 8,           // name of the library (char *)
    GxB_LIBRARY_VERSION = 9,        // library version (3 int's)
    GxB_LIBRARY_DATE = 10,          // date of the library (char *)
    GxB_LIBRARY_ABOUT = 11,         // about the library (char *)
    GxB_LIBRARY_URL = 12,           // URL for the library (char *)
    GxB_LIBRARY_LICENSE = 13,       // license of the library (char *)
    GxB_LIBRARY_COMPILE_DATE = 14,  // date library was compiled (char *)
    GxB_LIBRARY_COMPILE_TIME = 15,  // time library was compiled (char *)
    GxB_API_VERSION = 16,           // API version (3 int's)
    GxB_API_DATE = 17,              // date of the API (char *)
    GxB_API_ABOUT = 18,             // about the API (char *)
    GxB_API_URL = 19,               // URL for the API (char *)
    GxB_COMPILER_VERSION = 23,      // compiler version (3 int's)
    GxB_COMPILER_NAME = 24,         // compiler name (char *)
    GxB_LIBRARY_OPENMP = 25,        // library compiled with OpenMP

    //------------------------------------------------------------
    // for GxB_Global_Option_get/set only:
    //------------------------------------------------------------

    GxB_GLOBAL_NTHREADS = GxB_NTHREADS,  // max number of threads to use
                        // If <= GxB_DEFAULT, then GraphBLAS selects the number
                        // of threads automatically.

    GxB_GLOBAL_CHUNK = GxB_CHUNK,       // chunk size for small problems.
                        // If <= GxB_DEFAULT, then the default is used.

    GxB_BURBLE = 99,    // diagnostic output (bool *)
    GxB_PRINTF = 101,   // printf function diagnostic output
    GxB_FLUSH = 102,    // flush function diagnostic output
    GxB_MEMORY_POOL = 103,  // memory pool control
    GxB_PRINT_1BASED = 104,   // print matrices as 0-based or 1-based

    //------------------------------------------------------------
    // for GxB_Matrix_Option_get only:
    //------------------------------------------------------------

    GxB_SPARSITY_STATUS = 33,       // hyper, sparse, bitmap or full (1,2,4,8)
    GxB_IS_HYPER = 6,               // historical; use GxB_SPARSITY_STATUS

    //------------------------------------------------------------
    // for GxB_Matrix_Option_get/set only:
    //------------------------------------------------------------

    GxB_SPARSITY_CONTROL = 32,      // sparsity control: 0 to 15; see below

    //------------------------------------------------------------
    // GPU and options (DRAFT: do not use)
    //------------------------------------------------------------

    GxB_GLOBAL_GPU_CONTROL = GxB_GPU_CONTROL,
    GxB_GLOBAL_GPU_CHUNK   = GxB_GPU_CHUNK,

} GxB_Option_Field ;

// GxB_FORMAT can be by row or by column:
typedef enum
{
    GxB_BY_ROW = 0,     // CSR: compressed sparse row format
    GxB_BY_COL = 1,     // CSC: compressed sparse column format
    GxB_NO_FORMAT = -1  // format not defined
}
GxB_Format_Value ;

// The default format is by row.  These constants are defined as GB_PUBLIC
// const, so that if SuiteSparse:GraphBLAS is recompiled with a different
// default format, and the application is relinked but not recompiled, it will
// acquire the new default values.
GB_PUBLIC const GxB_Format_Value GxB_FORMAT_DEFAULT ;

// the default hyper_switch parameter
GB_PUBLIC const double GxB_HYPER_DEFAULT ;

// GxB_SPARSITY_CONTROL can be any sum or bitwise OR of these 4 values:
#define GxB_HYPERSPARSE 1   // store matrix in hypersparse form
#define GxB_SPARSE      2   // store matrix as sparse form (compressed vector)
#define GxB_BITMAP      4   // store matrix as a bitmap
#define GxB_FULL        8   // store matrix as full; all entries must be present

// size of b array for GxB_set/get (GxB_BITMAP_SWITCH, b)
#define GxB_NBITMAP_SWITCH 8    // size of bitmap_switch parameter array

// any sparsity value:
#define GxB_ANY_SPARSITY (GxB_HYPERSPARSE + GxB_SPARSE + GxB_BITMAP + GxB_FULL)

// the default sparsity control is any format:
#define GxB_AUTO_SPARSITY GxB_ANY_SPARSITY

// GxB_Matrix_Option_set (A, GxB_SPARSITY_CONTROL, scontrol) provides hints
// about which data structure GraphBLAS should use for the matrix A:
//
//      GxB_AUTO_SPARSITY: GraphBLAS selects automatically.
//      GxB_HYPERSPARSE: always hypersparse, taking O(nvals(A)) space.
//      GxB_SPARSE: always in a sparse struture: compressed-sparse row/column,
//          taking O(nrows+nvals(A)) space if stored by row, or
//          O(ncols+nvals(A)) if stored by column.
//      GxB_BITMAP: always in a bitmap struture, taking O(nrows*ncols) space.
//      GxB_FULL: always in a full structure, taking O(nrows*ncols) space,
//          unless not all entries are present, in which case the bitmap
//          storage is used.
//
// These options can be summed.  For example, to allow a matrix to be sparse
// or hypersparse, but not bitmap or full, use GxB_SPARSE + GxB_HYPERSPARSE.
// Since GxB_FULL can only be used when all entries are present, matrices with
// the just GxB_FULL control setting are stored in bitmap form if any entries
// are not present.
//
// Only the least 4 bits of the sparsity control are considered, so the
// formats can be bitwise negated.  For example, to allow for any format
// except full, use ~GxB_FULL.
//
// GxB_Matrix_Option_get (A, GxB_SPARSITY_STATUS, &sparsity) returns the
// current data structure currently used for the matrix A (either hypersparse,
// sparse, bitmap, or full).
//
// GxB_Matrix_Option_get (A, GxB_SPARSITY_CONTROL, &scontrol) returns the hint
// for how A should be stored (hypersparse, sparse, bitmap, or full, or any
// combination).

// GxB_HYPER_SWITCH:
//      If the matrix or vector structure can be sparse or hypersparse, the
//      GxB_HYPER_SWITCH parameter controls when each of these structures are
//      used.  The parameter is not used if the matrix or vector is full or
//      bitmap.
//
//      Let k be the actual number of non-empty vectors (with at least one
//      entry).  This value k is not dependent on whether or not the matrix is
//      stored in hypersparse structure.  Let n be the number of vectors (the #
//      of columns if CSC, or rows if CSR).  Let h be the value of the
//      GxB_HYPER_SWITCH setting of the matrix.
//
//      If a matrix is currently hypersparse, it can be converted to
//      non-hypersparse if (n <= 1  || k > 2*n*h).  Otherwise it stays
//      hypersparse.  If (n <= 1) the matrix is always stored as
//      non-hypersparse.
//
//      If currently non-hypersparse, it can be converted to hypersparse if (n
//      > 1 && k <= n*h).  Otherwise, it stays non-hypersparse.  If (n <= 1)
//      the matrix always remains non-hypersparse.
//
//      Setting GxB_HYPER_SWITCH to GxB_ALWAYS_HYPER or GxB_NEVER_HYPER ensures
//      a matrix always stays hypersparse, or always stays non-hypersparse,
//      respectively.

GB_PUBLIC const double GxB_ALWAYS_HYPER, GxB_NEVER_HYPER ;

GB_PUBLIC
GrB_Info GxB_Matrix_Option_set      // set an option in a matrix
(
    GrB_Matrix A,                   // matrix to modify
    GxB_Option_Field field,         // option to change
    ...                             // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_Option_set_INT32    // set an option in a matrix
(
    GrB_Matrix A,                   // matrix to modify
    GxB_Option_Field field,         // option to change
    int32_t value                   // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_Option_set_FP64     // set an option in a matrix
(
    GrB_Matrix A,                   // matrix to modify
    GxB_Option_Field field,         // option to change
    double value                    // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_Option_get      // gets the current option of a matrix
(
    GrB_Matrix A,                   // matrix to query
    GxB_Option_Field field,         // option to query
    ...                             // return value of the matrix option
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_Option_get_INT32    // gets the current option of a matrix
(
    GrB_Matrix A,                   // matrix to query
    GxB_Option_Field field,         // option to query
    int32_t *value                  // return value of the matrix option
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_Option_get_FP64     // gets the current option of a matrix
(
    GrB_Matrix A,                   // matrix to query
    GxB_Option_Field field,         // option to query
    double *value                   // return value of the matrix option
) ;

GB_PUBLIC
GrB_Info GxB_Vector_Option_set      // set an option in a vector
(
    GrB_Vector A,                   // vector to modify
    GxB_Option_Field field,         // option to change
    ...                             // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Vector_Option_set_INT32    // set an option in a vector
(
    GrB_Vector v,                   // vector to modify
    GxB_Option_Field field,         // option to change
    int32_t value                   // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Vector_Option_set_FP64    // set an option in a vector
(
    GrB_Vector v,                   // vector to modify
    GxB_Option_Field field,         // option to change
    double value                    // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Vector_Option_get      // gets the current option of a vector
(
    GrB_Vector A,                   // vector to query
    GxB_Option_Field field,         // option to query
    ...                             // return value of the vector option
) ;

GB_PUBLIC
GrB_Info GxB_Vector_Option_get_INT32    // gets the current option of a vector
(
    GrB_Vector v,                   // vector to query
    GxB_Option_Field field,         // option to query
    int32_t *value                  // return value of the vector option
) ;

GB_PUBLIC
GrB_Info GxB_Vector_Option_get_FP64      // gets the current option of a vector
(
    GrB_Vector v,                   // vector to query
    GxB_Option_Field field,         // option to query
    double *value                   // return value of the vector option
) ;

// GxB_Global_Option_set controls the global defaults used when a new matrix is
// created.  GrB_init defines the following initial settings:
//
//      GxB_Global_Option_set (GxB_HYPER_SWITCH, GxB_HYPER_DEFAULT) ;
//      GxB_Global_Option_set (GxB_BITMAP_SWITCH, NULL) ;
//      GxB_Global_Option_set (GxB_FORMAT, GxB_FORMAT_DEFAULT) ;
//
// The compile-time constants GxB_HYPER_DEFAULT and GxB_FORMAT_DEFAULT are
// equal to 0.0625 and GxB_BY_ROW, by default.  That is, by default, all new
// matrices are held by row in CSR format.  If a matrix has fewer than n/16
// columns, it can be converted to hypersparse structure.  If it has more than
// n/8 columns, it can be converted to a sparse structure.  Modifying these
// global settings via GxB_Global_Option_set has no effect on matrices already
// created.

GB_PUBLIC
GrB_Info GxB_Global_Option_set      // set a global default option
(
    GxB_Option_Field field,         // option to change
    ...                             // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_set_INT32      // set a global default option
(
    GxB_Option_Field field,         // option to change
    int32_t value                   // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_set_FP64      // set a global default option
(
    GxB_Option_Field field,         // option to change
    double value                    // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_set_FP64_ARRAY      // set a global default option
(
    GxB_Option_Field field,         // option to change
    double *value                   // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_set_INT64_ARRAY      // set a global default option
(
    GxB_Option_Field field,         // option to change
    int64_t *value                  // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_set_FUNCTION      // set a global default option
(
    GxB_Option_Field field,         // option to change
    void *value                     // value to change it to
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_get      // gets the current global default option
(
    GxB_Option_Field field,         // option to query
    ...                             // return value of the global option
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_get_INT32    // gets the current global option
(
    GxB_Option_Field field,         // option to query
    int32_t *value                  // return value of the global option
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_get_FP64     // gets the current global option
(
    GxB_Option_Field field,         // option to query
    double *value                   // return value of the global option
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_get_INT64        // gets the current global option
(
    GxB_Option_Field field,         // option to query
    int64_t *value                  // return value of the global option
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_get_CHAR         // gets the current global option
(
    GxB_Option_Field field,         // option to query
    char **value                    // return value of the global option
) ;

GB_PUBLIC
GrB_Info GxB_Global_Option_get_FUNCTION // gets the current global option
(
    GxB_Option_Field field,         // option to query
    void **value                    // return value of the global option
) ;

//------------------------------------------------------------------------------
// GxB_set and GxB_get
//------------------------------------------------------------------------------

// The simplest way to set/get a value of a GrB_Descriptor is with
// the generic GxB_set and GxB_get functions:

//      GxB_set (desc, field, value) ;
//      GxB_get (desc, field, &value) ;

// GxB_set and GxB_get are generic methods that and set or query the options in
// a GrB_Matrix, a GrB_Descriptor, or in the global options.  They can be used
// with the following syntax.  Note that GxB_NTHREADS can be used for both the
// global nthreads_max, and for the # of threads in the descriptor.

// To set/get the global options:
//
//      GxB_set (GxB_HYPER_SWITCH, double h) ;
//      GxB_set (GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;
//      GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
//      GxB_get (GxB_HYPER_SWITCH, double *h) ;
//
//      double b [GxB_NBITMAP_SWITCH] ;
//      GxB_set (GxB_BITMAP_SWITCH, b) ;
//      GxB_set (GxB_BITMAP_SWITCH, NULL) ;     // set defaults
//      GxB_get (GxB_BITMAP_SWITCH, b) ;
//
//      GxB_set (GxB_FORMAT, GxB_BY_ROW) ;
//      GxB_set (GxB_FORMAT, GxB_BY_COL) ;
//      GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;
//
//      GxB_set (GxB_NTHREADS, nthreads_max) ;
//      GxB_get (GxB_NTHREADS, int *nthreads_max) ;
//
//      GxB_set (GxB_CHUNK, double chunk) ;
//      GxB_get (GxB_CHUNK, double *chunk) ;
//
//      GxB_set (GxB_BURBLE, bool burble) ;
//      GxB_get (GxB_BURBLE, bool *burble) ;
//
//      GxB_set (GxB_PRINTF, void *printf_function) ;
//      GxB_get (GxB_PRINTF, void **printf_function) ;
//
//      GxB_set (GxB_FLUSH, void *flush_function) ;
//      GxB_get (GxB_FLUSH, void **flush_function) ;
//
//      int64_t free_pool_limit [64] ;
//      GxB_set (GxB_MEMORY_POOL, free_pool_limit) ;
//      GxB_set (GxB_MEMORY_POOL, NULL) ;     // set defaults
//      GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;

// To get global options that can be queried but not modified:
//
//      GxB_get (GxB_MODE, GrB_Mode *mode) ;

// To set/get a matrix option:
//
//      GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, double h) ;
//      GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;
//      GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;
//      GxB_get (GrB_Matrix A, GxB_HYPER_SWITCH, double *h) ;
//
//      GxB_set (GrB_Matrix A, GxB_BITMAP_SWITCH, double b) ;
//      GxB_get (GrB_Matrix A, GxB_BITMAP_SWITCH, double *b) ;
//
//      GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;
//      GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;
//      GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ;
//
//      GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;
//      GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, scontrol) ;
//      GxB_get (GrB_Matrix A, GxB_SPARSITY_CONTROL, int *scontrol) ;
//
//      GxB_get (GrB_Matrix A, GxB_SPARSITY_STATUS, int *sparsity) ;

// To set/get a vector option or status:
//
//      GxB_set (GrB_Vector v, GxB_BITMAP_SWITCH, double b) ;
//      GxB_get (GrB_Vector v, GxB_BITMAP_SWITCH, double *b) ;
//
//      GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_ROW) ;
//      GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_COL) ;
//      GxB_get (GrB_Vector v, GxB_FORMAT, GxB_Format_Value *s) ;
//
//      GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;
//      GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, scontrol) ;
//      GxB_get (GrB_Vector v, GxB_SPARSITY_CONTROL, int *scontrol) ;
//
//      GxB_get (GrB_Vector v, GxB_SPARSITY_STATUS, int *sparsity) ;

// To set/get a descriptor field:
//
//      GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;
//      GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;
//      GxB_get (GrB_Descriptor d, GrB_OUTP, GrB_Desc_Value *v) ;
//
//      GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;
//      GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP) ;
//      GxB_set (GrB_Descriptor d, GrB_MASK, GrB_STRUCTURE) ;
//      GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP + GrB_STRUCTURE) ;
//      GxB_get (GrB_Descriptor d, GrB_MASK, GrB_Desc_Value *v) ;
//
//      GxB_set (GrB_Descriptor d, GrB_INP0, GxB_DEFAULT) ;
//      GxB_set (GrB_Descriptor d, GrB_INP0, GrB_TRAN) ;
//      GxB_get (GrB_Descriptor d, GrB_INP0, GrB_Desc_Value *v) ;
//
//      GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;
//      GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN) ;
//      GxB_get (GrB_Descriptor d, GrB_INP1, GrB_Desc_Value *v) ;
//
//      GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_DEFAULT) ;
//      GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;
//      GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HASH) ;
//      GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_SAXPY) ;
//      GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_DOT) ;
//      GxB_get (GrB_Descriptor d, GrB_AxB_METHOD, GrB_Desc_Value *v) ;
//
//      GxB_set (GrB_Descriptor d, GxB_NTHREADS, nthreads) ;
//      GxB_get (GrB_Descriptor d, GxB_NTHREADS, int *nthreads) ;
//
//      GxB_set (GrB_Descriptor d, GxB_CHUNK, double chunk) ;
//      GxB_get (GrB_Descriptor d, GxB_CHUNK, double *chunk) ;
//
//      GxB_set (GrB_Descriptor d, GxB_SORT, int sort) ;
//      GxB_get (GrB_Descriptor d, GxB_SORT, int *sort) ;
//
//      GxB_set (GrB_Descriptor d, GxB_COMPRESSION, int method) ;
//      GxB_get (GrB_Descriptor d, GxB_COMPRESSION, int *method) ;
//
//      GxB_set (GrB_Descriptor d, GxB_IMPORT, int method) ;
//      GxB_get (GrB_Descriptor d, GxB_IMPORT, int *method) ;

#if GxB_STDC_VERSION >= 201112L
#define GxB_set(arg1,...)                                       \
    _Generic                                                    \
    (                                                           \
        (arg1),                                                 \
            int              : GxB_Global_Option_set ,          \
            GxB_Option_Field : GxB_Global_Option_set ,          \
            GrB_Vector       : GxB_Vector_Option_set ,          \
            GrB_Matrix       : GxB_Matrix_Option_set ,          \
            GrB_Descriptor   : GxB_Desc_set                     \
    )                                                           \
    (arg1, __VA_ARGS__)

#define GxB_get(arg1,...)                                       \
    _Generic                                                    \
    (                                                           \
        (arg1),                                                 \
            const int              : GxB_Global_Option_get ,    \
                  int              : GxB_Global_Option_get ,    \
            const GxB_Option_Field : GxB_Global_Option_get ,    \
                  GxB_Option_Field : GxB_Global_Option_get ,    \
            const GrB_Vector       : GxB_Vector_Option_get ,    \
                  GrB_Vector       : GxB_Vector_Option_get ,    \
            const GrB_Matrix       : GxB_Matrix_Option_get ,    \
                  GrB_Matrix       : GxB_Matrix_Option_get ,    \
            const GrB_Descriptor   : GxB_Desc_get          ,    \
                  GrB_Descriptor   : GxB_Desc_get               \
    )                                                           \
    (arg1, __VA_ARGS__)
#endif

//==============================================================================
// GrB_free: free any GraphBLAS object
//==============================================================================

// for null and invalid objects
#define GrB_NULL NULL
#define GrB_INVALID_HANDLE NULL

#if GxB_STDC_VERSION >= 201112L
#define GrB_free(object)                                \
    _Generic                                            \
    (                                                   \
        (object),                                       \
            GrB_Type         *: GrB_Type_free         , \
            GrB_UnaryOp      *: GrB_UnaryOp_free      , \
            GrB_BinaryOp     *: GrB_BinaryOp_free     , \
            GxB_SelectOp     *: GxB_SelectOp_free     , \
            GrB_IndexUnaryOp *: GrB_IndexUnaryOp_free , \
            GrB_Monoid       *: GrB_Monoid_free       , \
            GrB_Semiring     *: GrB_Semiring_free     , \
            GrB_Scalar       *: GrB_Scalar_free       , \
            GrB_Vector       *: GrB_Vector_free       , \
            GrB_Matrix       *: GrB_Matrix_free       , \
            GrB_Descriptor   *: GrB_Descriptor_free   , \
            GxB_Iterator     *: GxB_Iterator_free       \
    )                                                   \
    (object)
#endif

//==============================================================================
// GrB_wait: finish computations
//==============================================================================

typedef enum
{
    GrB_COMPLETE = 0,       // establishes a happens-before relation
    GrB_MATERIALIZE = 1     // object is complete
}
GrB_WaitMode ;

// Finish all pending work in a specific object.

GB_PUBLIC GrB_Info GrB_Type_wait         (GrB_Type       type    , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_UnaryOp_wait      (GrB_UnaryOp    op      , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_BinaryOp_wait     (GrB_BinaryOp   op      , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GxB_SelectOp_wait     (GxB_SelectOp   op      , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_IndexUnaryOp_wait (GrB_IndexUnaryOp op    , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_Monoid_wait       (GrB_Monoid     monoid  , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_Semiring_wait     (GrB_Semiring   semiring, GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_Descriptor_wait   (GrB_Descriptor desc    , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_Scalar_wait       (GrB_Scalar     s       , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_Vector_wait       (GrB_Vector     v       , GrB_WaitMode waitmode) ;
GB_PUBLIC GrB_Info GrB_Matrix_wait       (GrB_Matrix     A       , GrB_WaitMode waitmode) ;

// GrB_wait (object,waitmode) polymorphic function:
#if GxB_STDC_VERSION >= 201112L
#define GrB_wait(object,waitmode)                       \
    _Generic                                            \
    (                                                   \
        (object),                                       \
            GrB_Type         : GrB_Type_wait         ,  \
            GrB_UnaryOp      : GrB_UnaryOp_wait      ,  \
            GrB_BinaryOp     : GrB_BinaryOp_wait     ,  \
            GxB_SelectOp     : GxB_SelectOp_wait     ,  \
            GrB_IndexUnaryOp : GrB_IndexUnaryOp_wait ,  \
            GrB_Monoid       : GrB_Monoid_wait       ,  \
            GrB_Semiring     : GrB_Semiring_wait     ,  \
            GrB_Scalar       : GrB_Scalar_wait       ,  \
            GrB_Vector       : GrB_Vector_wait       ,  \
            GrB_Matrix       : GrB_Matrix_wait       ,  \
            GrB_Descriptor   : GrB_Descriptor_wait      \
    )                                                   \
    (object, waitmode)
#endif

// NOTE: GxB_Scalar_wait is historical; use GrB_Scalar_wait instead
GB_PUBLIC GrB_Info GxB_Scalar_wait (GrB_Scalar *s) ;

//==============================================================================
// GrB_error: error handling
//==============================================================================

// Each GraphBLAS method and operation returns a GrB_Info error code.
// GrB_error returns additional information on the error in a thread-safe
// null-terminated string.  The string returned by GrB_error is owned by
// the GraphBLAS library and must not be free'd.

GB_PUBLIC GrB_Info GrB_Type_error         (const char **error, const GrB_Type       type) ;
GB_PUBLIC GrB_Info GrB_UnaryOp_error      (const char **error, const GrB_UnaryOp      op) ;
GB_PUBLIC GrB_Info GrB_BinaryOp_error     (const char **error, const GrB_BinaryOp     op) ;
GB_PUBLIC GrB_Info GxB_SelectOp_error     (const char **error, const GxB_SelectOp     op) ;
GB_PUBLIC GrB_Info GrB_IndexUnaryOp_error (const char **error, const GrB_IndexUnaryOp op) ;
GB_PUBLIC GrB_Info GrB_Monoid_error       (const char **error, const GrB_Monoid     monoid) ;
GB_PUBLIC GrB_Info GrB_Semiring_error     (const char **error, const GrB_Semiring semiring) ;
GB_PUBLIC GrB_Info GrB_Scalar_error       (const char **error, const GrB_Scalar       s) ;
GB_PUBLIC GrB_Info GrB_Vector_error       (const char **error, const GrB_Vector       v) ;
GB_PUBLIC GrB_Info GrB_Matrix_error       (const char **error, const GrB_Matrix       A) ;
GB_PUBLIC GrB_Info GrB_Descriptor_error   (const char **error, const GrB_Descriptor   d) ;
// GxB_Scalar_error is historical: use GrB_Scalar_error instead
GB_PUBLIC GrB_Info GxB_Scalar_error       (const char **error, const GrB_Scalar       s) ;

// GrB_error (error,object) polymorphic function:
#if GxB_STDC_VERSION >= 201112L
#define GrB_error(error,object)                                 \
    _Generic                                                    \
    (                                                           \
        (object),                                               \
            const GrB_Type         : GrB_Type_error         ,   \
                  GrB_Type         : GrB_Type_error         ,   \
            const GrB_UnaryOp      : GrB_UnaryOp_error      ,   \
                  GrB_UnaryOp      : GrB_UnaryOp_error      ,   \
            const GrB_BinaryOp     : GrB_BinaryOp_error     ,   \
                  GrB_BinaryOp     : GrB_BinaryOp_error     ,   \
            const GxB_SelectOp     : GxB_SelectOp_error     ,   \
                  GxB_SelectOp     : GxB_SelectOp_error     ,   \
            const GrB_IndexUnaryOp : GrB_IndexUnaryOp_error ,   \
                  GrB_IndexUnaryOp : GrB_IndexUnaryOp_error ,   \
            const GrB_Monoid       : GrB_Monoid_error       ,   \
                  GrB_Monoid       : GrB_Monoid_error       ,   \
            const GrB_Semiring     : GrB_Semiring_error     ,   \
                  GrB_Semiring     : GrB_Semiring_error     ,   \
            const GrB_Scalar       : GrB_Scalar_error       ,   \
                  GrB_Scalar       : GrB_Scalar_error       ,   \
            const GrB_Vector       : GrB_Vector_error       ,   \
                  GrB_Vector       : GrB_Vector_error       ,   \
            const GrB_Matrix       : GrB_Matrix_error       ,   \
                  GrB_Matrix       : GrB_Matrix_error       ,   \
            const GrB_Descriptor   : GrB_Descriptor_error   ,   \
                  GrB_Descriptor   : GrB_Descriptor_error       \
    )                                                           \
    (error, object)
#endif

//==============================================================================
// GrB_mxm, vxm, mxv: matrix multiplication over a semiring
//==============================================================================

GB_PUBLIC
GrB_Info GrB_mxm                    // C<Mask> = accum (C, A*B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Semiring semiring,    // defines '+' and '*' for A*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_vxm                    // w'<Mask> = accum (w, u'*A)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Semiring semiring,    // defines '+' and '*' for u'*A
    const GrB_Vector u,             // first input:  vector u
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_mxv                    // w<Mask> = accum (w, A*u)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Semiring semiring,    // defines '+' and '*' for A*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;

//==============================================================================
// GrB_eWiseMult: element-wise matrix and vector operations, set intersection
//==============================================================================

// GrB_eWiseMult computes C<Mask> = accum (C, A.*B), where ".*" is the Hadamard
// product, and where pairs of elements in two matrices (or vectors) are
// pairwise "multiplied" with C(i,j) = mult (A(i,j),B(i,j)).

GB_PUBLIC
GrB_Info GrB_Vector_eWiseMult_Semiring       // w<Mask> = accum (w, u.*v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Semiring semiring,    // defines '.*' for t=u.*v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_eWiseMult_Monoid         // w<Mask> = accum (w, u.*v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Monoid monoid,        // defines '.*' for t=u.*v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_eWiseMult_BinaryOp       // w<Mask> = accum (w, u.*v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp mult,        // defines '.*' for t=u.*v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_eWiseMult_Semiring       // C<Mask> = accum (C, A.*B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Semiring semiring,    // defines '.*' for T=A.*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_eWiseMult_Monoid         // C<Mask> = accum (C, A.*B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Monoid monoid,        // defines '.*' for T=A.*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_eWiseMult_BinaryOp       // C<Mask> = accum (C, A.*B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp mult,        // defines '.*' for T=A.*B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

// All 6 of the above type-specific functions are captured in a single
// type-generic function, GrB_eWiseMult:

#if GxB_STDC_VERSION >= 201112L
#define GrB_eWiseMult(C,Mask,accum,op,A,B,desc)                              \
    _Generic                                                                 \
    (                                                                        \
        (C),                                                                 \
            GrB_Matrix :                                                     \
                _Generic                                                     \
                (                                                            \
                    (op),                                                    \
                        const GrB_Semiring : GrB_Matrix_eWiseMult_Semiring , \
                              GrB_Semiring : GrB_Matrix_eWiseMult_Semiring , \
                        const GrB_Monoid   : GrB_Matrix_eWiseMult_Monoid   , \
                              GrB_Monoid   : GrB_Matrix_eWiseMult_Monoid   , \
                        const GrB_BinaryOp : GrB_Matrix_eWiseMult_BinaryOp , \
                              GrB_BinaryOp : GrB_Matrix_eWiseMult_BinaryOp   \
                ),                                                           \
            GrB_Vector :                                                     \
                _Generic                                                     \
                (                                                            \
                    (op),                                                    \
                        const GrB_Semiring : GrB_Vector_eWiseMult_Semiring , \
                              GrB_Semiring : GrB_Vector_eWiseMult_Semiring , \
                        const GrB_Monoid   : GrB_Vector_eWiseMult_Monoid   , \
                              GrB_Monoid   : GrB_Vector_eWiseMult_Monoid   , \
                        const GrB_BinaryOp : GrB_Vector_eWiseMult_BinaryOp , \
                              GrB_BinaryOp : GrB_Vector_eWiseMult_BinaryOp   \
                )                                                            \
    )                                                                        \
    (C, Mask, accum, op, A, B, desc)
#endif

//==============================================================================
// GrB_eWiseAdd: element-wise matrix and vector operations, set union
//==============================================================================

// GrB_eWiseAdd computes C<Mask> = accum (C, A+B), where pairs of elements in
// two matrices (or two vectors) are pairwise "added".

GB_PUBLIC
GrB_Info GrB_Vector_eWiseAdd_Semiring       // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Semiring semiring,    // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_eWiseAdd_Monoid         // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Monoid monoid,        // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_eWiseAdd_BinaryOp       // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp add,         // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Vector v,             // second input: vector v
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_eWiseAdd_Semiring       // C<Mask> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Semiring semiring,    // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_eWiseAdd_Monoid         // C<Mask> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Monoid monoid,        // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_eWiseAdd_BinaryOp       // C<Mask> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp add,         // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

#if GxB_STDC_VERSION >= 201112L
#define GrB_eWiseAdd(C,Mask,accum,op,A,B,desc)                              \
    _Generic                                                                \
    (                                                                       \
        (C),                                                                \
            GrB_Matrix :                                                    \
                _Generic                                                    \
                (                                                           \
                    (op),                                                   \
                        const GrB_Semiring : GrB_Matrix_eWiseAdd_Semiring , \
                              GrB_Semiring : GrB_Matrix_eWiseAdd_Semiring , \
                        const GrB_Monoid   : GrB_Matrix_eWiseAdd_Monoid   , \
                              GrB_Monoid   : GrB_Matrix_eWiseAdd_Monoid   , \
                        const GrB_BinaryOp : GrB_Matrix_eWiseAdd_BinaryOp , \
                              GrB_BinaryOp : GrB_Matrix_eWiseAdd_BinaryOp   \
                ),                                                          \
            GrB_Vector :                                                    \
                _Generic                                                    \
                (                                                           \
                    (op),                                                   \
                        const GrB_Semiring : GrB_Vector_eWiseAdd_Semiring , \
                              GrB_Semiring : GrB_Vector_eWiseAdd_Semiring , \
                        const GrB_Monoid   : GrB_Vector_eWiseAdd_Monoid   , \
                              GrB_Monoid   : GrB_Vector_eWiseAdd_Monoid   , \
                        const GrB_BinaryOp : GrB_Vector_eWiseAdd_BinaryOp , \
                              GrB_BinaryOp : GrB_Vector_eWiseAdd_BinaryOp   \
                )                                                           \
    )                                                                       \
    (C, Mask, accum, op, A, B, desc)
#endif

//==============================================================================
// GxB_eWiseUnion: a variant of GrB_eWiseAdd
//==============================================================================

// GxB_eWiseUnion is a variant of eWiseAdd.  The methods create a result with
// the same sparsity structure.  They differ when an entry is present in A but
// not B, or in B but not A.

// eWiseAdd does the following, for a matrix, where "+" is the add binary op:

//      if A(i,j) and B(i,j) are both present:
//          C(i,j) = A(i,j) + B(i,j)
//      else if A(i,j) is present but not B(i,j)
//          C(i,j) = A(i,j)
//      else if B(i,j) is present but not A(i,j)
//          C(i,j) = B(i,j)

// by contrast, eWiseUnion always applies the operator:

//      if A(i,j) and B(i,j) are both present:
//          C(i,j) = A(i,j) + B(i,j)
//      else if A(i,j) is present but not B(i,j)
//          C(i,j) = A(i,j) + beta
//      else if B(i,j) is present but not A(i,j)
//          C(i,j) = alpha + B(i,j)

GB_PUBLIC
GrB_Info GxB_Vector_eWiseUnion      // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp add,         // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar alpha,
    const GrB_Vector v,             // second input: vector v
    const GrB_Scalar beta,
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_eWiseUnion      // C<M> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp add,         // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar alpha,
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Scalar beta,
    const GrB_Descriptor desc       // descriptor for C, M, A, and B
) ;

#if GxB_STDC_VERSION >= 201112L
#define GxB_eWiseUnion(C,Mask,accum,op,A,alpha,B,beta,desc)                 \
    _Generic                                                                \
    (                                                                       \
        (C),                                                                \
            const GrB_Matrix : GxB_Matrix_eWiseUnion ,                      \
                  GrB_Matrix : GxB_Matrix_eWiseUnion ,                      \
            const GrB_Vector : GxB_Vector_eWiseUnion ,                      \
                  GrB_Vector : GxB_Vector_eWiseUnion                        \
    )                                                                       \
    (C, Mask, accum, op, A, alpha, B, beta, desc)
#endif

//==============================================================================
// GrB_extract: extract a submatrix or subvector
//==============================================================================

// Extract entries from a matrix or vector; T = A(I,J).  This (like most
// GraphBLAS methods) is then followed by C<Mask>=accum(C,T).

// To extract all rows of a matrix or vector, as in A (:,J), use I=GrB_ALL as
// the input argument.  For all columns of a matrix, use J=GrB_ALL.

GB_PUBLIC const uint64_t *GrB_ALL ;

// To extract a range of rows and columns, I and J can be a list of 2 or 3
// indices that defines a range (begin:end) or a strided range (begin:inc:end).
// To specify the colon syntax I = begin:end, the array I has size at least 2,
// where I [GxB_BEGIN] = begin and I [GxB_END] = end.  The parameter ni is then
// passed as the special value GxB_RANGE.  To specify the colon syntax I =
// begin:inc:end, the array I has size at least three, with the values begin,
// end, and inc (in that order), and then pass in the value ni = GxB_STRIDE.
// The same can be done for the list J and its size, nj.

// These special values of ni and nj can be used for GrB_assign,
// GrB_extract, and GxB_subassign.
#define GxB_RANGE       (INT64_MAX)
#define GxB_STRIDE      (INT64_MAX-1)
#define GxB_BACKWARDS   (INT64_MAX-2)

// for the strided range begin:inc:end, I [GxB_BEGIN] is the value of begin, I
// [GxB_END] is the value end, I [GxB_INC] is the magnitude of the stride.  If
// the stride is negative, use ni = GxB_BACKWARDS.
#define GxB_BEGIN (0)
#define GxB_END   (1)
#define GxB_INC   (2)

// For example, the notation 10:-2:1 defines a sequence [10 8 6 4 2].
// The end point of the sequence (1) need not appear in the sequence, if
// the last increment goes past it.  To specify the same in GraphBLAS,
// use:

//      GrB_Index I [3], ni = GxB_BACKWARDS ;
//      I [GxB_BEGIN ] = 10 ;               // the start of the sequence
//      I [GxB_INC   ] = 2 ;                // the magnitude of the increment
//      I [GxB_END   ] = 1 ;                // the end of the sequence

GB_PUBLIC
GrB_Info GrB_Vector_extract         // w<mask> = accum (w, u(I))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Vector u,             // first input:  vector u
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_extract         // C<Mask> = accum (C, A(I,J))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C, Mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Col_extract            // w<mask> = accum (w, A(I,j))
(
    GrB_Vector w,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    GrB_Index j,                    // column index
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;

//------------------------------------------------------------------------------
// GrB_extract: generic matrix/vector extraction
//------------------------------------------------------------------------------

// GrB_extract is a generic interface to the following functions:

// GrB_Vector_extract (w,mask,acc,u,I,ni,d)      // w<m>    = acc (w, u(I))
// GrB_Col_extract    (w,mask,acc,A,I,ni,j,d)    // w<m>    = acc (w, A(I,j))
// GrB_Matrix_extract (C,Mask,acc,A,I,ni,J,nj,d) // C<Mask> = acc (C, A(I,J))

#if GxB_STDC_VERSION >= 201112L
#define GrB_extract(arg1,Mask,accum,arg4,...) \
    _Generic                                                    \
    (                                                           \
        (arg1),                                                 \
            GrB_Vector :                                        \
                _Generic                                        \
                (                                               \
                    (arg4),                                     \
                        const GrB_Vector : GrB_Vector_extract , \
                              GrB_Vector : GrB_Vector_extract , \
                        const GrB_Matrix : GrB_Col_extract    , \
                              GrB_Matrix : GrB_Col_extract      \
                ),                                              \
            GrB_Matrix : GrB_Matrix_extract                     \
    )                                                           \
    (arg1, Mask, accum, arg4, __VA_ARGS__)
#endif

//==============================================================================
// GxB_subassign: matrix and vector subassign: C(I,J)<Mask> = accum (C(I,J), A)
//==============================================================================

// Assign entries in a matrix or vector; C(I,J) = A.

// Each GxB_subassign function is very similar to its corresponding GrB_assign
// function in the spec, but they differ in two ways: (1) the mask in
// GxB_subassign has the same size as w(I) for vectors and C(I,J) for matrices,
// and (2) they differ in the GrB_REPLACE option.  See the user guide for
// details.

// In GraphBLAS notation, the two methods can be described as follows:

// matrix and vector subassign: C(I,J)<Mask> = accum (C(I,J), A)
// matrix and vector    assign: C<Mask>(I,J) = accum (C(I,J), A)

// --- assign ------------------------------------------------------------------
//
// GrB_Matrix_assign      C<M>(I,J) += A        M same size as matrix C.
//                                              A is |I|-by-|J|
//
// GrB_Vector_assign      w<m>(I)   += u        m same size as column vector w.
//                                              u is |I|-by-1
//
// GrB_Row_assign         C<m'>(i,J) += u'      m is a column vector the same
//                                              size as a row of C.
//                                              u is |J|-by-1, i is a scalar.
//
// GrB_Col_assign         C<m>(I,j) += u        m is a column vector the same
//                                              size as a column of C.
//                                              u is |I|-by-1, j is a scalar.
//
// --- subassign ---------------------------------------------------------------
//
// GxB_Matrix_subassign   C(I,J)<M> += A        M same size as matrix A.
//                                              A is |I|-by-|J|
//
// GxB_Vector_subassign   w(I)<m>   += u        m same size as column vector u.
//                                              u is |I|-by-1
//
// GxB_Row_subassign      C(i,J)<m'> += u'      m same size as column vector u.
//                                              u is |J|-by-1, i is a scalar.
//
// GxB_Col_subassign      C(I,j)<m> += u        m same size as column vector u.
//                                              u is |I|-by-1, j is a scalar.

GB_PUBLIC
GrB_Info GxB_Vector_subassign       // w(I)<mask> = accum (w(I),u)
(
    GrB_Vector w,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),t)
    const GrB_Vector u,             // first input:  vector u
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign       // C(I,J)<Mask> = accum (C(I,J),A)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J), Mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Col_subassign          // C(I,j)<mask> = accum (C(I,j),u)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(I,j), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(I,j),t)
    const GrB_Vector u,             // input vector
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    GrB_Index j,                    // column index
    const GrB_Descriptor desc       // descriptor for C(I,j) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Row_subassign          // C(i,J)<mask'> = accum (C(i,J),u')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(i,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(i,J),t)
    const GrB_Vector u,             // input vector
    GrB_Index i,                    // row index
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(i,J) and mask
) ;

//------------------------------------------------------------------------------
// GxB_Vector_subassign_[SCALAR]:  scalar expansion assignment to subvector
//------------------------------------------------------------------------------

// Assigns a single scalar to a subvector, w(I)<mask> = accum(w(I),x).  The
// scalar x is implicitly expanded into a vector u of size ni-by-1, with each
// entry in u equal to x, and then w(I)<mask> = accum(w(I),u) is done.

GB_PUBLIC
GrB_Info GxB_Vector_subassign_BOOL  // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),x)
    bool x,                         // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_INT8  // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int8_t x,                       // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_UINT8 // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint8_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_INT16 // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int16_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_UINT16   // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint16_t x,                     // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_INT32    // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int32_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_UINT32   // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint32_t x,                     // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_INT64    // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int64_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_UINT64   // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint64_t x,                     // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_FP32     // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    float x,                        // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_FP64     // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    double x,                       // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_FC32     // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    GxB_FC32_t x,                   // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_FC64     // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    GxB_FC64_t x,                   // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_UDT      // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    void *x,                        // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_subassign_Scalar   // w(I)<mask> = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w(I), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    GrB_Scalar x,                   // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w(I) and mask
) ;

//------------------------------------------------------------------------------
// GxB_Matrix_subassign_[SCALAR]:  scalar expansion assignment to submatrix
//------------------------------------------------------------------------------

// Assigns a single scalar to a submatrix, C(I,J)<Mask> = accum(C(I,J),x).  The
// scalar x is implicitly expanded into a matrix A of size ni-by-nj, with each
// entry in A equal to x, and then C(I,J)<Mask> = accum(C(I,J),A) is done.

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_BOOL  // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    bool x,                         // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_INT8  // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int8_t x,                       // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_UINT8 // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint8_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_INT16 // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int16_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_UINT16   // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint16_t x,                     // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_INT32    // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int32_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_UINT32   // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint32_t x,                     // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_INT64    // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int64_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_UINT64   // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint64_t x,                     // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_FP32     // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    float x,                        // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_FP64     // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    double x,                       // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_FC32     // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    GxB_FC32_t x,                   // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_FC64     // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    GxB_FC64_t x,                   // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_UDT      // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    void *x,                        // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_subassign_Scalar   // C(I,J)<Mask> = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C(I,J), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    GrB_Scalar x,                   // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(I,J) and Mask
) ;

//------------------------------------------------------------------------------
// GxB_subassign: generic submatrix/subvector assignment
//------------------------------------------------------------------------------

// GxB_subassign is a generic function that provides access to all specific
// GxB_*_subassign* functions:

// GxB_Vector_subassign   (w,m,acc,u,I,ni,d)      // w(I)<m>    = acc(w(I),u)
// GxB_Matrix_subassign   (C,M,acc,A,I,ni,J,nj,d) // C(I,J)<M>  = acc(C(I,J),A)
// GxB_Col_subassign      (C,m,acc,u,I,ni,j,d)    // C(I,j)<m>  = acc(C(I,j),u)
// GxB_Row_subassign      (C,m,acc,u,i,J,nj,d)    // C(i,J)<m'> = acc(C(i,J),u')
// GxB_Vector_subassign_T (w,m,acc,x,I,ni,d)      // w(I)<m>    = acc(w(I),x)
// GxB_Matrix_subassign_T (C,M,acc,x,I,ni,J,nj,d) // C(I,J)<M>  = acc(C(I,J),x)

#if GxB_STDC_VERSION >= 201112L
#define GxB_subassign(arg1,Mask,accum,arg4,arg5,...)                    \
    _Generic                                                            \
    (                                                                   \
        (arg1),                                                         \
        GrB_Vector :                                                    \
            _Generic                                                    \
            (                                                           \
                (arg4),                                                 \
                    GB_CASES (, GxB, Vector_subassign) ,                \
                    const GrB_Scalar : GxB_Vector_subassign_Scalar,     \
                          GrB_Scalar : GxB_Vector_subassign_Scalar,     \
                    default:  GxB_Vector_subassign                      \
            ),                                                          \
        default:                                                        \
            _Generic                                                    \
            (                                                           \
                (arg4),                                                 \
                    GB_CASES (, GxB, Matrix_subassign) ,                \
                    const GrB_Scalar : GxB_Matrix_subassign_Scalar,     \
                          GrB_Scalar : GxB_Matrix_subassign_Scalar,     \
                    const GrB_Vector :                                  \
                        _Generic                                        \
                        (                                               \
                            (arg5),                                     \
                                const GrB_Index *: GxB_Col_subassign ,  \
                                      GrB_Index *: GxB_Col_subassign ,  \
                                default:           GxB_Row_subassign    \
                        ),                                              \
                    GrB_Vector :                                        \
                        _Generic                                        \
                        (                                               \
                            (arg5),                                     \
                                const GrB_Index *: GxB_Col_subassign ,  \
                                      GrB_Index *: GxB_Col_subassign ,  \
                                default:           GxB_Row_subassign    \
                        ),                                              \
                    default:  GxB_Matrix_subassign                      \
            )                                                           \
    )                                                                   \
    (arg1, Mask, accum, arg4, arg5, __VA_ARGS__)
#endif

//==============================================================================
// GrB_assign: matrix and vector assign: C<Mask>(I,J) = accum (C(I,J), A)
//==============================================================================

// Assign entries in a matrix or vector; C(I,J) = A.
// Each of these can be used with their generic name, GrB_assign.

GB_PUBLIC
GrB_Info GrB_Vector_assign          // w<mask>(I) = accum (w(I),u)
(
    GrB_Vector w,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),t)
    const GrB_Vector u,             // first input:  vector u
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign          // C<Mask>(I,J) = accum (C(I,J),A)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C, Mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Col_assign             // C<mask>(I,j) = accum (C(I,j),u)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(:,j), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(I,j),t)
    const GrB_Vector u,             // input vector
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    GrB_Index j,                    // column index
    const GrB_Descriptor desc       // descriptor for C(:,j) and mask
) ;

GB_PUBLIC
GrB_Info GrB_Row_assign             // C<mask'>(i,J) = accum (C(i,J),u')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Vector mask,          // optional mask for C(i,:), unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C(i,J),t)
    const GrB_Vector u,             // input vector
    GrB_Index i,                    // row index
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C(i,:) and mask
) ;

//------------------------------------------------------------------------------
// GrB_Vector_assign_[SCALAR]:  scalar expansion assignment to subvector
//------------------------------------------------------------------------------

// Assigns a single scalar to a subvector, w<mask>(I) = accum(w(I),x).  The
// scalar x is implicitly expanded into a vector u of size ni-by-1, with each
// entry in u equal to x, and then w<mask>(I) = accum(w(I),u) is done.

GB_PUBLIC
GrB_Info GrB_Vector_assign_BOOL     // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w(I),x)
    bool x,                         // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_INT8     // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int8_t x,                       // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_UINT8    // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint8_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_INT16    // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int16_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_UINT16   // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint16_t x,                     // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_INT32    // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int32_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_UINT32   // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint32_t x,                     // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_INT64    // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    int64_t x,                      // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_UINT64   // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    uint64_t x,                     // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_FP32     // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    float x,                        // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_FP64     // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    double x,                       // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_assign_FC32     // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    GxB_FC32_t x,                   // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_assign_FC64     // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    GxB_FC64_t x,                   // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_UDT      // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    void *x,                        // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_assign_Scalar   // w<mask>(I) = accum (w(I),x)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(w(I),x)
    GrB_Scalar x,                   // scalar to assign to w(I)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

//------------------------------------------------------------------------------
// GrB_Matrix_assign_[SCALAR]:  scalar expansion assignment to submatrix
//------------------------------------------------------------------------------

// Assigns a single scalar to a submatrix, C<Mask>(I,J) = accum(C(I,J),x).  The
// scalar x is implicitly expanded into a matrix A of size ni-by-nj, with each
// entry in A equal to x, and then C<Mask>(I,J) = accum(C(I,J),A) is done.

GB_PUBLIC
GrB_Info GrB_Matrix_assign_BOOL     // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    bool x,                         // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_INT8     // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int8_t x,                       // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_UINT8    // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint8_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_INT16    // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int16_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_UINT16   // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint16_t x,                     // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_INT32    // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int32_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_UINT32   // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint32_t x,                     // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_INT64    // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    int64_t x,                      // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_UINT64   // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    uint64_t x,                     // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_FP32     // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    float x,                        // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_FP64     // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    double x,                       // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_assign_FC32     // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    GxB_FC32_t x,                   // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_assign_FC64     // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    GxB_FC64_t x,                   // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_UDT      // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    void *x,                        // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_assign_Scalar   // C<Mask>(I,J) = accum (C(I,J),x)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C(I,J),x)
    GrB_Scalar x,                   // scalar to assign to C(I,J)
    const GrB_Index *I,             // row indices
    GrB_Index ni,                   // number of row indices
    const GrB_Index *J,             // column indices
    GrB_Index nj,                   // number of column indices
    const GrB_Descriptor desc       // descriptor for C and Mask
) ;

//------------------------------------------------------------------------------
// GrB_assign: generic submatrix/subvector assignment
//------------------------------------------------------------------------------

// GrB_assign is a generic function that provides access to all specific
// GrB_*_assign* functions:

// GrB_Vector_assign_T (w,m,acc,x,I,ni,d)      // w<m>(I)    = acc(w(I),x)
// GrB_Vector_assign   (w,m,acc,u,I,ni,d)      // w<m>(I)    = acc(w(I),u)
// GrB_Matrix_assign_T (C,M,acc,x,I,ni,J,nj,d) // C<M>(I,J)  = acc(C(I,J),x)
// GrB_Col_assign      (C,m,acc,u,I,ni,j,d)    // C<m>(I,j)  = acc(C(I,j),u)
// GrB_Row_assign      (C,m,acc,u,i,J,nj,d)    // C<m'>(i,J) = acc(C(i,J),u')
// GrB_Matrix_assign   (C,M,acc,A,I,ni,J,nj,d) // C<M>(I,J)  = acc(C(I,J),A)

#if GxB_STDC_VERSION >= 201112L
#define GrB_assign(arg1,Mask,accum,arg4,arg5,...)                       \
    _Generic                                                            \
    (                                                                   \
        (arg1),                                                         \
            GrB_Vector :                                                \
                _Generic                                                \
                (                                                       \
                    (arg4),                                             \
                        GB_CASES (, GrB, Vector_assign) ,               \
                        const GrB_Scalar : GrB_Vector_assign_Scalar ,   \
                              GrB_Scalar : GrB_Vector_assign_Scalar ,   \
                        default:  GrB_Vector_assign                     \
                ),                                                      \
            default:                                                    \
                _Generic                                                \
                (                                                       \
                    (arg4),                                             \
                        GB_CASES (, GrB, Matrix_assign) ,               \
                        const GrB_Scalar : GrB_Matrix_assign_Scalar ,   \
                              GrB_Scalar : GrB_Matrix_assign_Scalar ,   \
                        const GrB_Vector :                              \
                            _Generic                                    \
                            (                                           \
                                (arg5),                                 \
                                const GrB_Index *: GrB_Col_assign ,     \
                                      GrB_Index *: GrB_Col_assign ,     \
                                default:           GrB_Row_assign       \
                            ),                                          \
                        GrB_Vector :                                    \
                            _Generic                                    \
                            (                                           \
                                (arg5),                                 \
                                const GrB_Index *: GrB_Col_assign ,     \
                                      GrB_Index *: GrB_Col_assign ,     \
                                default:           GrB_Row_assign       \
                            ),                                          \
                        default:  GrB_Matrix_assign                     \
                )                                                       \
    )                                                                   \
    (arg1, Mask, accum, arg4, arg5, __VA_ARGS__)
#endif

//==============================================================================
// GrB_apply: matrix and vector apply
//==============================================================================

// Apply a unary, index_unary, or binary operator to entries in a matrix or
// vector, C<M> = accum (C, op (A)).

GB_PUBLIC
GrB_Info GrB_Vector_apply           // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_UnaryOp op,           // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply           // C<Mask> = accum (C, op(A)) or op(A')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_UnaryOp op,           // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

//-------------------------------------------
// vector apply: binaryop variants (bind 1st)
//-------------------------------------------

// Apply a binary operator to the entries in a vector, binding the first
// input to a scalar x, w<mask> = accum (w, op (x,u)).

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_Scalar    // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Scalar x,             // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

// historical: identical to GxB_Vector_apply_BinaryOp1st
GB_PUBLIC
GrB_Info GxB_Vector_apply_BinaryOp1st           // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Scalar x,             // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_BOOL      // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    bool x,                         // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_INT8      // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int8_t x,                       // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_INT16     // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int16_t x,                      // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_INT32     // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int32_t x,                      // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_INT64     // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int64_t x,                      // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_UINT8     // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint8_t x,                      // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_UINT16    // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint16_t x,                     // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_UINT32    // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint32_t x,                     // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_UINT64    // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint64_t x,                     // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_FP32      // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    float x,                        // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_FP64      // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    double x,                       // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_apply_BinaryOp1st_FC32      // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    GxB_FC32_t x,                   // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_apply_BinaryOp1st_FC64      // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    GxB_FC64_t x,                   // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp1st_UDT       // w<mask> = accum (w, op(x,u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const void *x,                  // first input:  scalar x
    const GrB_Vector u,             // second input: vector u
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

//-------------------------------------------
// vector apply: binaryop variants (bind 2nd)
//-------------------------------------------

// Apply a binary operator to the entries in a vector, binding the second
// input to a scalar y, w<mask> = accum (w, op (u,y)).

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_Scalar    // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

// historical: identical to GrB_Vector_apply_BinaryOp2nd_Scalar
GB_PUBLIC
GrB_Info GxB_Vector_apply_BinaryOp2nd           // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_BOOL      // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    bool y,                         // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_INT8      // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int8_t y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_INT16     // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int16_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_INT32     // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int32_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_INT64     // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int64_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_UINT8     // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint8_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_UINT16    // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint16_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_UINT32    // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint32_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_UINT64    // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint64_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_FP32      // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    float y,                        // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_FP64      // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    double y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_apply_BinaryOp2nd_FC32      // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    GxB_FC32_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_apply_BinaryOp2nd_FC64      // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    GxB_FC64_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_BinaryOp2nd_UDT       // w<mask> = accum (w, op(u,y))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const void *y,                  // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

//-------------------------------------------
// vector apply: IndexUnaryOp variants
//-------------------------------------------

// Apply a GrB_IndexUnaryOp to the entries in a vector

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_Scalar    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_BOOL      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    bool y,                         // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_INT8      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int8_t y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_INT16     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int16_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_INT32     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int32_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_INT64     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int64_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_UINT8     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint8_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_UINT16    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint16_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_UINT32    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint32_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_UINT64    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint64_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_FP32      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    float y,                        // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_FP64      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    double y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_apply_IndexOp_FC32      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    GxB_FC32_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_apply_IndexOp_FC64      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    GxB_FC64_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_apply_IndexOp_UDT       // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const void *y,                  // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

//-------------------------------------------
// matrix apply: binaryop variants (bind 1st)
//-------------------------------------------

// Apply a binary operator to the entries in a matrix, binding the first input
// to a scalar x, C<Mask> = accum (C, op (x,A)), or op(x,A').

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_Scalar    // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Scalar x,             // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

// historical: identical to GrB_Matrix_apply_BinaryOp1st_Scalar
GB_PUBLIC
GrB_Info GxB_Matrix_apply_BinaryOp1st           // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Scalar x,             // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_BOOL      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    bool x,                         // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_INT8      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int8_t x,                       // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_INT16     // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int16_t x,                      // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_INT32     // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int32_t x,                      // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_INT64     // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    int64_t x,                      // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_UINT8      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint8_t x,                      // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_UINT16     // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint16_t x,                     // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_UINT32     // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint32_t x,                     // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_UINT64     // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    uint64_t x,                     // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_FP32      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    float x,                        // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_FP64      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    double x,                       // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_apply_BinaryOp1st_FC32      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    GxB_FC32_t x,                   // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_apply_BinaryOp1st_FC64      // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    GxB_FC64_t x,                   // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp1st_UDT       // C<M>=accum(C,op(x,A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const void *x,                  // first input:  scalar x
    const GrB_Matrix A,             // second input: matrix A
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

//-------------------------------------------
// matrix apply: binaryop variants (bind 2nd)
//-------------------------------------------

// Apply a binary operator to the entries in a matrix, binding the second input
// to a scalar y, C<Mask> = accum (C, op (A,y)), or op(A',y).

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_Scalar    // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

// historical: identical to GrB_Matrix_apply_BinaryOp2nd_Scalar
GB_PUBLIC
GrB_Info GxB_Matrix_apply_BinaryOp2nd           // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_BOOL      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    bool y,                         // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_INT8      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int8_t y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_INT16     // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int16_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_INT32     // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int32_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_INT64     // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int64_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_UINT8      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint8_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_UINT16     // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint16_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_UINT32     // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint32_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_UINT64     // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint64_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_FP32      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    float y,                        // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_FP64      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    double y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_apply_BinaryOp2nd_FC32      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    GxB_FC32_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_apply_BinaryOp2nd_FC64      // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    GxB_FC64_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_BinaryOp2nd_UDT       // C<M>=accum(C,op(A,y))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const void *y,                  // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

//-------------------------------------------
// matrix apply: IndexUnaryOp variants
//-------------------------------------------

// Apply a GrB_IndexUnaryOp to the entries in a matrix.

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_Scalar    // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_BOOL      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    bool y,                         // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_INT8      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int8_t y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_INT16     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int16_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_INT32     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int32_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_INT64     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int64_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_UINT8      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint8_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_UINT16     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint16_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_UINT32     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint32_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_UINT64     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint64_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_FP32      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    float y,                        // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_FP64      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    double y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_apply_IndexOp_FC32      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    GxB_FC32_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_apply_IndexOp_FC64      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    GxB_FC64_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_apply_IndexOp_UDT       // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const void *y,                  // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

//------------------------------------------------------------------------------
// GrB_apply: generic matrix/vector apply
//------------------------------------------------------------------------------

// GrB_apply is a generic function for applying a unary operator to a matrix
// or vector and provides access to these functions:

// GrB_Vector_apply (w,mask,acc,op,u,d)  // w<mask> = accum (w, op(u))
// GrB_Matrix_apply (C,Mask,acc,op,A,d)  // C<Mask> = accum (C, op(A))

// GrB_Vector_apply                  (w,m,acc,unop ,u,d)
// GrB_Vector_apply_BinaryOp1st_TYPE (w,m,acc,binop,x,u,d)
// GrB_Vector_apply_BinaryOp2nd_TYPE (w,m,acc,binop,u,y,d)
// GrB_Vector_apply_IndexOp_TYPE     (w,m,acc,idxop,u,y,d)

// GrB_Matrix_apply                  (C,M,acc,unop ,A,d)
// GrB_Matrix_apply_BinaryOp1st_TYPE (C,M,acc,binop,x,A,d)
// GrB_Matrix_apply_BinaryOp2nd_TYPE (C,M,acc,binop,A,y,d)
// GrB_Matrix_apply_IndexOp_TYPE     (C,M,acc,idxop,A,y,d)

#if GxB_STDC_VERSION >= 201112L

#define GB_BIND(kind,x,y,...)                                                \
    _Generic                                                                 \
    (                                                                        \
        (x),                                                                 \
        const GrB_Scalar: GB_CONCAT ( GrB,_,kind,_apply_BinaryOp1st_Scalar), \
              GrB_Scalar: GB_CONCAT ( GrB,_,kind,_apply_BinaryOp1st_Scalar), \
        GB_CASES (, GrB, GB_CONCAT ( kind, _apply_BinaryOp1st,, )) ,         \
        default:                                                             \
            _Generic                                                         \
            (                                                                \
                (y),                                                         \
                GB_CASES (, GrB, GB_CONCAT ( kind , _apply_BinaryOp2nd,, )), \
                default:  GB_CONCAT ( GrB,_,kind,_apply_BinaryOp2nd_Scalar)  \
            )                                                                \
    )

#define GB_IDXOP(kind,A,y,...)                                               \
    _Generic                                                                 \
    (                                                                        \
        (y),                                                                 \
            GB_CASES (, GrB, GB_CONCAT ( kind, _apply_IndexOp,, )),          \
            default:  GB_CONCAT ( GrB, _, kind, _apply_IndexOp_Scalar)       \
    )

#define GrB_apply(C,Mask,accum,op,...)                                       \
    _Generic                                                                 \
    (                                                                        \
        (C),                                                                 \
            GrB_Vector :                                                     \
                _Generic                                                     \
                (                                                            \
                    (op),                                                    \
                        GrB_UnaryOp  : GrB_Vector_apply ,                    \
                        GrB_BinaryOp : GB_BIND (Vector, __VA_ARGS__),        \
                        GrB_IndexUnaryOp : GB_IDXOP (Vector, __VA_ARGS__)    \
                ),                                                           \
            GrB_Matrix :                                                     \
                _Generic                                                     \
                (                                                            \
                    (op),                                                    \
                        GrB_UnaryOp  : GrB_Matrix_apply ,                    \
                        GrB_BinaryOp : GB_BIND (Matrix, __VA_ARGS__),        \
                        GrB_IndexUnaryOp : GB_IDXOP (Matrix, __VA_ARGS__)    \
                )                                                            \
    )                                                                        \
    (C, Mask, accum, op, __VA_ARGS__)
#endif

//==============================================================================
// GrB_select: matrix and vector selection using an IndexUnaryOp
//==============================================================================

//-------------------------------------------
// vector select using an IndexUnaryOp
//-------------------------------------------

GB_PUBLIC
GrB_Info GrB_Vector_select_Scalar   // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_BOOL      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    bool y,                         // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_INT8      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int8_t y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_INT16     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int16_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_INT32     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int32_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_INT64     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    int64_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_UINT8     // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint8_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_UINT16    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint16_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_UINT32    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint32_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_UINT64    // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    uint64_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_FP32      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    float y,                        // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_FP64      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    double y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_select_FC32      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    GxB_FC32_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Vector_select_FC64      // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    GxB_FC64_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GrB_Vector_select_UDT       // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const void *y,                  // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

//-------------------------------------------
// matrix select using an IndexUnaryOp
//-------------------------------------------

GB_PUBLIC
GrB_Info GrB_Matrix_select_Scalar   // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_BOOL     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    bool y,                         // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_INT8     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int8_t y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_INT16    // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int16_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_INT32    // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int32_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_INT64    // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    int64_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_UINT8    // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint8_t y,                      // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_UINT16   // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint16_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_UINT32   // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint32_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_UINT64   // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    uint64_t y,                     // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_FP32     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    float y,                        // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_FP64     // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    double y,                       // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_select_FC32      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    GxB_FC32_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_select_FC64      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    GxB_FC64_t y,                   // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_select_UDT      // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const void *y,                  // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

// GrB_select is a generic method that applies an IndexUnaryOp to
// a matrix or vector, using any type of the scalar y.

// GrB_Vector_select_TYPE (w,m,acc,idxop,u,y,d)
// GrB_Matrix_select_TYPE (C,M,acc,idxop,A,y,d)

#if GxB_STDC_VERSION >= 201112L
#define GrB_select(C,Mask,accum,op,x,y,d)                               \
    _Generic                                                            \
    (                                                                   \
        (C),                                                            \
            GrB_Vector :                                                \
                _Generic                                                \
                (                                                       \
                    (y),                                                \
                        GB_CASES (, GrB, Vector_select),                \
                        default:  GrB_Vector_select_Scalar              \
                ),                                                      \
            GrB_Matrix :                                                \
                _Generic                                                \
                (                                                       \
                    (y),                                                \
                        GB_CASES (, GrB, Matrix_select),                \
                        default:  GrB_Matrix_select_Scalar              \
                )                                                       \
    )                                                                   \
    (C, Mask, accum, op, x, y, d)
#endif

//==============================================================================
// GxB_select: matrix and vector selection (historical)
//==============================================================================

// GrB_select and with the GrB_IndexUnaryOp operators should be used instead.

GB_PUBLIC
GrB_Info GxB_Vector_select          // w<mask> = accum (w, op(u,k))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GxB_SelectOp op,          // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar Thunk,         // optional input for the select operator
    const GrB_Descriptor desc       // descriptor for w and mask
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_select          // C<Mask> = accum (C, op(A,k)) or op(A',k)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GxB_SelectOp op,          // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar Thunk,         // optional input for the select operator
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;

#if GxB_STDC_VERSION >= 201112L
#define GxB_select(C,Mask,accum,op,A,Thunk,desc)    \
    _Generic                                        \
    (                                               \
        (C),                                        \
            GrB_Vector   : GxB_Vector_select ,      \
            GrB_Matrix   : GxB_Matrix_select        \
    )                                               \
    (C, Mask, accum, op, A, Thunk, desc)
#endif

//==============================================================================
// GrB_reduce: matrix and vector reduction
//==============================================================================

// Reduce the entries in a matrix to a vector, a column vector t such that
// t(i) = sum (A (i,:)), and where "sum" is a commutative and associative
// monoid with an identity value.  A can be transposed, which reduces down the
// columns instead of the rows.

// For GrB_Matrix_reduce_BinaryOp, the GrB_BinaryOp op must correspond to a
// known built-in monoid:
//
//      operator                data-types (all built-in)
//      ----------------------  ---------------------------
//      MIN, MAX                INT*, UINT*, FP*
//      TIMES, PLUS             INT*, UINT*, FP*, FC*
//      ANY                     INT*, UINT*, FP*, FC*, BOOL
//      LOR, LAND, LXOR, EQ     BOOL
//      BOR, BAND, BXOR, BXNOR  UINT*

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_Monoid   // w<mask> = accum (w,reduce(A))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Monoid monoid,        // reduce operator for t=reduce(A)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_BinaryOp // w<mask> = accum (w,reduce(A))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp op,          // reduce operator for t=reduce(A)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;

//------------------------------------------------------------------------------
// reduce a vector to a scalar
//------------------------------------------------------------------------------

// Reduce entries in a vector to a scalar, c = accum (c, reduce_to_scalar(u))

GB_PUBLIC
GrB_Info GrB_Vector_reduce_BOOL     // c = accum (c, reduce_to_scalar (u))
(
    bool *c,                        // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_INT8     // c = accum (c, reduce_to_scalar (u))
(
    int8_t *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_UINT8    // c = accum (c, reduce_to_scalar (u))
(
    uint8_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_INT16    // c = accum (c, reduce_to_scalar (u))
(
    int16_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_UINT16   // c = accum (c, reduce_to_scalar (u))
(
    uint16_t *c,                    // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_INT32    // c = accum (c, reduce_to_scalar (u))
(
    int32_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_UINT32   // c = accum (c, reduce_to_scalar (u))
(
    uint32_t *c,                    // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_INT64    // c = accum (c, reduce_to_scalar (u))
(
    int64_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_UINT64   // c = accum (c, reduce_to_scalar (u))
(
    uint64_t *c,                    // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_FP32     // c = accum (c, reduce_to_scalar (u))
(
    float *c,                       // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_FP64     // c = accum (c, reduce_to_scalar (u))
(
    double *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_reduce_FC32     // c = accum (c, reduce_to_scalar (u))
(
    GxB_FC32_t *c,                  // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_reduce_FC64     // c = accum (c, reduce_to_scalar (u))
(
    GxB_FC64_t *c,                  // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_UDT      // c = accum (c, reduce_to_scalar (u))
(
    void *c,                        // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_Monoid_Scalar   // c = accum(c,reduce_to_scalar(u))
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Vector_reduce_BinaryOp_Scalar
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_BinaryOp op,          // binary op to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc
) ;

//------------------------------------------------------------------------------
// reduce a matrix to a scalar
//------------------------------------------------------------------------------

// Reduce entries in a matrix to a scalar, c = accum (c, reduce_to_scalar(A))

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_BOOL     // c = accum (c, reduce_to_scalar (A))
(
    bool *c,                        // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_INT8     // c = accum (c, reduce_to_scalar (A))
(
    int8_t *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_UINT8    // c = accum (c, reduce_to_scalar (A))
(
    uint8_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_INT16    // c = accum (c, reduce_to_scalar (A))
(
    int16_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_UINT16   // c = accum (c, reduce_to_scalar (A))
(
    uint16_t *c,                    // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_INT32    // c = accum (c, reduce_to_scalar (A))
(
    int32_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_UINT32   // c = accum (c, reduce_to_scalar (A))
(
    uint32_t *c,                    // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_INT64    // c = accum (c, reduce_to_scalar (A))
(
    int64_t *c,                     // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_UINT64   // c = accum (c, reduce_to_scalar (A))
(
    uint64_t *c,                    // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_FP32     // c = accum (c, reduce_to_scalar (A))
(
    float *c,                       // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_FP64     // c = accum (c, reduce_to_scalar (A))
(
    double *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_reduce_FC32     // c = accum (c, reduce_to_scalar (A))
(
    GxB_FC32_t *c,                  // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_reduce_FC64     // c = accum (c, reduce_to_scalar (A))
(
    GxB_FC64_t *c,                  // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_UDT      // c = accum (c, reduce_to_scalar (A))
(
    void *c,                        // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_Monoid_Scalar   // c = accum(c,reduce_to_scalar(A))
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_reduce_BinaryOp_Scalar
(
    GrB_Scalar S,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_BinaryOp op,          // binary op to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc
) ;

//------------------------------------------------------------------------------
// GrB_reduce: generic matrix/vector reduction to a vector or scalar
//------------------------------------------------------------------------------

// GrB_reduce is a generic function that provides access to all GrB_*reduce*
// functions:

// reduce matrix to vector:
// GrB_Matrix_reduce_Monoid   (w,mask,acc,mo,A,d) // w<mask> = acc (w,reduce(A))
// GrB_Matrix_reduce_BinaryOp (w,mask,acc,op,A,d) // w<mask> = acc (w,reduce(A))

// reduce matrix to scalar:
// GrB_Vector_reduce_[SCALAR] (c,acc,monoid,u,d)  // c = acc (c,reduce(u))
// GrB_Matrix_reduce_[SCALAR] (c,acc,monoid,A,d)  // c = acc (c,reduce(A))
// GrB_Vector_reduce_Monoid_Scalar (s,acc,monoid,u,d)   // s = acc (s,reduce(u))
// GrB_Matrix_reduce_Monoid_Scalar (s,acc,monoid,A,d)   // s = acc (s,reduce(A))
// GrB_Vector_reduce_BinaryOp_Scalar (s,acc,op,u,d)     // s = acc (s,reduce(u))
// GrB_Matrix_reduce_BinaryOp_Scalar (s,acc,op,A,d)     // s = acc (s,reduce(A))

#if GxB_STDC_VERSION >= 201112L
#define GB_REDUCE_TO_SCALAR(kind,c,op)                                         \
    _Generic                                                                   \
    (                                                                          \
        (c),                                                                   \
            GB_CASES (*, GrB, GB_CONCAT ( kind, _reduce,, )),                  \
            default:                                                           \
                _Generic                                                       \
                (                                                              \
                    (op),                                                      \
                        const GrB_BinaryOp :                                   \
                                GB_CONCAT (GrB,_,kind,_reduce_BinaryOp_Scalar),\
                              GrB_BinaryOp :                                   \
                                GB_CONCAT (GrB,_,kind,_reduce_BinaryOp_Scalar),\
                        default:  GB_CONCAT (GrB,_,kind,_reduce_Monoid_Scalar) \
                )                                                              \
    )

#define GrB_reduce(arg1,arg2,arg3,arg4,...)                                 \
    _Generic                                                                \
    (                                                                       \
        (arg4),                                                             \
            const GrB_Vector   : GB_REDUCE_TO_SCALAR (Vector, arg1, arg3),  \
                  GrB_Vector   : GB_REDUCE_TO_SCALAR (Vector, arg1, arg3),  \
            const GrB_Matrix   : GB_REDUCE_TO_SCALAR (Matrix, arg1, arg3),  \
                  GrB_Matrix   : GB_REDUCE_TO_SCALAR (Matrix, arg1, arg3),  \
            const GrB_Monoid   : GrB_Matrix_reduce_Monoid   ,               \
                  GrB_Monoid   : GrB_Matrix_reduce_Monoid   ,               \
            const GrB_BinaryOp : GrB_Matrix_reduce_BinaryOp ,               \
                  GrB_BinaryOp : GrB_Matrix_reduce_BinaryOp                 \
    )                                                                       \
    (arg1, arg2, arg3, arg4, __VA_ARGS__)
#endif

//==============================================================================
// GrB_transpose: matrix transpose
//==============================================================================

GB_PUBLIC
GrB_Info GrB_transpose              // C<Mask> = accum (C, A')
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for C, Mask, and A
) ;

//==============================================================================
// GrB_kronecker:  Kronecker product
//==============================================================================

// GxB_kron is historical; use GrB_kronecker instead
GB_PUBLIC
GrB_Info GxB_kron                   // C<Mask> = accum(C,kron(A,B)) (historical)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // defines '*' for T=kron(A,B)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, Mask, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_kronecker_BinaryOp  // C<M> = accum (C, kron(A,B))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix M,             // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op,          // defines '*' for T=kron(A,B)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, M, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_kronecker_Monoid  // C<M> = accum (C, kron(A,B))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix M,             // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Monoid monoid,        // defines '*' for T=kron(A,B)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, M, A, and B
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_kronecker_Semiring  // C<M> = accum (C, kron(A,B))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix M,             // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Semiring semiring,    // defines '*' for T=kron(A,B)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Descriptor desc       // descriptor for C, M, A, and B
) ;

#if GxB_STDC_VERSION >= 201112L
#define GrB_kronecker(C,Mask,accum,op,A,B,desc)                     \
    _Generic                                                        \
    (                                                               \
        (op),                                                       \
            const GrB_Semiring : GrB_Matrix_kronecker_Semiring ,    \
                  GrB_Semiring : GrB_Matrix_kronecker_Semiring ,    \
            const GrB_Monoid   : GrB_Matrix_kronecker_Monoid   ,    \
                  GrB_Monoid   : GrB_Matrix_kronecker_Monoid   ,    \
            const GrB_BinaryOp : GrB_Matrix_kronecker_BinaryOp ,    \
                  GrB_BinaryOp : GrB_Matrix_kronecker_BinaryOp      \
    )                                                               \
    (C, Mask, accum, op, A, B, desc)
#endif


//==============================================================================
// GrB_Monoid: built-in monoids
//==============================================================================

GB_PUBLIC GrB_Monoid

    //--------------------------------------------------------------------------
    // 10 MIN monoids: (not for complex types)
    //--------------------------------------------------------------------------

    // GxB_MIN monoids, historical, use GrB_MIN_MONOID_* instead:
    GxB_MIN_INT8_MONOID,        // identity: INT8_MAX     terminal: INT8_MIN
    GxB_MIN_INT16_MONOID,       // identity: INT16_MAX    terminal: INT16_MIN
    GxB_MIN_INT32_MONOID,       // identity: INT32_MAX    terminal: INT32_MIN
    GxB_MIN_INT64_MONOID,       // identity: INT64_MAX    terminal: INT32_MIN
    GxB_MIN_UINT8_MONOID,       // identity: UINT8_MAX    terminal: 0
    GxB_MIN_UINT16_MONOID,      // identity: UINT16_MAX   terminal: 0
    GxB_MIN_UINT32_MONOID,      // identity: UINT32_MAX   terminal: 0
    GxB_MIN_UINT64_MONOID,      // identity: UINT64_MAX   terminal: 0
    GxB_MIN_FP32_MONOID,        // identity: INFINITY     terminal: -INFINITY
    GxB_MIN_FP64_MONOID,        // identity: INFINITY     terminal: -INFINITY

    // preferred names from the v1.3 spec:
    GrB_MIN_MONOID_INT8,        // identity: INT8_MAX     terminal: INT8_MIN
    GrB_MIN_MONOID_INT16,       // identity: INT16_MAX    terminal: INT16_MIN
    GrB_MIN_MONOID_INT32,       // identity: INT32_MAX    terminal: INT32_MIN
    GrB_MIN_MONOID_INT64,       // identity: INT64_MAX    terminal: INT32_MIN
    GrB_MIN_MONOID_UINT8,       // identity: UINT8_MAX    terminal: 0
    GrB_MIN_MONOID_UINT16,      // identity: UINT16_MAX   terminal: 0
    GrB_MIN_MONOID_UINT32,      // identity: UINT32_MAX   terminal: 0
    GrB_MIN_MONOID_UINT64,      // identity: UINT64_MAX   terminal: 0
    GrB_MIN_MONOID_FP32,        // identity: INFINITY     terminal: -INFINITY
    GrB_MIN_MONOID_FP64,        // identity: INFINITY     terminal: -INFINITY

    //--------------------------------------------------------------------------
    // 10 MAX monoids:
    //--------------------------------------------------------------------------

    // GxB_MAX monoids, historical, use GrB_MAX_MONOID_* instead:
    GxB_MAX_INT8_MONOID,        // identity: INT8_MIN     terminal: INT8_MAX
    GxB_MAX_INT16_MONOID,       // identity: INT16_MIN    terminal: INT16_MAX
    GxB_MAX_INT32_MONOID,       // identity: INT32_MIN    terminal: INT32_MAX
    GxB_MAX_INT64_MONOID,       // identity: INT64_MIN    terminal: INT64_MAX
    GxB_MAX_UINT8_MONOID,       // identity: 0            terminal: UINT8_MAX
    GxB_MAX_UINT16_MONOID,      // identity: 0            terminal: UINT16_MAX
    GxB_MAX_UINT32_MONOID,      // identity: 0            terminal: UINT32_MAX
    GxB_MAX_UINT64_MONOID,      // identity: 0            terminal: UINT64_MAX
    GxB_MAX_FP32_MONOID,        // identity: -INFINITY    terminal: INFINITY
    GxB_MAX_FP64_MONOID,        // identity: -INFINITY    terminal: INFINITY

    // preferred names from the v1.3 spec:
    GrB_MAX_MONOID_INT8,        // identity: INT8_MIN     terminal: INT8_MAX
    GrB_MAX_MONOID_INT16,       // identity: INT16_MIN    terminal: INT16_MAX
    GrB_MAX_MONOID_INT32,       // identity: INT32_MIN    terminal: INT32_MAX
    GrB_MAX_MONOID_INT64,       // identity: INT64_MIN    terminal: INT64_MAX
    GrB_MAX_MONOID_UINT8,       // identity: 0            terminal: UINT8_MAX
    GrB_MAX_MONOID_UINT16,      // identity: 0            terminal: UINT16_MAX
    GrB_MAX_MONOID_UINT32,      // identity: 0            terminal: UINT32_MAX
    GrB_MAX_MONOID_UINT64,      // identity: 0            terminal: UINT64_MAX
    GrB_MAX_MONOID_FP32,        // identity: -INFINITY    terminal: INFINITY
    GrB_MAX_MONOID_FP64,        // identity: -INFINITY    terminal: INFINITY

    //--------------------------------------------------------------------------
    // 12 PLUS monoids:
    //--------------------------------------------------------------------------

    // GxB_PLUS monoids, historical, use GrB_PLUS_MONOID_* instead:
    GxB_PLUS_INT8_MONOID,       // identity: 0
    GxB_PLUS_INT16_MONOID,      // identity: 0
    GxB_PLUS_INT32_MONOID,      // identity: 0
    GxB_PLUS_INT64_MONOID,      // identity: 0
    GxB_PLUS_UINT8_MONOID,      // identity: 0
    GxB_PLUS_UINT16_MONOID,     // identity: 0
    GxB_PLUS_UINT32_MONOID,     // identity: 0
    GxB_PLUS_UINT64_MONOID,     // identity: 0
    GxB_PLUS_FP32_MONOID,       // identity: 0
    GxB_PLUS_FP64_MONOID,       // identity: 0

    // preferred names from the v1.3 spec:
    GrB_PLUS_MONOID_INT8,       // identity: 0
    GrB_PLUS_MONOID_INT16,      // identity: 0
    GrB_PLUS_MONOID_INT32,      // identity: 0
    GrB_PLUS_MONOID_INT64,      // identity: 0
    GrB_PLUS_MONOID_UINT8,      // identity: 0
    GrB_PLUS_MONOID_UINT16,     // identity: 0
    GrB_PLUS_MONOID_UINT32,     // identity: 0
    GrB_PLUS_MONOID_UINT64,     // identity: 0
    GrB_PLUS_MONOID_FP32,       // identity: 0
    GrB_PLUS_MONOID_FP64,       // identity: 0

    // complex monoids:
    GxB_PLUS_FC32_MONOID,       // identity: 0
    GxB_PLUS_FC64_MONOID,       // identity: 0

    //--------------------------------------------------------------------------
    // 12 TIMES monoids: identity value is 1, int* and uint* are terminal
    //--------------------------------------------------------------------------

    // GxB_TIMES monoids, historical, use GrB_TIMES_MONOID_* instead:
    GxB_TIMES_INT8_MONOID,      // identity: 1            terminal: 0
    GxB_TIMES_INT16_MONOID,     // identity: 1            terminal: 0
    GxB_TIMES_INT32_MONOID,     // identity: 1            terminal: 0
    GxB_TIMES_INT64_MONOID,     // identity: 1            terminal: 0
    GxB_TIMES_UINT8_MONOID,     // identity: 1            terminal: 0
    GxB_TIMES_UINT16_MONOID,    // identity: 1            terminal: 0
    GxB_TIMES_UINT32_MONOID,    // identity: 1            terminal: 0
    GxB_TIMES_UINT64_MONOID,    // identity: 1            terminal: 0
    GxB_TIMES_FP32_MONOID,      // identity: 1
    GxB_TIMES_FP64_MONOID,      // identity: 1

    // preferred names from the v1.3 spec:
    GrB_TIMES_MONOID_INT8,      // identity: 1            terminal: 0
    GrB_TIMES_MONOID_INT16,     // identity: 1            terminal: 0
    GrB_TIMES_MONOID_INT32,     // identity: 1            terminal: 0
    GrB_TIMES_MONOID_INT64,     // identity: 1            terminal: 0
    GrB_TIMES_MONOID_UINT8,     // identity: 1            terminal: 0
    GrB_TIMES_MONOID_UINT16,    // identity: 1            terminal: 0
    GrB_TIMES_MONOID_UINT32,    // identity: 1            terminal: 0
    GrB_TIMES_MONOID_UINT64,    // identity: 1            terminal: 0
    GrB_TIMES_MONOID_FP32,      // identity: 1
    GrB_TIMES_MONOID_FP64,      // identity: 1

    // complex monoids:
    GxB_TIMES_FC32_MONOID,      // identity: 1
    GxB_TIMES_FC64_MONOID,      // identity: 1

    //--------------------------------------------------------------------------
    // 13 ANY monoids:
    //--------------------------------------------------------------------------

    GxB_ANY_BOOL_MONOID,        // identity: any value    terminal: any value
    GxB_ANY_INT8_MONOID,        // identity: any value    terminal: any value
    GxB_ANY_INT16_MONOID,       // identity: any value    terminal: any value
    GxB_ANY_INT32_MONOID,       // identity: any value    terminal: any value
    GxB_ANY_INT64_MONOID,       // identity: any value    terminal: any value
    GxB_ANY_UINT8_MONOID,       // identity: any value    terminal: any value
    GxB_ANY_UINT16_MONOID,      // identity: any value    terminal: any value
    GxB_ANY_UINT32_MONOID,      // identity: any value    terminal: any value
    GxB_ANY_UINT64_MONOID,      // identity: any value    terminal: any value
    GxB_ANY_FP32_MONOID,        // identity: any value    terminal: any value
    GxB_ANY_FP64_MONOID,        // identity: any value    terminal: any value
    GxB_ANY_FC32_MONOID,        // identity: any value    terminal: any value
    GxB_ANY_FC64_MONOID,        // identity: any value    terminal: any value

    //--------------------------------------------------------------------------
    // 4 Boolean monoids: (see also the GxB_ANY_BOOL_MONOID above)
    //--------------------------------------------------------------------------

    // GxB_* boolean monoids, historical, use GrB_* instead:
    GxB_LOR_BOOL_MONOID,        // identity: false        terminal: true
    GxB_LAND_BOOL_MONOID,       // identity: true         terminal: false
    GxB_LXOR_BOOL_MONOID,       // identity: false
    GxB_LXNOR_BOOL_MONOID,      // identity: true
    GxB_EQ_BOOL_MONOID,         // (alternative name for GrB_LXNOR_MONOID_BOOL)

    // preferred names from the v1.3 spec:
    GrB_LOR_MONOID_BOOL,        // identity: false        terminal: true
    GrB_LAND_MONOID_BOOL,       // identity: true         terminal: false
    GrB_LXOR_MONOID_BOOL,       // identity: false
    GrB_LXNOR_MONOID_BOOL,      // identity: true

    //--------------------------------------------------------------------------
    // 16 Bitwise-or monoids:
    //--------------------------------------------------------------------------

    // BOR monoids (bitwise or):
    GxB_BOR_UINT8_MONOID,       // identity: 0   terminal: 0xFF
    GxB_BOR_UINT16_MONOID,      // identity: 0   terminal: 0xFFFF
    GxB_BOR_UINT32_MONOID,      // identity: 0   terminal: 0xFFFFFFFF
    GxB_BOR_UINT64_MONOID,      // identity: 0   terminal: 0xFFFFFFFFFFFFFFFF

    // BAND monoids (bitwise and):
    GxB_BAND_UINT8_MONOID,      // identity: 0xFF               terminal: 0
    GxB_BAND_UINT16_MONOID,     // identity: 0xFFFF             terminal: 0
    GxB_BAND_UINT32_MONOID,     // identity: 0xFFFFFFFF         terminal: 0
    GxB_BAND_UINT64_MONOID,     // identity: 0xFFFFFFFFFFFFFFFF terminal: 0

    // BXOR monoids (bitwise xor):
    GxB_BXOR_UINT8_MONOID,      // identity: 0
    GxB_BXOR_UINT16_MONOID,     // identity: 0
    GxB_BXOR_UINT32_MONOID,     // identity: 0
    GxB_BXOR_UINT64_MONOID,     // identity: 0

    // BXNOR monoids (bitwise xnor):
    GxB_BXNOR_UINT8_MONOID,     // identity: 0xFF
    GxB_BXNOR_UINT16_MONOID,    // identity: 0xFFFF
    GxB_BXNOR_UINT32_MONOID,    // identity: 0xFFFFFFFF
    GxB_BXNOR_UINT64_MONOID ;   // identity: 0xFFFFFFFFFFFFFFFF

//==============================================================================
// GrB_Semiring: built-in semirings
//==============================================================================

// Using built-in types and operators, SuiteSparse:GraphBLAS provides
// 1553 pre-defined, built-in semirings:

// 1000 semirings with a multiply operator TxT -> T where T is non-Boolean,
// from the complete cross product of:

//      5 monoids: MIN, MAX, PLUS, TIMES, ANY
//      20 multiply operators:
//          FIRST, SECOND, PAIR (=ONEB), MIN, MAX, PLUS, MINUS, TIMES, DIV,
//          RDIV, RMINUS
//          ISEQ, ISNE, ISGT, ISLT, ISGE, ISLE,
//          LOR, LAND, LXOR
//      10 non-Boolean real types, T
//
//      Note that min_pair, max_pair, times_pair are all identical to any_pair.
//      These 30 semirings are named below, but are internally remapped to
//      their corresponding any_pair semiring.

// 300 semirings with a comparator TxT -> bool, where T is
// non-Boolean, from the complete cross product of:

//      5 Boolean monoids: LAND, LOR, LXOR, EQ (=LXNOR), ANY
//      6 multiply operators: EQ, NE, GT, LT, GE, LE
//      10 non-Boolean real types, T

// 55 semirings with purely Boolean types, bool x bool -> bool, from the
// complete cross product of:

//      5 Boolean monoids LAND, LOR, LXOR, EQ (=LXNOR), ANY
//      11 multiply operators:
//          FIRST, SECOND, LOR, LAND, LXOR, EQ (=LXNOR), GT, LT, GE, LE,
//          PAIR (=ONEB)
//
//      Note that lor_pair, land_pair, and eq_pair are all identical to
//      any_pair.  These 3 semirings are named below, but are internally
//      remapped to any_pair_bool semiring.

// 54 complex semirings: TxT -> T where T is float complex or double complex:

//      3 complex monoids: PLUS, TIMES, ANY
//      9 complex multiply operators:
//          FIRST, SECOND, PAIR (=ONEB), PLUS, MINUS, TIMES, DIV, RDIV, RMINUS
//      2 complex types
//
//      Note that times_pair is identical to any_pair.
//      These 2 semirings are named below, but are internally remapped to
//      their corresponding any_pair semiring.

// 64 bitwise semirings: TxT -> T where T is an unsigned integer:

//      4 bitwise monoids: BOR, BAND, BXOR, BXNOR
//      4 bitwise multiply operators: BOR, BAND, BXOR, BXNOR
//      4 unsigned integer types: UINT8, UINT16, UINT32, UINT64

// 80 positional semirings: XxX -> T where T is int64 or int32, and the type of
// X is ignored:

//      5 monoids: MIN, MAX, PLUS, TIMES, ANY
//      8 multiply operators:
//          FIRSTI, FIRSTI1, FIRSTJ, FIRSTJ1,
//          SECONDI, SECONDI1, SECONDJ, SECONDJ1
//      2 types: int32, int64

// The ANY operator is also valid to use as a multiplicative operator in a
// semiring, but serves no purpose in that case.  The ANY operator is meant as
// a fast additive operator for a monoid, that terminates, or short-circuits,
// as soon as any value is found.  A valid user semiring can be constructed
// with ANY as the multiply operator, but they are not predefined below.

// Likewise, additional built-in operators can be used as multiplicative
// operators for floating-point semirings (POW, ATAN2, HYPOT, ...) and many
// more semirings can be constructed from bitwise monoids and many integer
// binary (non-bitwise) multiplicative operators, but these are not
// pre-defined.

// In the names below, each semiring has a name of the form GxB_add_mult_T
// where add is the additive monoid, mult is the multiply operator, and T is
// the type.  The type T is always the type of x and y for the z=mult(x,y)
// operator.  The monoid's three types and the ztype of the mult operator are
// always the same.  This is the type T for the first set, and Boolean for
// the second and third sets of semirngs.

// 1553 = 1000 + 300 + 55 + 54 + 64 + 80 semirings are named below, but 35 = 30
// + 3 + 2 are identical to the corresponding any_pair semirings of the same
// type.  For positional semirings, the mulitiply ops FIRSTJ and SECONDI are
// identical, as are FIRSTJ1 and SECONDI1.  These semirings still appear as
// predefined, for convenience.

GB_PUBLIC GrB_Semiring

//------------------------------------------------------------------------------
// 1000 non-Boolean semirings where all types are the same, given by suffix _T
//------------------------------------------------------------------------------

    // semirings with multiply op: z = FIRST (x,y), all types x,y,z the same:
    GxB_MIN_FIRST_INT8     , GxB_MAX_FIRST_INT8     , GxB_PLUS_FIRST_INT8    , GxB_TIMES_FIRST_INT8   , GxB_ANY_FIRST_INT8     ,
    GxB_MIN_FIRST_INT16    , GxB_MAX_FIRST_INT16    , GxB_PLUS_FIRST_INT16   , GxB_TIMES_FIRST_INT16  , GxB_ANY_FIRST_INT16    ,
    GxB_MIN_FIRST_INT32    , GxB_MAX_FIRST_INT32    , GxB_PLUS_FIRST_INT32   , GxB_TIMES_FIRST_INT32  , GxB_ANY_FIRST_INT32    ,
    GxB_MIN_FIRST_INT64    , GxB_MAX_FIRST_INT64    , GxB_PLUS_FIRST_INT64   , GxB_TIMES_FIRST_INT64  , GxB_ANY_FIRST_INT64    ,
    GxB_MIN_FIRST_UINT8    , GxB_MAX_FIRST_UINT8    , GxB_PLUS_FIRST_UINT8   , GxB_TIMES_FIRST_UINT8  , GxB_ANY_FIRST_UINT8    ,
    GxB_MIN_FIRST_UINT16   , GxB_MAX_FIRST_UINT16   , GxB_PLUS_FIRST_UINT16  , GxB_TIMES_FIRST_UINT16 , GxB_ANY_FIRST_UINT16   ,
    GxB_MIN_FIRST_UINT32   , GxB_MAX_FIRST_UINT32   , GxB_PLUS_FIRST_UINT32  , GxB_TIMES_FIRST_UINT32 , GxB_ANY_FIRST_UINT32   ,
    GxB_MIN_FIRST_UINT64   , GxB_MAX_FIRST_UINT64   , GxB_PLUS_FIRST_UINT64  , GxB_TIMES_FIRST_UINT64 , GxB_ANY_FIRST_UINT64   ,
    GxB_MIN_FIRST_FP32     , GxB_MAX_FIRST_FP32     , GxB_PLUS_FIRST_FP32    , GxB_TIMES_FIRST_FP32   , GxB_ANY_FIRST_FP32     ,
    GxB_MIN_FIRST_FP64     , GxB_MAX_FIRST_FP64     , GxB_PLUS_FIRST_FP64    , GxB_TIMES_FIRST_FP64   , GxB_ANY_FIRST_FP64     ,

    // semirings with multiply op: z = SECOND (x,y), all types x,y,z the same:
    GxB_MIN_SECOND_INT8    , GxB_MAX_SECOND_INT8    , GxB_PLUS_SECOND_INT8   , GxB_TIMES_SECOND_INT8  , GxB_ANY_SECOND_INT8    ,
    GxB_MIN_SECOND_INT16   , GxB_MAX_SECOND_INT16   , GxB_PLUS_SECOND_INT16  , GxB_TIMES_SECOND_INT16 , GxB_ANY_SECOND_INT16   ,
    GxB_MIN_SECOND_INT32   , GxB_MAX_SECOND_INT32   , GxB_PLUS_SECOND_INT32  , GxB_TIMES_SECOND_INT32 , GxB_ANY_SECOND_INT32   ,
    GxB_MIN_SECOND_INT64   , GxB_MAX_SECOND_INT64   , GxB_PLUS_SECOND_INT64  , GxB_TIMES_SECOND_INT64 , GxB_ANY_SECOND_INT64   ,
    GxB_MIN_SECOND_UINT8   , GxB_MAX_SECOND_UINT8   , GxB_PLUS_SECOND_UINT8  , GxB_TIMES_SECOND_UINT8 , GxB_ANY_SECOND_UINT8   ,
    GxB_MIN_SECOND_UINT16  , GxB_MAX_SECOND_UINT16  , GxB_PLUS_SECOND_UINT16 , GxB_TIMES_SECOND_UINT16, GxB_ANY_SECOND_UINT16  ,
    GxB_MIN_SECOND_UINT32  , GxB_MAX_SECOND_UINT32  , GxB_PLUS_SECOND_UINT32 , GxB_TIMES_SECOND_UINT32, GxB_ANY_SECOND_UINT32  ,
    GxB_MIN_SECOND_UINT64  , GxB_MAX_SECOND_UINT64  , GxB_PLUS_SECOND_UINT64 , GxB_TIMES_SECOND_UINT64, GxB_ANY_SECOND_UINT64  ,
    GxB_MIN_SECOND_FP32    , GxB_MAX_SECOND_FP32    , GxB_PLUS_SECOND_FP32   , GxB_TIMES_SECOND_FP32  , GxB_ANY_SECOND_FP32    ,
    GxB_MIN_SECOND_FP64    , GxB_MAX_SECOND_FP64    , GxB_PLUS_SECOND_FP64   , GxB_TIMES_SECOND_FP64  , GxB_ANY_SECOND_FP64    ,

    // semirings with multiply op: z = PAIR (x,y), all types x,y,z the same:
    // (note that min_pair, max_pair, times_pair are all identical to any_pair, and are marked below)
    GxB_MIN_PAIR_INT8  /**/, GxB_MAX_PAIR_INT8  /**/, GxB_PLUS_PAIR_INT8     , GxB_TIMES_PAIR_INT8  /**/, GxB_ANY_PAIR_INT8    ,
    GxB_MIN_PAIR_INT16 /**/, GxB_MAX_PAIR_INT16 /**/, GxB_PLUS_PAIR_INT16    , GxB_TIMES_PAIR_INT16 /**/, GxB_ANY_PAIR_INT16   ,
    GxB_MIN_PAIR_INT32 /**/, GxB_MAX_PAIR_INT32 /**/, GxB_PLUS_PAIR_INT32    , GxB_TIMES_PAIR_INT32 /**/, GxB_ANY_PAIR_INT32   ,
    GxB_MIN_PAIR_INT64 /**/, GxB_MAX_PAIR_INT64 /**/, GxB_PLUS_PAIR_INT64    , GxB_TIMES_PAIR_INT64 /**/, GxB_ANY_PAIR_INT64   ,
    GxB_MIN_PAIR_UINT8 /**/, GxB_MAX_PAIR_UINT8 /**/, GxB_PLUS_PAIR_UINT8    , GxB_TIMES_PAIR_UINT8 /**/, GxB_ANY_PAIR_UINT8   ,
    GxB_MIN_PAIR_UINT16/**/, GxB_MAX_PAIR_UINT16/**/, GxB_PLUS_PAIR_UINT16   , GxB_TIMES_PAIR_UINT16/**/, GxB_ANY_PAIR_UINT16  ,
    GxB_MIN_PAIR_UINT32/**/, GxB_MAX_PAIR_UINT32/**/, GxB_PLUS_PAIR_UINT32   , GxB_TIMES_PAIR_UINT32/**/, GxB_ANY_PAIR_UINT32  ,
    GxB_MIN_PAIR_UINT64/**/, GxB_MAX_PAIR_UINT64/**/, GxB_PLUS_PAIR_UINT64   , GxB_TIMES_PAIR_UINT64/**/, GxB_ANY_PAIR_UINT64  ,
    GxB_MIN_PAIR_FP32  /**/, GxB_MAX_PAIR_FP32  /**/, GxB_PLUS_PAIR_FP32     , GxB_TIMES_PAIR_FP32  /**/, GxB_ANY_PAIR_FP32    ,
    GxB_MIN_PAIR_FP64  /**/, GxB_MAX_PAIR_FP64  /**/, GxB_PLUS_PAIR_FP64     , GxB_TIMES_PAIR_FP64  /**/, GxB_ANY_PAIR_FP64    ,

    // semirings with multiply op: z = MIN (x,y), all types x,y,z the same:
    GxB_MIN_MIN_INT8       , GxB_MAX_MIN_INT8       , GxB_PLUS_MIN_INT8      , GxB_TIMES_MIN_INT8     , GxB_ANY_MIN_INT8       ,
    GxB_MIN_MIN_INT16      , GxB_MAX_MIN_INT16      , GxB_PLUS_MIN_INT16     , GxB_TIMES_MIN_INT16    , GxB_ANY_MIN_INT16      ,
    GxB_MIN_MIN_INT32      , GxB_MAX_MIN_INT32      , GxB_PLUS_MIN_INT32     , GxB_TIMES_MIN_INT32    , GxB_ANY_MIN_INT32      ,
    GxB_MIN_MIN_INT64      , GxB_MAX_MIN_INT64      , GxB_PLUS_MIN_INT64     , GxB_TIMES_MIN_INT64    , GxB_ANY_MIN_INT64      ,
    GxB_MIN_MIN_UINT8      , GxB_MAX_MIN_UINT8      , GxB_PLUS_MIN_UINT8     , GxB_TIMES_MIN_UINT8    , GxB_ANY_MIN_UINT8      ,
    GxB_MIN_MIN_UINT16     , GxB_MAX_MIN_UINT16     , GxB_PLUS_MIN_UINT16    , GxB_TIMES_MIN_UINT16   , GxB_ANY_MIN_UINT16     ,
    GxB_MIN_MIN_UINT32     , GxB_MAX_MIN_UINT32     , GxB_PLUS_MIN_UINT32    , GxB_TIMES_MIN_UINT32   , GxB_ANY_MIN_UINT32     ,
    GxB_MIN_MIN_UINT64     , GxB_MAX_MIN_UINT64     , GxB_PLUS_MIN_UINT64    , GxB_TIMES_MIN_UINT64   , GxB_ANY_MIN_UINT64     ,
    GxB_MIN_MIN_FP32       , GxB_MAX_MIN_FP32       , GxB_PLUS_MIN_FP32      , GxB_TIMES_MIN_FP32     , GxB_ANY_MIN_FP32       ,
    GxB_MIN_MIN_FP64       , GxB_MAX_MIN_FP64       , GxB_PLUS_MIN_FP64      , GxB_TIMES_MIN_FP64     , GxB_ANY_MIN_FP64       ,

    // semirings with multiply op: z = MAX (x,y), all types x,y,z the same:
    GxB_MIN_MAX_INT8       , GxB_MAX_MAX_INT8       , GxB_PLUS_MAX_INT8      , GxB_TIMES_MAX_INT8     , GxB_ANY_MAX_INT8       ,
    GxB_MIN_MAX_INT16      , GxB_MAX_MAX_INT16      , GxB_PLUS_MAX_INT16     , GxB_TIMES_MAX_INT16    , GxB_ANY_MAX_INT16      ,
    GxB_MIN_MAX_INT32      , GxB_MAX_MAX_INT32      , GxB_PLUS_MAX_INT32     , GxB_TIMES_MAX_INT32    , GxB_ANY_MAX_INT32      ,
    GxB_MIN_MAX_INT64      , GxB_MAX_MAX_INT64      , GxB_PLUS_MAX_INT64     , GxB_TIMES_MAX_INT64    , GxB_ANY_MAX_INT64      ,
    GxB_MIN_MAX_UINT8      , GxB_MAX_MAX_UINT8      , GxB_PLUS_MAX_UINT8     , GxB_TIMES_MAX_UINT8    , GxB_ANY_MAX_UINT8      ,
    GxB_MIN_MAX_UINT16     , GxB_MAX_MAX_UINT16     , GxB_PLUS_MAX_UINT16    , GxB_TIMES_MAX_UINT16   , GxB_ANY_MAX_UINT16     ,
    GxB_MIN_MAX_UINT32     , GxB_MAX_MAX_UINT32     , GxB_PLUS_MAX_UINT32    , GxB_TIMES_MAX_UINT32   , GxB_ANY_MAX_UINT32     ,
    GxB_MIN_MAX_UINT64     , GxB_MAX_MAX_UINT64     , GxB_PLUS_MAX_UINT64    , GxB_TIMES_MAX_UINT64   , GxB_ANY_MAX_UINT64     ,
    GxB_MIN_MAX_FP32       , GxB_MAX_MAX_FP32       , GxB_PLUS_MAX_FP32      , GxB_TIMES_MAX_FP32     , GxB_ANY_MAX_FP32       ,
    GxB_MIN_MAX_FP64       , GxB_MAX_MAX_FP64       , GxB_PLUS_MAX_FP64      , GxB_TIMES_MAX_FP64     , GxB_ANY_MAX_FP64       ,

    // semirings with multiply op: z = PLUS (x,y), all types x,y,z the same:
    GxB_MIN_PLUS_INT8      , GxB_MAX_PLUS_INT8      , GxB_PLUS_PLUS_INT8     , GxB_TIMES_PLUS_INT8    , GxB_ANY_PLUS_INT8      ,
    GxB_MIN_PLUS_INT16     , GxB_MAX_PLUS_INT16     , GxB_PLUS_PLUS_INT16    , GxB_TIMES_PLUS_INT16   , GxB_ANY_PLUS_INT16     ,
    GxB_MIN_PLUS_INT32     , GxB_MAX_PLUS_INT32     , GxB_PLUS_PLUS_INT32    , GxB_TIMES_PLUS_INT32   , GxB_ANY_PLUS_INT32     ,
    GxB_MIN_PLUS_INT64     , GxB_MAX_PLUS_INT64     , GxB_PLUS_PLUS_INT64    , GxB_TIMES_PLUS_INT64   , GxB_ANY_PLUS_INT64     ,
    GxB_MIN_PLUS_UINT8     , GxB_MAX_PLUS_UINT8     , GxB_PLUS_PLUS_UINT8    , GxB_TIMES_PLUS_UINT8   , GxB_ANY_PLUS_UINT8     ,
    GxB_MIN_PLUS_UINT16    , GxB_MAX_PLUS_UINT16    , GxB_PLUS_PLUS_UINT16   , GxB_TIMES_PLUS_UINT16  , GxB_ANY_PLUS_UINT16    ,
    GxB_MIN_PLUS_UINT32    , GxB_MAX_PLUS_UINT32    , GxB_PLUS_PLUS_UINT32   , GxB_TIMES_PLUS_UINT32  , GxB_ANY_PLUS_UINT32    ,
    GxB_MIN_PLUS_UINT64    , GxB_MAX_PLUS_UINT64    , GxB_PLUS_PLUS_UINT64   , GxB_TIMES_PLUS_UINT64  , GxB_ANY_PLUS_UINT64    ,
    GxB_MIN_PLUS_FP32      , GxB_MAX_PLUS_FP32      , GxB_PLUS_PLUS_FP32     , GxB_TIMES_PLUS_FP32    , GxB_ANY_PLUS_FP32      ,
    GxB_MIN_PLUS_FP64      , GxB_MAX_PLUS_FP64      , GxB_PLUS_PLUS_FP64     , GxB_TIMES_PLUS_FP64    , GxB_ANY_PLUS_FP64      ,

    // semirings with multiply op: z = MINUS (x,y), all types x,y,z the same:
    GxB_MIN_MINUS_INT8     , GxB_MAX_MINUS_INT8     , GxB_PLUS_MINUS_INT8    , GxB_TIMES_MINUS_INT8   , GxB_ANY_MINUS_INT8     ,
    GxB_MIN_MINUS_INT16    , GxB_MAX_MINUS_INT16    , GxB_PLUS_MINUS_INT16   , GxB_TIMES_MINUS_INT16  , GxB_ANY_MINUS_INT16    ,
    GxB_MIN_MINUS_INT32    , GxB_MAX_MINUS_INT32    , GxB_PLUS_MINUS_INT32   , GxB_TIMES_MINUS_INT32  , GxB_ANY_MINUS_INT32    ,
    GxB_MIN_MINUS_INT64    , GxB_MAX_MINUS_INT64    , GxB_PLUS_MINUS_INT64   , GxB_TIMES_MINUS_INT64  , GxB_ANY_MINUS_INT64    ,
    GxB_MIN_MINUS_UINT8    , GxB_MAX_MINUS_UINT8    , GxB_PLUS_MINUS_UINT8   , GxB_TIMES_MINUS_UINT8  , GxB_ANY_MINUS_UINT8    ,
    GxB_MIN_MINUS_UINT16   , GxB_MAX_MINUS_UINT16   , GxB_PLUS_MINUS_UINT16  , GxB_TIMES_MINUS_UINT16 , GxB_ANY_MINUS_UINT16   ,
    GxB_MIN_MINUS_UINT32   , GxB_MAX_MINUS_UINT32   , GxB_PLUS_MINUS_UINT32  , GxB_TIMES_MINUS_UINT32 , GxB_ANY_MINUS_UINT32   ,
    GxB_MIN_MINUS_UINT64   , GxB_MAX_MINUS_UINT64   , GxB_PLUS_MINUS_UINT64  , GxB_TIMES_MINUS_UINT64 , GxB_ANY_MINUS_UINT64   ,
    GxB_MIN_MINUS_FP32     , GxB_MAX_MINUS_FP32     , GxB_PLUS_MINUS_FP32    , GxB_TIMES_MINUS_FP32   , GxB_ANY_MINUS_FP32     ,
    GxB_MIN_MINUS_FP64     , GxB_MAX_MINUS_FP64     , GxB_PLUS_MINUS_FP64    , GxB_TIMES_MINUS_FP64   , GxB_ANY_MINUS_FP64     ,

    // semirings with multiply op: z = TIMES (x,y), all types x,y,z the same:
    GxB_MIN_TIMES_INT8     , GxB_MAX_TIMES_INT8     , GxB_PLUS_TIMES_INT8    , GxB_TIMES_TIMES_INT8   , GxB_ANY_TIMES_INT8     ,
    GxB_MIN_TIMES_INT16    , GxB_MAX_TIMES_INT16    , GxB_PLUS_TIMES_INT16   , GxB_TIMES_TIMES_INT16  , GxB_ANY_TIMES_INT16    ,
    GxB_MIN_TIMES_INT32    , GxB_MAX_TIMES_INT32    , GxB_PLUS_TIMES_INT32   , GxB_TIMES_TIMES_INT32  , GxB_ANY_TIMES_INT32    ,
    GxB_MIN_TIMES_INT64    , GxB_MAX_TIMES_INT64    , GxB_PLUS_TIMES_INT64   , GxB_TIMES_TIMES_INT64  , GxB_ANY_TIMES_INT64    ,
    GxB_MIN_TIMES_UINT8    , GxB_MAX_TIMES_UINT8    , GxB_PLUS_TIMES_UINT8   , GxB_TIMES_TIMES_UINT8  , GxB_ANY_TIMES_UINT8    ,
    GxB_MIN_TIMES_UINT16   , GxB_MAX_TIMES_UINT16   , GxB_PLUS_TIMES_UINT16  , GxB_TIMES_TIMES_UINT16 , GxB_ANY_TIMES_UINT16   ,
    GxB_MIN_TIMES_UINT32   , GxB_MAX_TIMES_UINT32   , GxB_PLUS_TIMES_UINT32  , GxB_TIMES_TIMES_UINT32 , GxB_ANY_TIMES_UINT32   ,
    GxB_MIN_TIMES_UINT64   , GxB_MAX_TIMES_UINT64   , GxB_PLUS_TIMES_UINT64  , GxB_TIMES_TIMES_UINT64 , GxB_ANY_TIMES_UINT64   ,
    GxB_MIN_TIMES_FP32     , GxB_MAX_TIMES_FP32     , GxB_PLUS_TIMES_FP32    , GxB_TIMES_TIMES_FP32   , GxB_ANY_TIMES_FP32     ,
    GxB_MIN_TIMES_FP64     , GxB_MAX_TIMES_FP64     , GxB_PLUS_TIMES_FP64    , GxB_TIMES_TIMES_FP64   , GxB_ANY_TIMES_FP64     ,

    // semirings with multiply op: z = DIV (x,y), all types x,y,z the same:
    GxB_MIN_DIV_INT8       , GxB_MAX_DIV_INT8       , GxB_PLUS_DIV_INT8      , GxB_TIMES_DIV_INT8     , GxB_ANY_DIV_INT8       ,
    GxB_MIN_DIV_INT16      , GxB_MAX_DIV_INT16      , GxB_PLUS_DIV_INT16     , GxB_TIMES_DIV_INT16    , GxB_ANY_DIV_INT16      ,
    GxB_MIN_DIV_INT32      , GxB_MAX_DIV_INT32      , GxB_PLUS_DIV_INT32     , GxB_TIMES_DIV_INT32    , GxB_ANY_DIV_INT32      ,
    GxB_MIN_DIV_INT64      , GxB_MAX_DIV_INT64      , GxB_PLUS_DIV_INT64     , GxB_TIMES_DIV_INT64    , GxB_ANY_DIV_INT64      ,
    GxB_MIN_DIV_UINT8      , GxB_MAX_DIV_UINT8      , GxB_PLUS_DIV_UINT8     , GxB_TIMES_DIV_UINT8    , GxB_ANY_DIV_UINT8      ,
    GxB_MIN_DIV_UINT16     , GxB_MAX_DIV_UINT16     , GxB_PLUS_DIV_UINT16    , GxB_TIMES_DIV_UINT16   , GxB_ANY_DIV_UINT16     ,
    GxB_MIN_DIV_UINT32     , GxB_MAX_DIV_UINT32     , GxB_PLUS_DIV_UINT32    , GxB_TIMES_DIV_UINT32   , GxB_ANY_DIV_UINT32     ,
    GxB_MIN_DIV_UINT64     , GxB_MAX_DIV_UINT64     , GxB_PLUS_DIV_UINT64    , GxB_TIMES_DIV_UINT64   , GxB_ANY_DIV_UINT64     ,
    GxB_MIN_DIV_FP32       , GxB_MAX_DIV_FP32       , GxB_PLUS_DIV_FP32      , GxB_TIMES_DIV_FP32     , GxB_ANY_DIV_FP32       ,
    GxB_MIN_DIV_FP64       , GxB_MAX_DIV_FP64       , GxB_PLUS_DIV_FP64      , GxB_TIMES_DIV_FP64     , GxB_ANY_DIV_FP64       ,

    // semirings with multiply op: z = RDIV (x,y), all types x,y,z the same:
    GxB_MIN_RDIV_INT8      , GxB_MAX_RDIV_INT8      , GxB_PLUS_RDIV_INT8     , GxB_TIMES_RDIV_INT8    , GxB_ANY_RDIV_INT8      ,
    GxB_MIN_RDIV_INT16     , GxB_MAX_RDIV_INT16     , GxB_PLUS_RDIV_INT16    , GxB_TIMES_RDIV_INT16   , GxB_ANY_RDIV_INT16     ,
    GxB_MIN_RDIV_INT32     , GxB_MAX_RDIV_INT32     , GxB_PLUS_RDIV_INT32    , GxB_TIMES_RDIV_INT32   , GxB_ANY_RDIV_INT32     ,
    GxB_MIN_RDIV_INT64     , GxB_MAX_RDIV_INT64     , GxB_PLUS_RDIV_INT64    , GxB_TIMES_RDIV_INT64   , GxB_ANY_RDIV_INT64     ,
    GxB_MIN_RDIV_UINT8     , GxB_MAX_RDIV_UINT8     , GxB_PLUS_RDIV_UINT8    , GxB_TIMES_RDIV_UINT8   , GxB_ANY_RDIV_UINT8     ,
    GxB_MIN_RDIV_UINT16    , GxB_MAX_RDIV_UINT16    , GxB_PLUS_RDIV_UINT16   , GxB_TIMES_RDIV_UINT16  , GxB_ANY_RDIV_UINT16    ,
    GxB_MIN_RDIV_UINT32    , GxB_MAX_RDIV_UINT32    , GxB_PLUS_RDIV_UINT32   , GxB_TIMES_RDIV_UINT32  , GxB_ANY_RDIV_UINT32    ,
    GxB_MIN_RDIV_UINT64    , GxB_MAX_RDIV_UINT64    , GxB_PLUS_RDIV_UINT64   , GxB_TIMES_RDIV_UINT64  , GxB_ANY_RDIV_UINT64    ,
    GxB_MIN_RDIV_FP32      , GxB_MAX_RDIV_FP32      , GxB_PLUS_RDIV_FP32     , GxB_TIMES_RDIV_FP32    , GxB_ANY_RDIV_FP32      ,
    GxB_MIN_RDIV_FP64      , GxB_MAX_RDIV_FP64      , GxB_PLUS_RDIV_FP64     , GxB_TIMES_RDIV_FP64    , GxB_ANY_RDIV_FP64      ,

    // semirings with multiply op: z = RMINUS (x,y), all types x,y,z the same:
    GxB_MIN_RMINUS_INT8    , GxB_MAX_RMINUS_INT8    , GxB_PLUS_RMINUS_INT8   , GxB_TIMES_RMINUS_INT8  , GxB_ANY_RMINUS_INT8    ,
    GxB_MIN_RMINUS_INT16   , GxB_MAX_RMINUS_INT16   , GxB_PLUS_RMINUS_INT16  , GxB_TIMES_RMINUS_INT16 , GxB_ANY_RMINUS_INT16   ,
    GxB_MIN_RMINUS_INT32   , GxB_MAX_RMINUS_INT32   , GxB_PLUS_RMINUS_INT32  , GxB_TIMES_RMINUS_INT32 , GxB_ANY_RMINUS_INT32   ,
    GxB_MIN_RMINUS_INT64   , GxB_MAX_RMINUS_INT64   , GxB_PLUS_RMINUS_INT64  , GxB_TIMES_RMINUS_INT64 , GxB_ANY_RMINUS_INT64   ,
    GxB_MIN_RMINUS_UINT8   , GxB_MAX_RMINUS_UINT8   , GxB_PLUS_RMINUS_UINT8  , GxB_TIMES_RMINUS_UINT8 , GxB_ANY_RMINUS_UINT8   ,
    GxB_MIN_RMINUS_UINT16  , GxB_MAX_RMINUS_UINT16  , GxB_PLUS_RMINUS_UINT16 , GxB_TIMES_RMINUS_UINT16, GxB_ANY_RMINUS_UINT16  ,
    GxB_MIN_RMINUS_UINT32  , GxB_MAX_RMINUS_UINT32  , GxB_PLUS_RMINUS_UINT32 , GxB_TIMES_RMINUS_UINT32, GxB_ANY_RMINUS_UINT32  ,
    GxB_MIN_RMINUS_UINT64  , GxB_MAX_RMINUS_UINT64  , GxB_PLUS_RMINUS_UINT64 , GxB_TIMES_RMINUS_UINT64, GxB_ANY_RMINUS_UINT64  ,
    GxB_MIN_RMINUS_FP32    , GxB_MAX_RMINUS_FP32    , GxB_PLUS_RMINUS_FP32   , GxB_TIMES_RMINUS_FP32  , GxB_ANY_RMINUS_FP32    ,
    GxB_MIN_RMINUS_FP64    , GxB_MAX_RMINUS_FP64    , GxB_PLUS_RMINUS_FP64   , GxB_TIMES_RMINUS_FP64  , GxB_ANY_RMINUS_FP64    ,

    // semirings with multiply op: z = ISEQ (x,y), all types x,y,z the same:
    GxB_MIN_ISEQ_INT8      , GxB_MAX_ISEQ_INT8      , GxB_PLUS_ISEQ_INT8     , GxB_TIMES_ISEQ_INT8    , GxB_ANY_ISEQ_INT8      ,
    GxB_MIN_ISEQ_INT16     , GxB_MAX_ISEQ_INT16     , GxB_PLUS_ISEQ_INT16    , GxB_TIMES_ISEQ_INT16   , GxB_ANY_ISEQ_INT16     ,
    GxB_MIN_ISEQ_INT32     , GxB_MAX_ISEQ_INT32     , GxB_PLUS_ISEQ_INT32    , GxB_TIMES_ISEQ_INT32   , GxB_ANY_ISEQ_INT32     ,
    GxB_MIN_ISEQ_INT64     , GxB_MAX_ISEQ_INT64     , GxB_PLUS_ISEQ_INT64    , GxB_TIMES_ISEQ_INT64   , GxB_ANY_ISEQ_INT64     ,
    GxB_MIN_ISEQ_UINT8     , GxB_MAX_ISEQ_UINT8     , GxB_PLUS_ISEQ_UINT8    , GxB_TIMES_ISEQ_UINT8   , GxB_ANY_ISEQ_UINT8     ,
    GxB_MIN_ISEQ_UINT16    , GxB_MAX_ISEQ_UINT16    , GxB_PLUS_ISEQ_UINT16   , GxB_TIMES_ISEQ_UINT16  , GxB_ANY_ISEQ_UINT16    ,
    GxB_MIN_ISEQ_UINT32    , GxB_MAX_ISEQ_UINT32    , GxB_PLUS_ISEQ_UINT32   , GxB_TIMES_ISEQ_UINT32  , GxB_ANY_ISEQ_UINT32    ,
    GxB_MIN_ISEQ_UINT64    , GxB_MAX_ISEQ_UINT64    , GxB_PLUS_ISEQ_UINT64   , GxB_TIMES_ISEQ_UINT64  , GxB_ANY_ISEQ_UINT64    ,
    GxB_MIN_ISEQ_FP32      , GxB_MAX_ISEQ_FP32      , GxB_PLUS_ISEQ_FP32     , GxB_TIMES_ISEQ_FP32    , GxB_ANY_ISEQ_FP32      ,
    GxB_MIN_ISEQ_FP64      , GxB_MAX_ISEQ_FP64      , GxB_PLUS_ISEQ_FP64     , GxB_TIMES_ISEQ_FP64    , GxB_ANY_ISEQ_FP64      ,

    // semirings with multiply op: z = ISNE (x,y), all types x,y,z the same:
    GxB_MIN_ISNE_INT8      , GxB_MAX_ISNE_INT8      , GxB_PLUS_ISNE_INT8     , GxB_TIMES_ISNE_INT8    , GxB_ANY_ISNE_INT8      ,
    GxB_MIN_ISNE_INT16     , GxB_MAX_ISNE_INT16     , GxB_PLUS_ISNE_INT16    , GxB_TIMES_ISNE_INT16   , GxB_ANY_ISNE_INT16     ,
    GxB_MIN_ISNE_INT32     , GxB_MAX_ISNE_INT32     , GxB_PLUS_ISNE_INT32    , GxB_TIMES_ISNE_INT32   , GxB_ANY_ISNE_INT32     ,
    GxB_MIN_ISNE_INT64     , GxB_MAX_ISNE_INT64     , GxB_PLUS_ISNE_INT64    , GxB_TIMES_ISNE_INT64   , GxB_ANY_ISNE_INT64     ,
    GxB_MIN_ISNE_UINT8     , GxB_MAX_ISNE_UINT8     , GxB_PLUS_ISNE_UINT8    , GxB_TIMES_ISNE_UINT8   , GxB_ANY_ISNE_UINT8     ,
    GxB_MIN_ISNE_UINT16    , GxB_MAX_ISNE_UINT16    , GxB_PLUS_ISNE_UINT16   , GxB_TIMES_ISNE_UINT16  , GxB_ANY_ISNE_UINT16    ,
    GxB_MIN_ISNE_UINT32    , GxB_MAX_ISNE_UINT32    , GxB_PLUS_ISNE_UINT32   , GxB_TIMES_ISNE_UINT32  , GxB_ANY_ISNE_UINT32    ,
    GxB_MIN_ISNE_UINT64    , GxB_MAX_ISNE_UINT64    , GxB_PLUS_ISNE_UINT64   , GxB_TIMES_ISNE_UINT64  , GxB_ANY_ISNE_UINT64    ,
    GxB_MIN_ISNE_FP32      , GxB_MAX_ISNE_FP32      , GxB_PLUS_ISNE_FP32     , GxB_TIMES_ISNE_FP32    , GxB_ANY_ISNE_FP32      ,
    GxB_MIN_ISNE_FP64      , GxB_MAX_ISNE_FP64      , GxB_PLUS_ISNE_FP64     , GxB_TIMES_ISNE_FP64    , GxB_ANY_ISNE_FP64      ,

    // semirings with multiply op: z = ISGT (x,y), all types x,y,z the same:
    GxB_MIN_ISGT_INT8      , GxB_MAX_ISGT_INT8      , GxB_PLUS_ISGT_INT8     , GxB_TIMES_ISGT_INT8    , GxB_ANY_ISGT_INT8      ,
    GxB_MIN_ISGT_INT16     , GxB_MAX_ISGT_INT16     , GxB_PLUS_ISGT_INT16    , GxB_TIMES_ISGT_INT16   , GxB_ANY_ISGT_INT16     ,
    GxB_MIN_ISGT_INT32     , GxB_MAX_ISGT_INT32     , GxB_PLUS_ISGT_INT32    , GxB_TIMES_ISGT_INT32   , GxB_ANY_ISGT_INT32     ,
    GxB_MIN_ISGT_INT64     , GxB_MAX_ISGT_INT64     , GxB_PLUS_ISGT_INT64    , GxB_TIMES_ISGT_INT64   , GxB_ANY_ISGT_INT64     ,
    GxB_MIN_ISGT_UINT8     , GxB_MAX_ISGT_UINT8     , GxB_PLUS_ISGT_UINT8    , GxB_TIMES_ISGT_UINT8   , GxB_ANY_ISGT_UINT8     ,
    GxB_MIN_ISGT_UINT16    , GxB_MAX_ISGT_UINT16    , GxB_PLUS_ISGT_UINT16   , GxB_TIMES_ISGT_UINT16  , GxB_ANY_ISGT_UINT16    ,
    GxB_MIN_ISGT_UINT32    , GxB_MAX_ISGT_UINT32    , GxB_PLUS_ISGT_UINT32   , GxB_TIMES_ISGT_UINT32  , GxB_ANY_ISGT_UINT32    ,
    GxB_MIN_ISGT_UINT64    , GxB_MAX_ISGT_UINT64    , GxB_PLUS_ISGT_UINT64   , GxB_TIMES_ISGT_UINT64  , GxB_ANY_ISGT_UINT64    ,
    GxB_MIN_ISGT_FP32      , GxB_MAX_ISGT_FP32      , GxB_PLUS_ISGT_FP32     , GxB_TIMES_ISGT_FP32    , GxB_ANY_ISGT_FP32      ,
    GxB_MIN_ISGT_FP64      , GxB_MAX_ISGT_FP64      , GxB_PLUS_ISGT_FP64     , GxB_TIMES_ISGT_FP64    , GxB_ANY_ISGT_FP64      ,

    // semirings with multiply op: z = ISLT (x,y), all types x,y,z the same:
    GxB_MIN_ISLT_INT8      , GxB_MAX_ISLT_INT8      , GxB_PLUS_ISLT_INT8     , GxB_TIMES_ISLT_INT8    , GxB_ANY_ISLT_INT8      ,
    GxB_MIN_ISLT_INT16     , GxB_MAX_ISLT_INT16     , GxB_PLUS_ISLT_INT16    , GxB_TIMES_ISLT_INT16   , GxB_ANY_ISLT_INT16     ,
    GxB_MIN_ISLT_INT32     , GxB_MAX_ISLT_INT32     , GxB_PLUS_ISLT_INT32    , GxB_TIMES_ISLT_INT32   , GxB_ANY_ISLT_INT32     ,
    GxB_MIN_ISLT_INT64     , GxB_MAX_ISLT_INT64     , GxB_PLUS_ISLT_INT64    , GxB_TIMES_ISLT_INT64   , GxB_ANY_ISLT_INT64     ,
    GxB_MIN_ISLT_UINT8     , GxB_MAX_ISLT_UINT8     , GxB_PLUS_ISLT_UINT8    , GxB_TIMES_ISLT_UINT8   , GxB_ANY_ISLT_UINT8     ,
    GxB_MIN_ISLT_UINT16    , GxB_MAX_ISLT_UINT16    , GxB_PLUS_ISLT_UINT16   , GxB_TIMES_ISLT_UINT16  , GxB_ANY_ISLT_UINT16    ,
    GxB_MIN_ISLT_UINT32    , GxB_MAX_ISLT_UINT32    , GxB_PLUS_ISLT_UINT32   , GxB_TIMES_ISLT_UINT32  , GxB_ANY_ISLT_UINT32    ,
    GxB_MIN_ISLT_UINT64    , GxB_MAX_ISLT_UINT64    , GxB_PLUS_ISLT_UINT64   , GxB_TIMES_ISLT_UINT64  , GxB_ANY_ISLT_UINT64    ,
    GxB_MIN_ISLT_FP32      , GxB_MAX_ISLT_FP32      , GxB_PLUS_ISLT_FP32     , GxB_TIMES_ISLT_FP32    , GxB_ANY_ISLT_FP32      ,
    GxB_MIN_ISLT_FP64      , GxB_MAX_ISLT_FP64      , GxB_PLUS_ISLT_FP64     , GxB_TIMES_ISLT_FP64    , GxB_ANY_ISLT_FP64      ,

    // semirings with multiply op: z = ISGE (x,y), all types x,y,z the same:
    GxB_MIN_ISGE_INT8      , GxB_MAX_ISGE_INT8      , GxB_PLUS_ISGE_INT8     , GxB_TIMES_ISGE_INT8    , GxB_ANY_ISGE_INT8      ,
    GxB_MIN_ISGE_INT16     , GxB_MAX_ISGE_INT16     , GxB_PLUS_ISGE_INT16    , GxB_TIMES_ISGE_INT16   , GxB_ANY_ISGE_INT16     ,
    GxB_MIN_ISGE_INT32     , GxB_MAX_ISGE_INT32     , GxB_PLUS_ISGE_INT32    , GxB_TIMES_ISGE_INT32   , GxB_ANY_ISGE_INT32     ,
    GxB_MIN_ISGE_INT64     , GxB_MAX_ISGE_INT64     , GxB_PLUS_ISGE_INT64    , GxB_TIMES_ISGE_INT64   , GxB_ANY_ISGE_INT64     ,
    GxB_MIN_ISGE_UINT8     , GxB_MAX_ISGE_UINT8     , GxB_PLUS_ISGE_UINT8    , GxB_TIMES_ISGE_UINT8   , GxB_ANY_ISGE_UINT8     ,
    GxB_MIN_ISGE_UINT16    , GxB_MAX_ISGE_UINT16    , GxB_PLUS_ISGE_UINT16   , GxB_TIMES_ISGE_UINT16  , GxB_ANY_ISGE_UINT16    ,
    GxB_MIN_ISGE_UINT32    , GxB_MAX_ISGE_UINT32    , GxB_PLUS_ISGE_UINT32   , GxB_TIMES_ISGE_UINT32  , GxB_ANY_ISGE_UINT32    ,
    GxB_MIN_ISGE_UINT64    , GxB_MAX_ISGE_UINT64    , GxB_PLUS_ISGE_UINT64   , GxB_TIMES_ISGE_UINT64  , GxB_ANY_ISGE_UINT64    ,
    GxB_MIN_ISGE_FP32      , GxB_MAX_ISGE_FP32      , GxB_PLUS_ISGE_FP32     , GxB_TIMES_ISGE_FP32    , GxB_ANY_ISGE_FP32      ,
    GxB_MIN_ISGE_FP64      , GxB_MAX_ISGE_FP64      , GxB_PLUS_ISGE_FP64     , GxB_TIMES_ISGE_FP64    , GxB_ANY_ISGE_FP64      ,

    // semirings with multiply op: z = ISLE (x,y), all types x,y,z the same:
    GxB_MIN_ISLE_INT8      , GxB_MAX_ISLE_INT8      , GxB_PLUS_ISLE_INT8     , GxB_TIMES_ISLE_INT8    , GxB_ANY_ISLE_INT8      ,
    GxB_MIN_ISLE_INT16     , GxB_MAX_ISLE_INT16     , GxB_PLUS_ISLE_INT16    , GxB_TIMES_ISLE_INT16   , GxB_ANY_ISLE_INT16     ,
    GxB_MIN_ISLE_INT32     , GxB_MAX_ISLE_INT32     , GxB_PLUS_ISLE_INT32    , GxB_TIMES_ISLE_INT32   , GxB_ANY_ISLE_INT32     ,
    GxB_MIN_ISLE_INT64     , GxB_MAX_ISLE_INT64     , GxB_PLUS_ISLE_INT64    , GxB_TIMES_ISLE_INT64   , GxB_ANY_ISLE_INT64     ,
    GxB_MIN_ISLE_UINT8     , GxB_MAX_ISLE_UINT8     , GxB_PLUS_ISLE_UINT8    , GxB_TIMES_ISLE_UINT8   , GxB_ANY_ISLE_UINT8     ,
    GxB_MIN_ISLE_UINT16    , GxB_MAX_ISLE_UINT16    , GxB_PLUS_ISLE_UINT16   , GxB_TIMES_ISLE_UINT16  , GxB_ANY_ISLE_UINT16    ,
    GxB_MIN_ISLE_UINT32    , GxB_MAX_ISLE_UINT32    , GxB_PLUS_ISLE_UINT32   , GxB_TIMES_ISLE_UINT32  , GxB_ANY_ISLE_UINT32    ,
    GxB_MIN_ISLE_UINT64    , GxB_MAX_ISLE_UINT64    , GxB_PLUS_ISLE_UINT64   , GxB_TIMES_ISLE_UINT64  , GxB_ANY_ISLE_UINT64    ,
    GxB_MIN_ISLE_FP32      , GxB_MAX_ISLE_FP32      , GxB_PLUS_ISLE_FP32     , GxB_TIMES_ISLE_FP32    , GxB_ANY_ISLE_FP32      ,
    GxB_MIN_ISLE_FP64      , GxB_MAX_ISLE_FP64      , GxB_PLUS_ISLE_FP64     , GxB_TIMES_ISLE_FP64    , GxB_ANY_ISLE_FP64      ,

    // semirings with multiply op: z = LOR (x,y), all types x,y,z the same:
    GxB_MIN_LOR_INT8       , GxB_MAX_LOR_INT8       , GxB_PLUS_LOR_INT8      , GxB_TIMES_LOR_INT8     , GxB_ANY_LOR_INT8       ,
    GxB_MIN_LOR_INT16      , GxB_MAX_LOR_INT16      , GxB_PLUS_LOR_INT16     , GxB_TIMES_LOR_INT16    , GxB_ANY_LOR_INT16      ,
    GxB_MIN_LOR_INT32      , GxB_MAX_LOR_INT32      , GxB_PLUS_LOR_INT32     , GxB_TIMES_LOR_INT32    , GxB_ANY_LOR_INT32      ,
    GxB_MIN_LOR_INT64      , GxB_MAX_LOR_INT64      , GxB_PLUS_LOR_INT64     , GxB_TIMES_LOR_INT64    , GxB_ANY_LOR_INT64      ,
    GxB_MIN_LOR_UINT8      , GxB_MAX_LOR_UINT8      , GxB_PLUS_LOR_UINT8     , GxB_TIMES_LOR_UINT8    , GxB_ANY_LOR_UINT8      ,
    GxB_MIN_LOR_UINT16     , GxB_MAX_LOR_UINT16     , GxB_PLUS_LOR_UINT16    , GxB_TIMES_LOR_UINT16   , GxB_ANY_LOR_UINT16     ,
    GxB_MIN_LOR_UINT32     , GxB_MAX_LOR_UINT32     , GxB_PLUS_LOR_UINT32    , GxB_TIMES_LOR_UINT32   , GxB_ANY_LOR_UINT32     ,
    GxB_MIN_LOR_UINT64     , GxB_MAX_LOR_UINT64     , GxB_PLUS_LOR_UINT64    , GxB_TIMES_LOR_UINT64   , GxB_ANY_LOR_UINT64     ,
    GxB_MIN_LOR_FP32       , GxB_MAX_LOR_FP32       , GxB_PLUS_LOR_FP32      , GxB_TIMES_LOR_FP32     , GxB_ANY_LOR_FP32       ,
    GxB_MIN_LOR_FP64       , GxB_MAX_LOR_FP64       , GxB_PLUS_LOR_FP64      , GxB_TIMES_LOR_FP64     , GxB_ANY_LOR_FP64       ,

    // semirings with multiply op: z = LAND (x,y), all types x,y,z the same:
    GxB_MIN_LAND_INT8      , GxB_MAX_LAND_INT8      , GxB_PLUS_LAND_INT8     , GxB_TIMES_LAND_INT8    , GxB_ANY_LAND_INT8      ,
    GxB_MIN_LAND_INT16     , GxB_MAX_LAND_INT16     , GxB_PLUS_LAND_INT16    , GxB_TIMES_LAND_INT16   , GxB_ANY_LAND_INT16     ,
    GxB_MIN_LAND_INT32     , GxB_MAX_LAND_INT32     , GxB_PLUS_LAND_INT32    , GxB_TIMES_LAND_INT32   , GxB_ANY_LAND_INT32     ,
    GxB_MIN_LAND_INT64     , GxB_MAX_LAND_INT64     , GxB_PLUS_LAND_INT64    , GxB_TIMES_LAND_INT64   , GxB_ANY_LAND_INT64     ,
    GxB_MIN_LAND_UINT8     , GxB_MAX_LAND_UINT8     , GxB_PLUS_LAND_UINT8    , GxB_TIMES_LAND_UINT8   , GxB_ANY_LAND_UINT8     ,
    GxB_MIN_LAND_UINT16    , GxB_MAX_LAND_UINT16    , GxB_PLUS_LAND_UINT16   , GxB_TIMES_LAND_UINT16  , GxB_ANY_LAND_UINT16    ,
    GxB_MIN_LAND_UINT32    , GxB_MAX_LAND_UINT32    , GxB_PLUS_LAND_UINT32   , GxB_TIMES_LAND_UINT32  , GxB_ANY_LAND_UINT32    ,
    GxB_MIN_LAND_UINT64    , GxB_MAX_LAND_UINT64    , GxB_PLUS_LAND_UINT64   , GxB_TIMES_LAND_UINT64  , GxB_ANY_LAND_UINT64    ,
    GxB_MIN_LAND_FP32      , GxB_MAX_LAND_FP32      , GxB_PLUS_LAND_FP32     , GxB_TIMES_LAND_FP32    , GxB_ANY_LAND_FP32      ,
    GxB_MIN_LAND_FP64      , GxB_MAX_LAND_FP64      , GxB_PLUS_LAND_FP64     , GxB_TIMES_LAND_FP64    , GxB_ANY_LAND_FP64      ,

    // semirings with multiply op: z = LXOR (x,y), all types x,y,z the same:
    GxB_MIN_LXOR_INT8      , GxB_MAX_LXOR_INT8      , GxB_PLUS_LXOR_INT8     , GxB_TIMES_LXOR_INT8    , GxB_ANY_LXOR_INT8      ,
    GxB_MIN_LXOR_INT16     , GxB_MAX_LXOR_INT16     , GxB_PLUS_LXOR_INT16    , GxB_TIMES_LXOR_INT16   , GxB_ANY_LXOR_INT16     ,
    GxB_MIN_LXOR_INT32     , GxB_MAX_LXOR_INT32     , GxB_PLUS_LXOR_INT32    , GxB_TIMES_LXOR_INT32   , GxB_ANY_LXOR_INT32     ,
    GxB_MIN_LXOR_INT64     , GxB_MAX_LXOR_INT64     , GxB_PLUS_LXOR_INT64    , GxB_TIMES_LXOR_INT64   , GxB_ANY_LXOR_INT64     ,
    GxB_MIN_LXOR_UINT8     , GxB_MAX_LXOR_UINT8     , GxB_PLUS_LXOR_UINT8    , GxB_TIMES_LXOR_UINT8   , GxB_ANY_LXOR_UINT8     ,
    GxB_MIN_LXOR_UINT16    , GxB_MAX_LXOR_UINT16    , GxB_PLUS_LXOR_UINT16   , GxB_TIMES_LXOR_UINT16  , GxB_ANY_LXOR_UINT16    ,
    GxB_MIN_LXOR_UINT32    , GxB_MAX_LXOR_UINT32    , GxB_PLUS_LXOR_UINT32   , GxB_TIMES_LXOR_UINT32  , GxB_ANY_LXOR_UINT32    ,
    GxB_MIN_LXOR_UINT64    , GxB_MAX_LXOR_UINT64    , GxB_PLUS_LXOR_UINT64   , GxB_TIMES_LXOR_UINT64  , GxB_ANY_LXOR_UINT64    ,
    GxB_MIN_LXOR_FP32      , GxB_MAX_LXOR_FP32      , GxB_PLUS_LXOR_FP32     , GxB_TIMES_LXOR_FP32    , GxB_ANY_LXOR_FP32      ,
    GxB_MIN_LXOR_FP64      , GxB_MAX_LXOR_FP64      , GxB_PLUS_LXOR_FP64     , GxB_TIMES_LXOR_FP64    , GxB_ANY_LXOR_FP64      ,

//------------------------------------------------------------------------------
// 300 semirings with a comparator TxT -> bool, where T is non-Boolean
//------------------------------------------------------------------------------

    // In the 4th column the GxB_EQ_*_* semirings could also be called
    // GxB_LXNOR_*_*, since the EQ and LXNOR boolean operators are identical
    // but those names are not included.

    // semirings with multiply op: z = EQ (x,y), where z is boolean and x,y are given by the suffix:
    GxB_LOR_EQ_INT8        , GxB_LAND_EQ_INT8       , GxB_LXOR_EQ_INT8       , GxB_EQ_EQ_INT8         , GxB_ANY_EQ_INT8        ,
    GxB_LOR_EQ_INT16       , GxB_LAND_EQ_INT16      , GxB_LXOR_EQ_INT16      , GxB_EQ_EQ_INT16        , GxB_ANY_EQ_INT16       ,
    GxB_LOR_EQ_INT32       , GxB_LAND_EQ_INT32      , GxB_LXOR_EQ_INT32      , GxB_EQ_EQ_INT32        , GxB_ANY_EQ_INT32       ,
    GxB_LOR_EQ_INT64       , GxB_LAND_EQ_INT64      , GxB_LXOR_EQ_INT64      , GxB_EQ_EQ_INT64        , GxB_ANY_EQ_INT64       ,
    GxB_LOR_EQ_UINT8       , GxB_LAND_EQ_UINT8      , GxB_LXOR_EQ_UINT8      , GxB_EQ_EQ_UINT8        , GxB_ANY_EQ_UINT8       ,
    GxB_LOR_EQ_UINT16      , GxB_LAND_EQ_UINT16     , GxB_LXOR_EQ_UINT16     , GxB_EQ_EQ_UINT16       , GxB_ANY_EQ_UINT16      ,
    GxB_LOR_EQ_UINT32      , GxB_LAND_EQ_UINT32     , GxB_LXOR_EQ_UINT32     , GxB_EQ_EQ_UINT32       , GxB_ANY_EQ_UINT32      ,
    GxB_LOR_EQ_UINT64      , GxB_LAND_EQ_UINT64     , GxB_LXOR_EQ_UINT64     , GxB_EQ_EQ_UINT64       , GxB_ANY_EQ_UINT64      ,
    GxB_LOR_EQ_FP32        , GxB_LAND_EQ_FP32       , GxB_LXOR_EQ_FP32       , GxB_EQ_EQ_FP32         , GxB_ANY_EQ_FP32        ,
    GxB_LOR_EQ_FP64        , GxB_LAND_EQ_FP64       , GxB_LXOR_EQ_FP64       , GxB_EQ_EQ_FP64         , GxB_ANY_EQ_FP64        ,

    // semirings with multiply op: z = NE (x,y), where z is boolean and x,y are given by the suffix:
    GxB_LOR_NE_INT8        , GxB_LAND_NE_INT8       , GxB_LXOR_NE_INT8       , GxB_EQ_NE_INT8         , GxB_ANY_NE_INT8        ,
    GxB_LOR_NE_INT16       , GxB_LAND_NE_INT16      , GxB_LXOR_NE_INT16      , GxB_EQ_NE_INT16        , GxB_ANY_NE_INT16       ,
    GxB_LOR_NE_INT32       , GxB_LAND_NE_INT32      , GxB_LXOR_NE_INT32      , GxB_EQ_NE_INT32        , GxB_ANY_NE_INT32       ,
    GxB_LOR_NE_INT64       , GxB_LAND_NE_INT64      , GxB_LXOR_NE_INT64      , GxB_EQ_NE_INT64        , GxB_ANY_NE_INT64       ,
    GxB_LOR_NE_UINT8       , GxB_LAND_NE_UINT8      , GxB_LXOR_NE_UINT8      , GxB_EQ_NE_UINT8        , GxB_ANY_NE_UINT8       ,
    GxB_LOR_NE_UINT16      , GxB_LAND_NE_UINT16     , GxB_LXOR_NE_UINT16     , GxB_EQ_NE_UINT16       , GxB_ANY_NE_UINT16      ,
    GxB_LOR_NE_UINT32      , GxB_LAND_NE_UINT32     , GxB_LXOR_NE_UINT32     , GxB_EQ_NE_UINT32       , GxB_ANY_NE_UINT32      ,
    GxB_LOR_NE_UINT64      , GxB_LAND_NE_UINT64     , GxB_LXOR_NE_UINT64     , GxB_EQ_NE_UINT64       , GxB_ANY_NE_UINT64      ,
    GxB_LOR_NE_FP32        , GxB_LAND_NE_FP32       , GxB_LXOR_NE_FP32       , GxB_EQ_NE_FP32         , GxB_ANY_NE_FP32        ,
    GxB_LOR_NE_FP64        , GxB_LAND_NE_FP64       , GxB_LXOR_NE_FP64       , GxB_EQ_NE_FP64         , GxB_ANY_NE_FP64        ,

    // semirings with multiply op: z = GT (x,y), where z is boolean and x,y are given by the suffix:
    GxB_LOR_GT_INT8        , GxB_LAND_GT_INT8       , GxB_LXOR_GT_INT8       , GxB_EQ_GT_INT8         , GxB_ANY_GT_INT8        ,
    GxB_LOR_GT_INT16       , GxB_LAND_GT_INT16      , GxB_LXOR_GT_INT16      , GxB_EQ_GT_INT16        , GxB_ANY_GT_INT16       ,
    GxB_LOR_GT_INT32       , GxB_LAND_GT_INT32      , GxB_LXOR_GT_INT32      , GxB_EQ_GT_INT32        , GxB_ANY_GT_INT32       ,
    GxB_LOR_GT_INT64       , GxB_LAND_GT_INT64      , GxB_LXOR_GT_INT64      , GxB_EQ_GT_INT64        , GxB_ANY_GT_INT64       ,
    GxB_LOR_GT_UINT8       , GxB_LAND_GT_UINT8      , GxB_LXOR_GT_UINT8      , GxB_EQ_GT_UINT8        , GxB_ANY_GT_UINT8       ,
    GxB_LOR_GT_UINT16      , GxB_LAND_GT_UINT16     , GxB_LXOR_GT_UINT16     , GxB_EQ_GT_UINT16       , GxB_ANY_GT_UINT16      ,
    GxB_LOR_GT_UINT32      , GxB_LAND_GT_UINT32     , GxB_LXOR_GT_UINT32     , GxB_EQ_GT_UINT32       , GxB_ANY_GT_UINT32      ,
    GxB_LOR_GT_UINT64      , GxB_LAND_GT_UINT64     , GxB_LXOR_GT_UINT64     , GxB_EQ_GT_UINT64       , GxB_ANY_GT_UINT64      ,
    GxB_LOR_GT_FP32        , GxB_LAND_GT_FP32       , GxB_LXOR_GT_FP32       , GxB_EQ_GT_FP32         , GxB_ANY_GT_FP32        ,
    GxB_LOR_GT_FP64        , GxB_LAND_GT_FP64       , GxB_LXOR_GT_FP64       , GxB_EQ_GT_FP64         , GxB_ANY_GT_FP64        ,

    // semirings with multiply op: z = LT (x,y), where z is boolean and x,y are given by the suffix:
    GxB_LOR_LT_INT8        , GxB_LAND_LT_INT8       , GxB_LXOR_LT_INT8       , GxB_EQ_LT_INT8         , GxB_ANY_LT_INT8        ,
    GxB_LOR_LT_INT16       , GxB_LAND_LT_INT16      , GxB_LXOR_LT_INT16      , GxB_EQ_LT_INT16        , GxB_ANY_LT_INT16       ,
    GxB_LOR_LT_INT32       , GxB_LAND_LT_INT32      , GxB_LXOR_LT_INT32      , GxB_EQ_LT_INT32        , GxB_ANY_LT_INT32       ,
    GxB_LOR_LT_INT64       , GxB_LAND_LT_INT64      , GxB_LXOR_LT_INT64      , GxB_EQ_LT_INT64        , GxB_ANY_LT_INT64       ,
    GxB_LOR_LT_UINT8       , GxB_LAND_LT_UINT8      , GxB_LXOR_LT_UINT8      , GxB_EQ_LT_UINT8        , GxB_ANY_LT_UINT8       ,
    GxB_LOR_LT_UINT16      , GxB_LAND_LT_UINT16     , GxB_LXOR_LT_UINT16     , GxB_EQ_LT_UINT16       , GxB_ANY_LT_UINT16      ,
    GxB_LOR_LT_UINT32      , GxB_LAND_LT_UINT32     , GxB_LXOR_LT_UINT32     , GxB_EQ_LT_UINT32       , GxB_ANY_LT_UINT32      ,
    GxB_LOR_LT_UINT64      , GxB_LAND_LT_UINT64     , GxB_LXOR_LT_UINT64     , GxB_EQ_LT_UINT64       , GxB_ANY_LT_UINT64      ,
    GxB_LOR_LT_FP32        , GxB_LAND_LT_FP32       , GxB_LXOR_LT_FP32       , GxB_EQ_LT_FP32         , GxB_ANY_LT_FP32        ,
    GxB_LOR_LT_FP64        , GxB_LAND_LT_FP64       , GxB_LXOR_LT_FP64       , GxB_EQ_LT_FP64         , GxB_ANY_LT_FP64        ,

    // semirings with multiply op: z = GE (x,y), where z is boolean and x,y are given by the suffix:
    GxB_LOR_GE_INT8        , GxB_LAND_GE_INT8       , GxB_LXOR_GE_INT8       , GxB_EQ_GE_INT8         , GxB_ANY_GE_INT8        ,
    GxB_LOR_GE_INT16       , GxB_LAND_GE_INT16      , GxB_LXOR_GE_INT16      , GxB_EQ_GE_INT16        , GxB_ANY_GE_INT16       ,
    GxB_LOR_GE_INT32       , GxB_LAND_GE_INT32      , GxB_LXOR_GE_INT32      , GxB_EQ_GE_INT32        , GxB_ANY_GE_INT32       ,
    GxB_LOR_GE_INT64       , GxB_LAND_GE_INT64      , GxB_LXOR_GE_INT64      , GxB_EQ_GE_INT64        , GxB_ANY_GE_INT64       ,
    GxB_LOR_GE_UINT8       , GxB_LAND_GE_UINT8      , GxB_LXOR_GE_UINT8      , GxB_EQ_GE_UINT8        , GxB_ANY_GE_UINT8       ,
    GxB_LOR_GE_UINT16      , GxB_LAND_GE_UINT16     , GxB_LXOR_GE_UINT16     , GxB_EQ_GE_UINT16       , GxB_ANY_GE_UINT16      ,
    GxB_LOR_GE_UINT32      , GxB_LAND_GE_UINT32     , GxB_LXOR_GE_UINT32     , GxB_EQ_GE_UINT32       , GxB_ANY_GE_UINT32      ,
    GxB_LOR_GE_UINT64      , GxB_LAND_GE_UINT64     , GxB_LXOR_GE_UINT64     , GxB_EQ_GE_UINT64       , GxB_ANY_GE_UINT64      ,
    GxB_LOR_GE_FP32        , GxB_LAND_GE_FP32       , GxB_LXOR_GE_FP32       , GxB_EQ_GE_FP32         , GxB_ANY_GE_FP32        ,
    GxB_LOR_GE_FP64        , GxB_LAND_GE_FP64       , GxB_LXOR_GE_FP64       , GxB_EQ_GE_FP64         , GxB_ANY_GE_FP64        ,

    // semirings with multiply op: z = LE (x,y), where z is boolean and x,y are given by the suffix:
    GxB_LOR_LE_INT8        , GxB_LAND_LE_INT8       , GxB_LXOR_LE_INT8       , GxB_EQ_LE_INT8         , GxB_ANY_LE_INT8        ,
    GxB_LOR_LE_INT16       , GxB_LAND_LE_INT16      , GxB_LXOR_LE_INT16      , GxB_EQ_LE_INT16        , GxB_ANY_LE_INT16       ,
    GxB_LOR_LE_INT32       , GxB_LAND_LE_INT32      , GxB_LXOR_LE_INT32      , GxB_EQ_LE_INT32        , GxB_ANY_LE_INT32       ,
    GxB_LOR_LE_INT64       , GxB_LAND_LE_INT64      , GxB_LXOR_LE_INT64      , GxB_EQ_LE_INT64        , GxB_ANY_LE_INT64       ,
    GxB_LOR_LE_UINT8       , GxB_LAND_LE_UINT8      , GxB_LXOR_LE_UINT8      , GxB_EQ_LE_UINT8        , GxB_ANY_LE_UINT8       ,
    GxB_LOR_LE_UINT16      , GxB_LAND_LE_UINT16     , GxB_LXOR_LE_UINT16     , GxB_EQ_LE_UINT16       , GxB_ANY_LE_UINT16      ,
    GxB_LOR_LE_UINT32      , GxB_LAND_LE_UINT32     , GxB_LXOR_LE_UINT32     , GxB_EQ_LE_UINT32       , GxB_ANY_LE_UINT32      ,
    GxB_LOR_LE_UINT64      , GxB_LAND_LE_UINT64     , GxB_LXOR_LE_UINT64     , GxB_EQ_LE_UINT64       , GxB_ANY_LE_UINT64      ,
    GxB_LOR_LE_FP32        , GxB_LAND_LE_FP32       , GxB_LXOR_LE_FP32       , GxB_EQ_LE_FP32         , GxB_ANY_LE_FP32        ,
    GxB_LOR_LE_FP64        , GxB_LAND_LE_FP64       , GxB_LXOR_LE_FP64       , GxB_EQ_LE_FP64         , GxB_ANY_LE_FP64        ,

//------------------------------------------------------------------------------
// 55 semirings with purely Boolean types, bool x bool -> bool
//------------------------------------------------------------------------------

    // Note that lor_pair, land_pair, and eq_pair are all identical to any_pair.
    // These 3 are marked below.  GxB_EQ_*_BOOL could be called
    // GxB_LXNOR_*_BOOL, and GxB_*_EQ_BOOL could be called GxB_*_LXNOR_BOOL,
    // but those names are not included.

    // purely boolean semirings in the form GxB_(add monoid)_(multiply operator)_BOOL:
    GxB_LOR_FIRST_BOOL     , GxB_LAND_FIRST_BOOL    , GxB_LXOR_FIRST_BOOL    , GxB_EQ_FIRST_BOOL      , GxB_ANY_FIRST_BOOL     ,
    GxB_LOR_SECOND_BOOL    , GxB_LAND_SECOND_BOOL   , GxB_LXOR_SECOND_BOOL   , GxB_EQ_SECOND_BOOL     , GxB_ANY_SECOND_BOOL    ,
    GxB_LOR_PAIR_BOOL/**/  , GxB_LAND_PAIR_BOOL/**/ , GxB_LXOR_PAIR_BOOL     , GxB_EQ_PAIR_BOOL/**/   , GxB_ANY_PAIR_BOOL      ,
    GxB_LOR_LOR_BOOL       , GxB_LAND_LOR_BOOL      , GxB_LXOR_LOR_BOOL      , GxB_EQ_LOR_BOOL        , GxB_ANY_LOR_BOOL       ,
    GxB_LOR_LAND_BOOL      , GxB_LAND_LAND_BOOL     , GxB_LXOR_LAND_BOOL     , GxB_EQ_LAND_BOOL       , GxB_ANY_LAND_BOOL      ,
    GxB_LOR_LXOR_BOOL      , GxB_LAND_LXOR_BOOL     , GxB_LXOR_LXOR_BOOL     , GxB_EQ_LXOR_BOOL       , GxB_ANY_LXOR_BOOL      ,
    GxB_LOR_EQ_BOOL        , GxB_LAND_EQ_BOOL       , GxB_LXOR_EQ_BOOL       , GxB_EQ_EQ_BOOL         , GxB_ANY_EQ_BOOL        ,
    GxB_LOR_GT_BOOL        , GxB_LAND_GT_BOOL       , GxB_LXOR_GT_BOOL       , GxB_EQ_GT_BOOL         , GxB_ANY_GT_BOOL        ,
    GxB_LOR_LT_BOOL        , GxB_LAND_LT_BOOL       , GxB_LXOR_LT_BOOL       , GxB_EQ_LT_BOOL         , GxB_ANY_LT_BOOL        ,
    GxB_LOR_GE_BOOL        , GxB_LAND_GE_BOOL       , GxB_LXOR_GE_BOOL       , GxB_EQ_GE_BOOL         , GxB_ANY_GE_BOOL        ,
    GxB_LOR_LE_BOOL        , GxB_LAND_LE_BOOL       , GxB_LXOR_LE_BOOL       , GxB_EQ_LE_BOOL         , GxB_ANY_LE_BOOL        ,

//------------------------------------------------------------------------------
// 54 complex semirings
//------------------------------------------------------------------------------

    // 3 monoids (plus, times, any), 2 types (FC32 and FC64), and 9
    // multiplicative operators.

    // Note that times_pair is identical to any_pair.
    // These 2 are marked below.

    GxB_PLUS_FIRST_FC32    , GxB_TIMES_FIRST_FC32   , GxB_ANY_FIRST_FC32     ,
    GxB_PLUS_FIRST_FC64    , GxB_TIMES_FIRST_FC64   , GxB_ANY_FIRST_FC64     ,

    GxB_PLUS_SECOND_FC32   , GxB_TIMES_SECOND_FC32  , GxB_ANY_SECOND_FC32    ,
    GxB_PLUS_SECOND_FC64   , GxB_TIMES_SECOND_FC64  , GxB_ANY_SECOND_FC64    ,

    GxB_PLUS_PAIR_FC32     , GxB_TIMES_PAIR_FC32/**/, GxB_ANY_PAIR_FC32      ,
    GxB_PLUS_PAIR_FC64     , GxB_TIMES_PAIR_FC64/**/, GxB_ANY_PAIR_FC64      ,

    GxB_PLUS_PLUS_FC32     , GxB_TIMES_PLUS_FC32    , GxB_ANY_PLUS_FC32      ,
    GxB_PLUS_PLUS_FC64     , GxB_TIMES_PLUS_FC64    , GxB_ANY_PLUS_FC64      ,

    GxB_PLUS_MINUS_FC32    , GxB_TIMES_MINUS_FC32   , GxB_ANY_MINUS_FC32     ,
    GxB_PLUS_MINUS_FC64    , GxB_TIMES_MINUS_FC64   , GxB_ANY_MINUS_FC64     ,

    GxB_PLUS_TIMES_FC32    , GxB_TIMES_TIMES_FC32   , GxB_ANY_TIMES_FC32     ,
    GxB_PLUS_TIMES_FC64    , GxB_TIMES_TIMES_FC64   , GxB_ANY_TIMES_FC64     ,

    GxB_PLUS_DIV_FC32      , GxB_TIMES_DIV_FC32     , GxB_ANY_DIV_FC32       ,
    GxB_PLUS_DIV_FC64      , GxB_TIMES_DIV_FC64     , GxB_ANY_DIV_FC64       ,

    GxB_PLUS_RDIV_FC32     , GxB_TIMES_RDIV_FC32    , GxB_ANY_RDIV_FC32      ,
    GxB_PLUS_RDIV_FC64     , GxB_TIMES_RDIV_FC64    , GxB_ANY_RDIV_FC64      ,

    GxB_PLUS_RMINUS_FC32   , GxB_TIMES_RMINUS_FC32  , GxB_ANY_RMINUS_FC32    ,
    GxB_PLUS_RMINUS_FC64   , GxB_TIMES_RMINUS_FC64  , GxB_ANY_RMINUS_FC64    ,

//------------------------------------------------------------------------------
// 64 bitwise semirings
//------------------------------------------------------------------------------

    // monoids: (BOR, BAND, BXOR, BXNOR) x
    // mult:    (BOR, BAND, BXOR, BXNOR) x
    // types:   (UINT8, UINT16, UINT32, UINT64)

    GxB_BOR_BOR_UINT8      , GxB_BOR_BOR_UINT16     , GxB_BOR_BOR_UINT32     , GxB_BOR_BOR_UINT64     ,
    GxB_BOR_BAND_UINT8     , GxB_BOR_BAND_UINT16    , GxB_BOR_BAND_UINT32    , GxB_BOR_BAND_UINT64    ,
    GxB_BOR_BXOR_UINT8     , GxB_BOR_BXOR_UINT16    , GxB_BOR_BXOR_UINT32    , GxB_BOR_BXOR_UINT64    ,
    GxB_BOR_BXNOR_UINT8    , GxB_BOR_BXNOR_UINT16   , GxB_BOR_BXNOR_UINT32   , GxB_BOR_BXNOR_UINT64   ,

    GxB_BAND_BOR_UINT8     , GxB_BAND_BOR_UINT16    , GxB_BAND_BOR_UINT32    , GxB_BAND_BOR_UINT64    ,
    GxB_BAND_BAND_UINT8    , GxB_BAND_BAND_UINT16   , GxB_BAND_BAND_UINT32   , GxB_BAND_BAND_UINT64   ,
    GxB_BAND_BXOR_UINT8    , GxB_BAND_BXOR_UINT16   , GxB_BAND_BXOR_UINT32   , GxB_BAND_BXOR_UINT64   ,
    GxB_BAND_BXNOR_UINT8   , GxB_BAND_BXNOR_UINT16  , GxB_BAND_BXNOR_UINT32  , GxB_BAND_BXNOR_UINT64  ,

    GxB_BXOR_BOR_UINT8     , GxB_BXOR_BOR_UINT16    , GxB_BXOR_BOR_UINT32    , GxB_BXOR_BOR_UINT64    ,
    GxB_BXOR_BAND_UINT8    , GxB_BXOR_BAND_UINT16   , GxB_BXOR_BAND_UINT32   , GxB_BXOR_BAND_UINT64   ,
    GxB_BXOR_BXOR_UINT8    , GxB_BXOR_BXOR_UINT16   , GxB_BXOR_BXOR_UINT32   , GxB_BXOR_BXOR_UINT64   ,
    GxB_BXOR_BXNOR_UINT8   , GxB_BXOR_BXNOR_UINT16  , GxB_BXOR_BXNOR_UINT32  , GxB_BXOR_BXNOR_UINT64  ,

    GxB_BXNOR_BOR_UINT8    , GxB_BXNOR_BOR_UINT16   , GxB_BXNOR_BOR_UINT32   , GxB_BXNOR_BOR_UINT64   ,
    GxB_BXNOR_BAND_UINT8   , GxB_BXNOR_BAND_UINT16  , GxB_BXNOR_BAND_UINT32  , GxB_BXNOR_BAND_UINT64  ,
    GxB_BXNOR_BXOR_UINT8   , GxB_BXNOR_BXOR_UINT16  , GxB_BXNOR_BXOR_UINT32  , GxB_BXNOR_BXOR_UINT64  ,
    GxB_BXNOR_BXNOR_UINT8  , GxB_BXNOR_BXNOR_UINT16 , GxB_BXNOR_BXNOR_UINT32 , GxB_BXNOR_BXNOR_UINT64 ,

//------------------------------------------------------------------------------
// 80 positional semirings
//------------------------------------------------------------------------------

    // monoids: (MIN, MAX, ANY, PLUS, TIMES) x
    // mult:    (FIRSTI, FIRSTI1, FIRSTJ, FIRSTJ1, SECONDI, SECONDI1, SECONDJ, SECONDJ1)
    // types:   (INT32, INT64)

    GxB_MIN_FIRSTI_INT32,     GxB_MIN_FIRSTI_INT64,
    GxB_MAX_FIRSTI_INT32,     GxB_MAX_FIRSTI_INT64,
    GxB_ANY_FIRSTI_INT32,     GxB_ANY_FIRSTI_INT64,
    GxB_PLUS_FIRSTI_INT32,    GxB_PLUS_FIRSTI_INT64,
    GxB_TIMES_FIRSTI_INT32,   GxB_TIMES_FIRSTI_INT64,

    GxB_MIN_FIRSTI1_INT32,    GxB_MIN_FIRSTI1_INT64,
    GxB_MAX_FIRSTI1_INT32,    GxB_MAX_FIRSTI1_INT64,
    GxB_ANY_FIRSTI1_INT32,    GxB_ANY_FIRSTI1_INT64,
    GxB_PLUS_FIRSTI1_INT32,   GxB_PLUS_FIRSTI1_INT64,
    GxB_TIMES_FIRSTI1_INT32,  GxB_TIMES_FIRSTI1_INT64,

    GxB_MIN_FIRSTJ_INT32,     GxB_MIN_FIRSTJ_INT64,
    GxB_MAX_FIRSTJ_INT32,     GxB_MAX_FIRSTJ_INT64,
    GxB_ANY_FIRSTJ_INT32,     GxB_ANY_FIRSTJ_INT64,
    GxB_PLUS_FIRSTJ_INT32,    GxB_PLUS_FIRSTJ_INT64,
    GxB_TIMES_FIRSTJ_INT32,   GxB_TIMES_FIRSTJ_INT64,

    GxB_MIN_FIRSTJ1_INT32,    GxB_MIN_FIRSTJ1_INT64,
    GxB_MAX_FIRSTJ1_INT32,    GxB_MAX_FIRSTJ1_INT64,
    GxB_ANY_FIRSTJ1_INT32,    GxB_ANY_FIRSTJ1_INT64,
    GxB_PLUS_FIRSTJ1_INT32,   GxB_PLUS_FIRSTJ1_INT64,
    GxB_TIMES_FIRSTJ1_INT32,  GxB_TIMES_FIRSTJ1_INT64,

    GxB_MIN_SECONDI_INT32,    GxB_MIN_SECONDI_INT64,
    GxB_MAX_SECONDI_INT32,    GxB_MAX_SECONDI_INT64,
    GxB_ANY_SECONDI_INT32,    GxB_ANY_SECONDI_INT64,
    GxB_PLUS_SECONDI_INT32,   GxB_PLUS_SECONDI_INT64,
    GxB_TIMES_SECONDI_INT32,  GxB_TIMES_SECONDI_INT64,

    GxB_MIN_SECONDI1_INT32,   GxB_MIN_SECONDI1_INT64,
    GxB_MAX_SECONDI1_INT32,   GxB_MAX_SECONDI1_INT64,
    GxB_ANY_SECONDI1_INT32,   GxB_ANY_SECONDI1_INT64,
    GxB_PLUS_SECONDI1_INT32,  GxB_PLUS_SECONDI1_INT64,
    GxB_TIMES_SECONDI1_INT32, GxB_TIMES_SECONDI1_INT64,

    GxB_MIN_SECONDJ_INT32,    GxB_MIN_SECONDJ_INT64,
    GxB_MAX_SECONDJ_INT32,    GxB_MAX_SECONDJ_INT64,
    GxB_ANY_SECONDJ_INT32,    GxB_ANY_SECONDJ_INT64,
    GxB_PLUS_SECONDJ_INT32,   GxB_PLUS_SECONDJ_INT64,
    GxB_TIMES_SECONDJ_INT32,  GxB_TIMES_SECONDJ_INT64,

    GxB_MIN_SECONDJ1_INT32,   GxB_MIN_SECONDJ1_INT64,
    GxB_MAX_SECONDJ1_INT32,   GxB_MAX_SECONDJ1_INT64,
    GxB_ANY_SECONDJ1_INT32,   GxB_ANY_SECONDJ1_INT64,
    GxB_PLUS_SECONDJ1_INT32,  GxB_PLUS_SECONDJ1_INT64,
    GxB_TIMES_SECONDJ1_INT32, GxB_TIMES_SECONDJ1_INT64 ;

//------------------------------------------------------------------------------
// GrB_* semirings
//------------------------------------------------------------------------------

// The v1.3 C API for GraphBLAS adds the following 124 predefined semirings,
// with GrB_* names.  They are identical to 124 GxB_* semirings defined above,
// with the same name, except that GrB_LXNOR_LOR_SEMIRING_BOOL is identical to
// GxB_EQ_LOR_BOOL (since GrB_EQ_BOOL == GrB_LXNOR).  The old names are listed
// below alongside each new name; the new GrB_* names are preferred.

// 12 kinds of GrB_* semirings are available for all 10 real non-boolean types:

    // PLUS_TIMES, PLUS_MIN,
    // MIN_PLUS, MIN_TIMES, MIN_FIRST, MIN_SECOND, MIN_MAX,
    // MAX_PLUS, MAX_TIMES, MAX_FIRST, MAX_SECOND, MAX_MIN

// and 4 semirings for boolean only:

    // LOR_LAND, LAND_LOR, LXOR_LAND, LXNOR_LOR.

// GxB_* semirings corresponding to the equivalent GrB_* semiring are
// historical.

GB_PUBLIC GrB_Semiring

    //--------------------------------------------------------------------------
    // 20 semirings with PLUS monoids
    //--------------------------------------------------------------------------

    // PLUS_TIMES semirings for all 10 real, non-boolean types:
    GrB_PLUS_TIMES_SEMIRING_INT8,       // GxB_PLUS_TIMES_INT8
    GrB_PLUS_TIMES_SEMIRING_INT16,      // GxB_PLUS_TIMES_INT16
    GrB_PLUS_TIMES_SEMIRING_INT32,      // GxB_PLUS_TIMES_INT32
    GrB_PLUS_TIMES_SEMIRING_INT64,      // GxB_PLUS_TIMES_INT64
    GrB_PLUS_TIMES_SEMIRING_UINT8,      // GxB_PLUS_TIMES_UINT8
    GrB_PLUS_TIMES_SEMIRING_UINT16,     // GxB_PLUS_TIMES_UINT16
    GrB_PLUS_TIMES_SEMIRING_UINT32,     // GxB_PLUS_TIMES_UINT32
    GrB_PLUS_TIMES_SEMIRING_UINT64,     // GxB_PLUS_TIMES_UINT64
    GrB_PLUS_TIMES_SEMIRING_FP32,       // GxB_PLUS_TIMES_FP32
    GrB_PLUS_TIMES_SEMIRING_FP64,       // GxB_PLUS_TIMES_FP64

    // PLUS_MIN semirings for all 10 real, non-boolean types:
    GrB_PLUS_MIN_SEMIRING_INT8,         // GxB_PLUS_MIN_INT8
    GrB_PLUS_MIN_SEMIRING_INT16,        // GxB_PLUS_MIN_INT16
    GrB_PLUS_MIN_SEMIRING_INT32,        // GxB_PLUS_MIN_INT32
    GrB_PLUS_MIN_SEMIRING_INT64,        // GxB_PLUS_MIN_INT64
    GrB_PLUS_MIN_SEMIRING_UINT8,        // GxB_PLUS_MIN_UINT8
    GrB_PLUS_MIN_SEMIRING_UINT16,       // GxB_PLUS_MIN_UINT16
    GrB_PLUS_MIN_SEMIRING_UINT32,       // GxB_PLUS_MIN_UINT32
    GrB_PLUS_MIN_SEMIRING_UINT64,       // GxB_PLUS_MIN_UINT64
    GrB_PLUS_MIN_SEMIRING_FP32,         // GxB_PLUS_MIN_FP32
    GrB_PLUS_MIN_SEMIRING_FP64,         // GxB_PLUS_MIN_FP64

    //--------------------------------------------------------------------------
    // 50 semirings with MIN monoids
    //--------------------------------------------------------------------------

    // MIN_PLUS semirings for all 10 real, non-boolean types:
    GrB_MIN_PLUS_SEMIRING_INT8,         // GxB_MIN_PLUS_INT8
    GrB_MIN_PLUS_SEMIRING_INT16,        // GxB_MIN_PLUS_INT16
    GrB_MIN_PLUS_SEMIRING_INT32,        // GxB_MIN_PLUS_INT32
    GrB_MIN_PLUS_SEMIRING_INT64,        // GxB_MIN_PLUS_INT64
    GrB_MIN_PLUS_SEMIRING_UINT8,        // GxB_MIN_PLUS_UINT8
    GrB_MIN_PLUS_SEMIRING_UINT16,       // GxB_MIN_PLUS_UINT16
    GrB_MIN_PLUS_SEMIRING_UINT32,       // GxB_MIN_PLUS_UINT32
    GrB_MIN_PLUS_SEMIRING_UINT64,       // GxB_MIN_PLUS_UINT64
    GrB_MIN_PLUS_SEMIRING_FP32,         // GxB_MIN_PLUS_FP32
    GrB_MIN_PLUS_SEMIRING_FP64,         // GxB_MIN_PLUS_FP64

    // MIN_TIMES semirings for all 10 real, non-boolean types:
    GrB_MIN_TIMES_SEMIRING_INT8,        // GxB_MIN_TIMES_INT8
    GrB_MIN_TIMES_SEMIRING_INT16,       // GxB_MIN_TIMES_INT16
    GrB_MIN_TIMES_SEMIRING_INT32,       // GxB_MIN_TIMES_INT32
    GrB_MIN_TIMES_SEMIRING_INT64,       // GxB_MIN_TIMES_INT64
    GrB_MIN_TIMES_SEMIRING_UINT8,       // GxB_MIN_TIMES_UINT8
    GrB_MIN_TIMES_SEMIRING_UINT16,      // GxB_MIN_TIMES_UINT16
    GrB_MIN_TIMES_SEMIRING_UINT32,      // GxB_MIN_TIMES_UINT32
    GrB_MIN_TIMES_SEMIRING_UINT64,      // GxB_MIN_TIMES_UINT64
    GrB_MIN_TIMES_SEMIRING_FP32,        // GxB_MIN_TIMES_FP32
    GrB_MIN_TIMES_SEMIRING_FP64,        // GxB_MIN_TIMES_FP64

    // MIN_FIRST semirings for all 10 real, non-boolean types:
    GrB_MIN_FIRST_SEMIRING_INT8,        // GxB_MIN_FIRST_INT8
    GrB_MIN_FIRST_SEMIRING_INT16,       // GxB_MIN_FIRST_INT16
    GrB_MIN_FIRST_SEMIRING_INT32,       // GxB_MIN_FIRST_INT32
    GrB_MIN_FIRST_SEMIRING_INT64,       // GxB_MIN_FIRST_INT64
    GrB_MIN_FIRST_SEMIRING_UINT8,       // GxB_MIN_FIRST_UINT8
    GrB_MIN_FIRST_SEMIRING_UINT16,      // GxB_MIN_FIRST_UINT16
    GrB_MIN_FIRST_SEMIRING_UINT32,      // GxB_MIN_FIRST_UINT32
    GrB_MIN_FIRST_SEMIRING_UINT64,      // GxB_MIN_FIRST_UINT64
    GrB_MIN_FIRST_SEMIRING_FP32,        // GxB_MIN_FIRST_FP32
    GrB_MIN_FIRST_SEMIRING_FP64,        // GxB_MIN_FIRST_FP64

    // MIN_SECOND semirings for all 10 real, non-boolean types:
    GrB_MIN_SECOND_SEMIRING_INT8,       // GxB_MIN_SECOND_INT8
    GrB_MIN_SECOND_SEMIRING_INT16,      // GxB_MIN_SECOND_INT16
    GrB_MIN_SECOND_SEMIRING_INT32,      // GxB_MIN_SECOND_INT32
    GrB_MIN_SECOND_SEMIRING_INT64,      // GxB_MIN_SECOND_INT64
    GrB_MIN_SECOND_SEMIRING_UINT8,      // GxB_MIN_SECOND_UINT8
    GrB_MIN_SECOND_SEMIRING_UINT16,     // GxB_MIN_SECOND_UINT16
    GrB_MIN_SECOND_SEMIRING_UINT32,     // GxB_MIN_SECOND_UINT32
    GrB_MIN_SECOND_SEMIRING_UINT64,     // GxB_MIN_SECOND_UINT64
    GrB_MIN_SECOND_SEMIRING_FP32,       // GxB_MIN_SECOND_FP32
    GrB_MIN_SECOND_SEMIRING_FP64,       // GxB_MIN_SECOND_FP64

    // MIN_MAX semirings for all 10 real, non-boolean types:
    GrB_MIN_MAX_SEMIRING_INT8,          // GxB_MIN_MAX_INT8
    GrB_MIN_MAX_SEMIRING_INT16,         // GxB_MIN_MAX_INT16
    GrB_MIN_MAX_SEMIRING_INT32,         // GxB_MIN_MAX_INT32
    GrB_MIN_MAX_SEMIRING_INT64,         // GxB_MIN_MAX_INT64
    GrB_MIN_MAX_SEMIRING_UINT8,         // GxB_MIN_MAX_UINT8
    GrB_MIN_MAX_SEMIRING_UINT16,        // GxB_MIN_MAX_UINT16
    GrB_MIN_MAX_SEMIRING_UINT32,        // GxB_MIN_MAX_UINT32
    GrB_MIN_MAX_SEMIRING_UINT64,        // GxB_MIN_MAX_UINT64
    GrB_MIN_MAX_SEMIRING_FP32,          // GxB_MIN_MAX_FP32
    GrB_MIN_MAX_SEMIRING_FP64,          // GxB_MIN_MAX_FP64

    //--------------------------------------------------------------------------
    // 50 semirings with MAX monoids
    //--------------------------------------------------------------------------

    // MAX_PLUS semirings for all 10 real, non-boolean types
    GrB_MAX_PLUS_SEMIRING_INT8,         // GxB_MAX_PLUS_INT8
    GrB_MAX_PLUS_SEMIRING_INT16,        // GxB_MAX_PLUS_INT16
    GrB_MAX_PLUS_SEMIRING_INT32,        // GxB_MAX_PLUS_INT32
    GrB_MAX_PLUS_SEMIRING_INT64,        // GxB_MAX_PLUS_INT64
    GrB_MAX_PLUS_SEMIRING_UINT8,        // GxB_MAX_PLUS_UINT8
    GrB_MAX_PLUS_SEMIRING_UINT16,       // GxB_MAX_PLUS_UINT16
    GrB_MAX_PLUS_SEMIRING_UINT32,       // GxB_MAX_PLUS_UINT32
    GrB_MAX_PLUS_SEMIRING_UINT64,       // GxB_MAX_PLUS_UINT64
    GrB_MAX_PLUS_SEMIRING_FP32,         // GxB_MAX_PLUS_FP32
    GrB_MAX_PLUS_SEMIRING_FP64,         // GxB_MAX_PLUS_FP64

    // MAX_TIMES semirings for all 10 real, non-boolean types:
    GrB_MAX_TIMES_SEMIRING_INT8,        // GxB_MAX_TIMES_INT8
    GrB_MAX_TIMES_SEMIRING_INT16,       // GxB_MAX_TIMES_INT16
    GrB_MAX_TIMES_SEMIRING_INT32,       // GxB_MAX_TIMES_INT32
    GrB_MAX_TIMES_SEMIRING_INT64,       // GxB_MAX_TIMES_INT64
    GrB_MAX_TIMES_SEMIRING_UINT8,       // GxB_MAX_TIMES_UINT8
    GrB_MAX_TIMES_SEMIRING_UINT16,      // GxB_MAX_TIMES_UINT16
    GrB_MAX_TIMES_SEMIRING_UINT32,      // GxB_MAX_TIMES_UINT32
    GrB_MAX_TIMES_SEMIRING_UINT64,      // GxB_MAX_TIMES_UINT64
    GrB_MAX_TIMES_SEMIRING_FP32,        // GxB_MAX_TIMES_FP32
    GrB_MAX_TIMES_SEMIRING_FP64,        // GxB_MAX_TIMES_FP64

    // MAX_FIRST semirings for all 10 real, non-boolean types:
    GrB_MAX_FIRST_SEMIRING_INT8,        // GxB_MAX_FIRST_INT8
    GrB_MAX_FIRST_SEMIRING_INT16,       // GxB_MAX_FIRST_INT16
    GrB_MAX_FIRST_SEMIRING_INT32,       // GxB_MAX_FIRST_INT32
    GrB_MAX_FIRST_SEMIRING_INT64,       // GxB_MAX_FIRST_INT64
    GrB_MAX_FIRST_SEMIRING_UINT8,       // GxB_MAX_FIRST_UINT8
    GrB_MAX_FIRST_SEMIRING_UINT16,      // GxB_MAX_FIRST_UINT16
    GrB_MAX_FIRST_SEMIRING_UINT32,      // GxB_MAX_FIRST_UINT32
    GrB_MAX_FIRST_SEMIRING_UINT64,      // GxB_MAX_FIRST_UINT64
    GrB_MAX_FIRST_SEMIRING_FP32,        // GxB_MAX_FIRST_FP32
    GrB_MAX_FIRST_SEMIRING_FP64,        // GxB_MAX_FIRST_FP64

    // MAX_SECOND semirings for all 10 real, non-boolean types:
    GrB_MAX_SECOND_SEMIRING_INT8,       // GxB_MAX_SECOND_INT8
    GrB_MAX_SECOND_SEMIRING_INT16,      // GxB_MAX_SECOND_INT16
    GrB_MAX_SECOND_SEMIRING_INT32,      // GxB_MAX_SECOND_INT32
    GrB_MAX_SECOND_SEMIRING_INT64,      // GxB_MAX_SECOND_INT64
    GrB_MAX_SECOND_SEMIRING_UINT8,      // GxB_MAX_SECOND_UINT8
    GrB_MAX_SECOND_SEMIRING_UINT16,     // GxB_MAX_SECOND_UINT16
    GrB_MAX_SECOND_SEMIRING_UINT32,     // GxB_MAX_SECOND_UINT32
    GrB_MAX_SECOND_SEMIRING_UINT64,     // GxB_MAX_SECOND_UINT64
    GrB_MAX_SECOND_SEMIRING_FP32,       // GxB_MAX_SECOND_FP32
    GrB_MAX_SECOND_SEMIRING_FP64,       // GxB_MAX_SECOND_FP64

    // MAX_MIN semirings for all 10 real, non-boolean types:
    GrB_MAX_MIN_SEMIRING_INT8,          // GxB_MAX_MIN_INT8
    GrB_MAX_MIN_SEMIRING_INT16,         // GxB_MAX_MIN_INT16
    GrB_MAX_MIN_SEMIRING_INT32,         // GxB_MAX_MIN_INT32
    GrB_MAX_MIN_SEMIRING_INT64,         // GxB_MAX_MIN_INT64
    GrB_MAX_MIN_SEMIRING_UINT8,         // GxB_MAX_MIN_UINT8
    GrB_MAX_MIN_SEMIRING_UINT16,        // GxB_MAX_MIN_UINT16
    GrB_MAX_MIN_SEMIRING_UINT32,        // GxB_MAX_MIN_UINT32
    GrB_MAX_MIN_SEMIRING_UINT64,        // GxB_MAX_MIN_UINT64
    GrB_MAX_MIN_SEMIRING_FP32,          // GxB_MAX_MIN_FP32
    GrB_MAX_MIN_SEMIRING_FP64,          // GxB_MAX_MIN_FP64

    //--------------------------------------------------------------------------
    // 4 boolean semirings:
    //--------------------------------------------------------------------------

    GrB_LOR_LAND_SEMIRING_BOOL,         // GxB_LOR_LAND_BOOL
    GrB_LAND_LOR_SEMIRING_BOOL,         // GxB_LAND_LOR_BOOL
    GrB_LXOR_LAND_SEMIRING_BOOL,        // GxB_LXOR_LAND_BOOL
    GrB_LXNOR_LOR_SEMIRING_BOOL ;       // GxB_EQ_LOR_BOOL (note EQ == LXNOR)

//==============================================================================
// GrB_*_resize:  change the size of a matrix or vector
//==============================================================================

// If the dimensions decrease, entries that fall outside the resized matrix or
// vector are deleted.

GB_PUBLIC
GrB_Info GrB_Matrix_resize      // change the size of a matrix
(
    GrB_Matrix C,               // matrix to modify
    GrB_Index nrows_new,        // new number of rows in matrix
    GrB_Index ncols_new         // new number of columns in matrix
) ;

GB_PUBLIC
GrB_Info GrB_Vector_resize      // change the size of a vector
(
    GrB_Vector w,               // vector to modify
    GrB_Index nrows_new         // new number of rows in vector
) ;

// GxB_*_resize are identical to the GrB_*resize methods above
GB_PUBLIC
GrB_Info GxB_Matrix_resize      // change the size of a matrix (historical)
(
    GrB_Matrix C,               // matrix to modify
    GrB_Index nrows_new,        // new number of rows in matrix
    GrB_Index ncols_new         // new number of columns in matrix
) ;

GB_PUBLIC
GrB_Info GxB_Vector_resize      // change the size of a vector (historical)
(
    GrB_Vector w,               // vector to modify
    GrB_Index nrows_new         // new number of rows in vector
) ;

// GxB_resize is a generic function for resizing a matrix or vector:

// GrB_Vector_resize (u,nrows_new)
// GrB_Matrix_resize (A,nrows_new,ncols_new)

#if GxB_STDC_VERSION >= 201112L
#define GxB_resize(arg1,...)                                \
    _Generic                                                \
    (                                                       \
        (arg1),                                             \
              GrB_Vector : GrB_Vector_resize ,              \
              GrB_Matrix : GrB_Matrix_resize                \
    )                                                       \
    (arg1, __VA_ARGS__)
#endif

//==============================================================================
// GxB_fprint and GxB_print: print the contents of a GraphBLAS object
//==============================================================================

// GxB_fprint (object, GxB_Print_Level pr, FILE *f) prints the contents of any
// of the 9 GraphBLAS objects to the file f, and also does an extensive test on
// the object to determine if it is valid.  It returns one of the following
// error conditions:
//
//      GrB_SUCCESS               object is valid
//      GrB_UNINITIALIZED_OBJECT  object is not initialized
//      GrB_INVALID_OBJECT        object is not valid
//      GrB_NULL_POINTER          object is a NULL pointer
//      GrB_INVALID_VALUE         fprintf returned an I/O error; see the ANSI C
//                                errno or GrB_error( )for details.
//
// GxB_fprint does not modify the status of any object.  If a matrix or vector
// has not been completed, the pending computations are guaranteed to *not* be
// performed by GxB_fprint.  The reason is simple.  It is possible for a bug in
// the user application (such as accessing memory outside the bounds of an
// array) to mangle the internal content of a GraphBLAS object, and GxB_fprint
// can be a helpful tool to track down this bug.  If GxB_fprint attempted to
// complete any computations prior to printing or checking the contents of the
// matrix or vector, then further errors could occur, including a segfault.
//
// The type-specific functions include an additional argument, the name string.
// The name is printed at the beginning of the display (assuming pr is not
// GxB_SILENT) so that the object can be more easily identified in the output.
// For the type-generic methods GxB_fprint and GxB_print, the name string is
// the variable name of the object itself.
//
// If f is NULL, stdout is used; this is not an error condition.  If pr is
// outside the bounds 0 to 3, negative values are treated as GxB_SILENT, and
// values > 3 are treated as GxB_COMPLETE.  If name is NULL, it is treated as
// the empty string.
//
// GxB_print (object, GxB_Print_Level pr) is the same as GxB_fprint, except
// that it prints the contents with printf instead of fprintf to a file f.
//
// The exact content and format of what is printed is implementation-dependent,
// and will change from version to version of SuiteSparse:GraphBLAS.  Do not
// attempt to rely on the exact content or format by trying to parse the
// resulting output via another program.  The intent of these functions is to
// produce a report of the object for visual inspection.

typedef enum
{
    GxB_SILENT = 0,     // nothing is printed, just check the object
    GxB_SUMMARY = 1,    // print a terse summary
    GxB_SHORT = 2,      // short description, about 30 entries of a matrix
    GxB_COMPLETE = 3,   // print the entire contents of the object
    GxB_SHORT_VERBOSE = 4,    // GxB_SHORT but with "%.15g" for doubles
    GxB_COMPLETE_VERBOSE = 5  // GxB_COMPLETE but with "%.15g" for doubles
}
GxB_Print_Level ;

GB_PUBLIC
GrB_Info GxB_Type_fprint            // print and check a GrB_Type
(
    GrB_Type type,                  // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_UnaryOp_fprint         // print and check a GrB_UnaryOp
(
    GrB_UnaryOp unaryop,            // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_BinaryOp_fprint        // print and check a GrB_BinaryOp
(
    GrB_BinaryOp binaryop,          // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_IndexUnaryOp_fprint    // print and check a GrB_IndexUnaryOp
(
    GrB_IndexUnaryOp op,            // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_SelectOp_fprint        // print and check a GxB_SelectOp
(
    GxB_SelectOp selectop,          // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_Monoid_fprint          // print and check a GrB_Monoid
(
    GrB_Monoid monoid,              // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_Semiring_fprint        // print and check a GrB_Semiring
(
    GrB_Semiring semiring,          // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_Descriptor_fprint      // print and check a GrB_Descriptor
(
    GrB_Descriptor descriptor,      // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_fprint          // print and check a GrB_Matrix
(
    GrB_Matrix A,                   // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_Vector_fprint          // print and check a GrB_Vector
(
    GrB_Vector v,                   // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

GB_PUBLIC
GrB_Info GxB_Scalar_fprint          // print and check a GrB_Scalar
(
    GrB_Scalar s,                   // object to print and check
    const char *name,               // name of the object
    GxB_Print_Level pr,             // print level
    FILE *f                         // file for output
) ;

#if GxB_STDC_VERSION >= 201112L
#define GxB_fprint(object,pr,f)                                 \
    _Generic                                                    \
    (                                                           \
        (object),                                               \
            const GrB_Type         : GxB_Type_fprint         ,  \
                  GrB_Type         : GxB_Type_fprint         ,  \
            const GrB_UnaryOp      : GxB_UnaryOp_fprint      ,  \
                  GrB_UnaryOp      : GxB_UnaryOp_fprint      ,  \
            const GrB_BinaryOp     : GxB_BinaryOp_fprint     ,  \
                  GrB_BinaryOp     : GxB_BinaryOp_fprint     ,  \
            const GrB_IndexUnaryOp : GxB_IndexUnaryOp_fprint ,  \
                  GrB_IndexUnaryOp : GxB_IndexUnaryOp_fprint ,  \
            const GxB_SelectOp     : GxB_SelectOp_fprint     ,  \
                  GxB_SelectOp     : GxB_SelectOp_fprint     ,  \
            const GrB_Monoid       : GxB_Monoid_fprint       ,  \
                  GrB_Monoid       : GxB_Monoid_fprint       ,  \
            const GrB_Semiring     : GxB_Semiring_fprint     ,  \
                  GrB_Semiring     : GxB_Semiring_fprint     ,  \
            const GrB_Scalar       : GxB_Scalar_fprint       ,  \
                  GrB_Scalar       : GxB_Scalar_fprint       ,  \
            const GrB_Vector       : GxB_Vector_fprint       ,  \
                  GrB_Vector       : GxB_Vector_fprint       ,  \
            const GrB_Matrix       : GxB_Matrix_fprint       ,  \
                  GrB_Matrix       : GxB_Matrix_fprint       ,  \
            const GrB_Descriptor   : GxB_Descriptor_fprint   ,  \
                  GrB_Descriptor   : GxB_Descriptor_fprint      \
    )                                                           \
    (object, GB_STR(object), pr, f)

#define GxB_print(object,pr) GxB_fprint(object,pr,NULL)
#endif

//==============================================================================
// Matrix and vector import/export/pack/unpack
//==============================================================================

// The import/export/pack/unpack functions allow the user application to create
// a GrB_Matrix or GrB_Vector object, and to extract its contents, faster and
// with less memory overhead than the GrB_*_build and GrB_*_extractTuples
// functions.

// The semantics of import/export/pack/unpack are the same as the "move
// constructor" in C++.  On import, the user provides a set of arrays that have
// been previously allocated via the ANSI C malloc function.  The arrays define
// the content of the matrix or vector.  Unlike GrB_*_build, the GraphBLAS
// library then takes ownership of the user's input arrays and may either (a)
// incorporate them into its internal data structure for the new GrB_Matrix or
// GrB_Vector, potentially creating the GrB_Matrix or GrB_Vector in constant
// time with no memory copying performed, or (b) if the library does not
// support the import format directly, then it may convert the input to its
// internal format, and then free the user's input arrays.  GraphBLAS may also
// choose to use a mix of the two strategies.  In either case, the input arrays
// are no longer "owned" by the user application.  If A is a GrB_Matrix created
// by an import/pack, the user input arrays are freed no later than GrB_free
// (&A), and may be freed earlier, at the discretion of the GraphBLAS library.
// The data structure of the GrB_Matrix and GrB_Vector remain opaque.

// The export/unpack of a GrB_Matrix or GrB_Vector is symmetric with the import
// operation.  The export is destructive, where the GrB_Matrix or GrB_Vector no
// longer exists when the export completes.  The GrB_Matrix or GrB_Vector
// exists after an unpack operation, just with no entries.  In both export and
// unpack, the user is returned several arrays that contain the matrix or
// vector in the requested format.  Ownership of these arrays is given to the
// user application, which is then responsible for freeing them via the ANSI C
// free function.  If the output format is supported by the GraphBLAS library,
// then these arrays may be returned to the user application in O(1) time and
// with no memory copying performed.  Otherwise, the GraphBLAS library will
// create the output arrays for the user (via the ANSI C malloc function), fill
// them with the GrB_Matrix or GrB_Vector data, and then return the newly
// allocated arrays to the user.

// Eight different formats are provided for import/export.  For each format,
// the Ax array has a C-type <type> corresponding to one of the 13 built-in
// types in GraphBLAS (bool, int*_t, uint*_t, float, double, float complex, or
// double complex), or a user-defined type.

// On import/pack, the required user arrays Ah, Ap, Ab, Ai, Aj, and/or Ax must
// be non-NULL pointers to memory space allocated by the ANSI C malloc (or
// calloc, or realloc), unless nzmax is zero (in which case the Ab, Ai, Aj, Ax,
// vb, vi, and vx arrays may all be NULL).  For the import, A (or GrB_Vector v)
// is undefined on input, just like GrB_*_new, the GrB_Matrix.  If the import
// is successful, the GrB_Matrix A or GrB_Vector v is created, and the pointers
// to the user input arrays have been set to NULL.  These user arrays have
// either been incorporated directly into the GrB_Matrix A or GrB_Vector v, in
// which case the user input arrays will eventually be freed by GrB_free (&A),
// or their contents have been copied and the arrays freed.  This decision is
// made by the GraphBLAS library itself, and the user application has no
// control over this decision.

// If any of the arrays Ab, Aj, Ai, Ax, vb, vi, or vx have zero size (with
// nzmax of zero), they are allowed to be be NULL pointers on input.

// A matrix or vector may be "iso", where all entries present in the pattern
// have the same value.  In this case, the boolean iso flag is true, and the
// corresponding numerical array (Ax for matrices, vx for vectors, below) need
// be only large enough to hold a single value.

// No error checking is performed on the content of the user input arrays.  If
// the user input arrays do not conform to the precise specifications above,
// results are undefined.  No typecasting of the values of the matrix or vector
// entries is performed on import or export.

// SuiteSparse:GraphBLAS supports all eight formats natively (CSR, CSC,
// HyperCSR, and HyperCSC, BitmapR, BitmapC, FullR, FullC).  For vectors, only
// CSC, BitmapC, and FullC formats are used.  On import, the all eight formats
// take O(1) time and memory to import.  On export, if the GrB_Matrix or
// GrB_Vector is already in this particular format, then the export takes O(1)
// time and no memory copying is performed.

// If the import is not successful, the GxB_Matrix_import_* functions return A
// as NULL, GxB_Vector_import returns v as NULL, and the user input arrays are
// neither modified nor freed.  They are still owned by the user application.

// If the input data is untrusted, use the following descriptor setting for
// GxB_Matrix_import* and GxB_Matrix_pack*.  The import/pack will be slower,
// but secure.  GrB_Matrix_import uses the slow, secure method, since it has
// no descriptor input.
//
//      GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ;

// As of v5.2.0, GxB_*import* and GxB_*export* are declared historical.  Use
// GxB_*pack* and GxB_*unpack* instead.  The GxB import/export will be kept
// but only documented here, not in the User Guide.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_CSR: pack a CSR matrix
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_CSR  // historical: use GxB_Matrix_pack_CSR
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    GrB_Index **Ap,     // row "pointers", Ap_size >= (nrows+1)* sizeof(int64_t)
    GrB_Index **Aj,     // column indices, Aj_size >= nvals(A) * sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Aj_size,  // size of Aj in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    bool jumbled,       // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_CSR      // pack a CSR matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers", Ap_size >= (nrows+1)* sizeof(int64_t)
    GrB_Index **Aj,     // column indices, Aj_size >= nvals(A) * sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Aj_size,  // size of Aj in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    bool jumbled,       // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

    // CSR:  an nrows-by-ncols matrix with nvals entries in CSR format consists
    // of 3 arrays, where nvals = Ap [nrows]:
    //
    //          GrB_Index Ap [nrows+1], Aj [nvals] ; <type> Ax [nvals] ;
    //
    //      The column indices of entries in the ith row of the matrix are held
    //      in Aj [Ap [i] ... Ap[i+1]], and the corresponding values are held
    //      in the same positions in Ax.  Column indices must be in the range 0
    //      to ncols-1.  If jumbled is false, the column indices must appear in
    //      sorted order within each row.  No duplicate column indices may
    //      appear in any row.  Ap [0] must equal zero, and Ap [nrows] must
    //      equal nvals.  The Ap array must be of size nrows+1 (or larger), and
    //      the Aj and Ax arrays must have size at least nvals.  If nvals is
    //      zero, then the Aj and Ax arrays need not be present and can be
    //      NULL.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_CSC: pack a CSC matrix
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_CSC  // historical: use GxB_Matrix_pack_CSC
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    GrB_Index **Ap,     // col "pointers", Ap_size >= (ncols+1)*sizeof(int64_t)
    GrB_Index **Ai,     // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ai_size,  // size of Ai in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    bool jumbled,       // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_CSC      // pack a CSC matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // col "pointers", Ap_size >= (ncols+1)*sizeof(int64_t)
    GrB_Index **Ai,     // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ai_size,  // size of Ai in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    bool jumbled,       // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

    // CSC:  an nrows-by-ncols matrix with nvals entries in CSC format consists
    // of 3 arrays, where nvals = Ap [ncols]:
    //
    //          GrB_Index Ap [ncols+1], Ai [nvals] ; <type> Ax [nvals] ;
    //
    //      The row indices of entries in the jth column of the matrix are held
    //      in Ai [Ap [j] ... Ap[j+1]], and the corresponding values are held
    //      in the same positions in Ax.  Row indices must be in the range 0 to
    //      nrows-1.  If jumbled is false, the row indices must appear in
    //      sorted order within each column.  No duplicate row indices may
    //      appear in any column.  Ap [0] must equal zero, and Ap [ncols] must
    //      equal nvals.  The Ap array must be of size ncols+1 (or larger), and
    //      the Ai and Ax arrays must have size at least nvals.  If nvals is
    //      zero, then the Ai and Ax arrays need not be present and can be
    //      NULL.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_HyperCSR: pack a hypersparse CSR matrix
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_HyperCSR // historical: use GxB_Matrix_pack_HyperCSR
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    GrB_Index **Ap,     // row "pointers", Ap_size >= (nvec+1)*sizeof(int64_t)
    GrB_Index **Ah,     // row indices, Ah_size >= nvec*sizeof(int64_t)
    GrB_Index **Aj,     // column indices, Aj_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ah_size,  // size of Ah in bytes
    GrB_Index Aj_size,  // size of Aj in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvec,     // number of rows that appear in Ah
    bool jumbled,       // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_HyperCSR      // pack a hypersparse CSR matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers", Ap_size >= (nvec+1)*sizeof(int64_t)
    GrB_Index **Ah,     // row indices, Ah_size >= nvec*sizeof(int64_t)
    GrB_Index **Aj,     // column indices, Aj_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A) * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ah_size,  // size of Ah in bytes
    GrB_Index Aj_size,  // size of Aj in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvec,     // number of rows that appear in Ah
    bool jumbled,       // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

    // HyperCSR: an nrows-by-ncols matrix with nvals entries and nvec
    // rows that may have entries in HyperCSR format consists of 4 arrays,
    // where nvals = Ap [nvec]:
    //
    //          GrB_Index Ah [nvec], Ap [nvec+1], Aj [nvals] ;
    //          <type> Ax [nvals] ;
    //
    //      The Aj and Ax arrays are the same for a matrix in CSR or HyperCSR
    //      format.  Only Ap and Ah differ.
    //
    //      The Ah array is a list of the row indices of rows that appear in
    //      the matrix.  It
    //      must appear in sorted order, and no duplicates may appear.  If i =
    //      Ah [k] is the kth row, then the column indices of the ith
    //      row appear in Aj [Ap [k] ... Ap [k+1]], and the corresponding
    //      values appear in the same locations in Ax.  Column indices must be
    //      in the range 0 to ncols-1, and must appear in sorted order within
    //      each row.  No duplicate column indices may appear in any row.  nvec
    //      may be zero, to denote an array with no entries.  The Ah array must
    //      be of size at least nvec, Ap must be of size at least nvec+1, and
    //      Aj and Ax must be at least of size nvals.  If nvals is zero, then
    //      the Aj and Ax arrays need not be present and can be NULL.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_HyperCSC: pack a hypersparse CSC matrix
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_HyperCSC // historical: use GxB_Matrix_pack_HyperCSC
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    GrB_Index **Ap,     // col "pointers", Ap_size >= (nvec+1)*sizeof(int64_t)
    GrB_Index **Ah,     // column indices, Ah_size >= nvec*sizeof(int64_t)
    GrB_Index **Ai,     // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A)*(type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ah_size,  // size of Ah in bytes
    GrB_Index Ai_size,  // size of Ai in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvec,     // number of columns that appear in Ah
    bool jumbled,       // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_HyperCSC      // pack a hypersparse CSC matrix
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // col "pointers", Ap_size >= (nvec+1)*sizeof(int64_t)
    GrB_Index **Ah,     // column indices, Ah_size >= nvec*sizeof(int64_t)
    GrB_Index **Ai,     // row indices, Ai_size >= nvals(A)*sizeof(int64_t)
    void **Ax,          // values, Ax_size >= nvals(A)*(type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ap_size,  // size of Ap in bytes
    GrB_Index Ah_size,  // size of Ah in bytes
    GrB_Index Ai_size,  // size of Ai in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvec,     // number of columns that appear in Ah
    bool jumbled,       // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

    // HyperCSC: an nrows-by-ncols matrix with nvals entries and nvec
    // columns that may have entries in HyperCSC format consists of 4 arrays,
    // where nvals = Ap [nvec]:
    //
    //
    //          GrB_Index Ah [nvec], Ap [nvec+1], Ai [nvals] ;
    //          <type> Ax [nvals] ;
    //
    //      The Ai and Ax arrays are the same for a matrix in CSC or HyperCSC
    //      format.  Only Ap and Ah differ.
    //
    //      The Ah array is a list of the column indices of non-empty columns.
    //      It must appear in sorted order, and no duplicates may appear.  If j
    //      = Ah [k] is the kth non-empty column, then the row indices of the
    //      jth column appear in Ai [Ap [k] ... Ap [k+1]], and the
    //      corresponding values appear in the same locations in Ax.  Row
    //      indices must be in the range 0 to nrows-1, and must appear in
    //      sorted order within each column.  No duplicate row indices may
    //      appear in any column.  nvec may be zero, to denote an array with no
    //      entries.  The Ah array must be of size at least nvec, Ap must be of
    //      size at least nvec+1, and Ai and Ax must be at least of size nvals.
    //      If nvals is zero, then the Ai and Ax arrays need not be present and
    //      can be NULL.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_BitmapR: pack a bitmap matrix, held by row
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_BitmapR // historical: use GxB_Matrix_pack_BitmapR
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    int8_t **Ab,        // bitmap, Ab_size >= nrows*ncols
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ab_size,  // size of Ab in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_BitmapR  // pack a bitmap matrix, held by row
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap, Ab_size >= nrows*ncols
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ab_size,  // size of Ab in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

    // BitmapR: a dense format, but able to represent sparsity structure of A.
    //
    //          int8_t Ab [nrows*ncols] ;
    //          <type> Ax [nrows*ncols] ;
    //
    //      Ab and Ax are both of size nrows*ncols.  Ab [i*ncols+j] = 1 if the
    //      A(i,j) entry is present with value Ax [i*ncols+j], or 0 if A(i,j)
    //      is not present.  nvals must equal the number of 1's in the Ab
    //      array.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_BitmapC: pack a bitmap matrix, held by column
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_BitmapC // historical: use GxB_Matrix_pack_BitmapC
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    int8_t **Ab,        // bitmap, Ab_size >= nrows*ncols
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ab_size,  // size of Ab in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_BitmapC  // pack a bitmap matrix, held by column
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap, Ab_size >= nrows*ncols
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ab_size,  // size of Ab in bytes
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

    // BitmapC: a dense format, but able to represent sparsity structure of A.
    //
    //          int8_t Ab [nrows*ncols] ;
    //          <type> Ax [nrows*ncols] ;
    //
    //      Ab and Ax are both of size nrows*ncols.  Ab [i+j*nrows] = 1 if the
    //      A(i,j) entry is present with value Ax [i+j*nrows], or 0 if A(i,j)
    //      is not present.  nvals must equal the number of 1's in the Ab
    //      array.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_FullR:  pack a full matrix, held by row
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_FullR // historical: use GxB_Matrix_pack_FullR
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_FullR  // pack a full matrix, held by row
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    const GrB_Descriptor desc
) ;

    // FullR: an nrows-by-ncols full matrix held in row-major order:
    //
    //  <type> Ax [nrows*ncols] ;
    //
    //      Ax is an array of size nrows*ncols, where A(i,j) is held in
    //      Ax [i*ncols+j].  All entries in A are present.

//------------------------------------------------------------------------------
// GxB_Matrix_pack_FullC: pack a full matrix, held by column
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Matrix_import_FullC // historical: use GxB_Matrix_pack_FullC
(
    GrB_Matrix *A,      // handle of matrix to create
    GrB_Type type,      // type of matrix to create
    GrB_Index nrows,    // number of rows of the matrix
    GrB_Index ncols,    // number of columns of the matrix
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_pack_FullC  // pack a full matrix, held by column
(
    GrB_Matrix A,       // matrix to create (type, nrows, ncols unchanged)
    void **Ax,          // values, Ax_size >= nrows*ncols * (type size)
                        // or Ax_size >= (type size), if iso is true
    GrB_Index Ax_size,  // size of Ax in bytes
    bool iso,           // if true, A is iso
    const GrB_Descriptor desc
) ;

    // FullC: an nrows-by-ncols full matrix held in column-major order:
    //
    //  <type> Ax [nrows*ncols] ;
    //
    //      Ax is an array of size nrows*ncols, where A(i,j) is held in
    //      Ax [i+j*nrows].  All entries in A are present.

//------------------------------------------------------------------------------
// GxB_Vector_pack_CSC: import/pack a vector in CSC format
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Vector_import_CSC // historical: use GxB_Vector_pack_CSC
(
    GrB_Vector *v,      // handle of vector to create
    GrB_Type type,      // type of vector to create
    GrB_Index n,        // vector length
    GrB_Index **vi,     // indices, vi_size >= nvals(v) * sizeof(int64_t)
    void **vx,          // values, vx_size >= nvals(v) * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vi_size,  // size of vi in bytes
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    GrB_Index nvals,    // # of entries in vector
    bool jumbled,       // if true, indices may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_pack_CSC  // pack a vector in CSC format
(
    GrB_Vector v,       // vector to create (type and length unchanged)
    GrB_Index **vi,     // indices, vi_size >= nvals(v) * sizeof(int64_t)
    void **vx,          // values, vx_size >= nvals(v) * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vi_size,  // size of vi in bytes
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    GrB_Index nvals,    // # of entries in vector
    bool jumbled,       // if true, indices may be unsorted
    const GrB_Descriptor desc
) ;

    // The GrB_Vector is treated as if it was a single column of an n-by-1
    // matrix in CSC format, except that no vp array is required.  If nvals is
    // zero, then the vi and vx arrays need not be present and can be NULL.

//------------------------------------------------------------------------------
// GxB_Vector_pack_Bitmap: pack a vector in bitmap format
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Vector_import_Bitmap // historical: GxB_Vector_pack_Bitmap
(
    GrB_Vector *v,      // handle of vector to create
    GrB_Type type,      // type of vector to create
    GrB_Index n,        // vector length
    int8_t **vb,        // bitmap, vb_size >= n
    void **vx,          // values, vx_size >= n * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vb_size,  // size of vb in bytes
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_pack_Bitmap // pack a bitmap vector
(
    GrB_Vector v,       // vector to create (type and length unchanged)
    int8_t **vb,        // bitmap, vb_size >= n
    void **vx,          // values, vx_size >= n * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vb_size,  // size of vb in bytes
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    GrB_Index nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

    // The GrB_Vector is treated as if it was a single column of an n-by-1
    // matrix in BitmapC format.

//------------------------------------------------------------------------------
// GxB_Vector_pack_Full: pack a vector in full format
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info GxB_Vector_import_Full // historical: use GxB_Vector_pack_Full
(
    GrB_Vector *v,      // handle of vector to create
    GrB_Type type,      // type of vector to create
    GrB_Index n,        // vector length
    void **vx,          // values, vx_size >= nvals(v) * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_pack_Full // pack a full vector
(
    GrB_Vector v,       // vector to create (type and length unchanged)
    void **vx,          // values, vx_size >= nvals(v) * (type size)
                        // or vx_size >= (type size), if iso is true
    GrB_Index vx_size,  // size of vx in bytes
    bool iso,           // if true, v is iso
    const GrB_Descriptor desc
) ;

    // The GrB_Vector is treated as if it was a single column of an n-by-1
    // matrix in FullC format.

//------------------------------------------------------------------------------
// GxB* export/unpack
//------------------------------------------------------------------------------

// The GxB_*_export/unpack functions are symmetric with the GxB_*_import/pack
// functions.  The export/unpack functions force completion of any pending
// operations, prior to the export, except if the only pending operation is to
// unjumble the matrix.
//
// If there are no entries in the matrix or vector, then the index arrays (Ai,
// Aj, or vi) and value arrays (Ax or vx) are returned as NULL.  This is not an
// error condition.
//
// A GrB_Matrix may be exported/unpacked in any one of four different formats.
// On successful export, the input GrB_Matrix A is freed, and the output arrays
// Ah, Ap, Ai, Aj, and/or Ax are returned to the user application as arrays
// allocated by the ANSI C malloc function.  The four formats are the same as
// the import formats for GxB_Matrix_import/pack.
//
// If jumbled is NULL on input, this indicates to GxB_*export/unpack* that the
// exported/unpacked matrix cannot be returned in a jumbled format.  In this
// case, if the matrix is jumbled, it is sorted before exporting it to the
// caller.
//
// If iso is NULL on input, this indicates to the export/unpack methods that
// the exported/unpacked matrix cannot be returned in a iso format, with an Ax
// array with just one entry.  In this case, if the matrix is iso, it is
// expanded before exporting/unpacking it to the caller.
//
// For the export/unpack*Full* methods, all entries in the matrix or must be
// present.  That is, GrB_*_nvals must report nvals equal to nrows*ncols or a
// matrix.  If this condition does not hold, the matrix/vector is not exported,
// and GrB_INVALID_VALUE is returned.
//
// If the export/unpack is not successful, the export/unpack functions do not
// modify matrix or vector and the user arrays are returned as NULL.

GB_PUBLIC
GrB_Info GxB_Matrix_export_CSR  // historical: use GxB_Matrix_unpack_CSR
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    GrB_Index **Ap,     // row "pointers"
    GrB_Index **Aj,     // column indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Aj_size, // size of Aj in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    bool *jumbled,      // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_CSR  // unpack a CSR matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers"
    GrB_Index **Aj,     // column indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Aj_size, // size of Aj in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    bool *jumbled,      // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_CSC  // historical: use GxB_Matrix_unpack_CSC
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    GrB_Index **Ap,     // column "pointers"
    GrB_Index **Ai,     // row indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ai_size, // size of Ai in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    bool *jumbled,      // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_CSC  // unpack a CSC matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // column "pointers"
    GrB_Index **Ai,     // row indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ai_size, // size of Ai in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    bool *jumbled,      // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_HyperCSR // historical: use GxB_Matrix_unpack_HyperCSR
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    GrB_Index **Ap,     // row "pointers"
    GrB_Index **Ah,     // row indices
    GrB_Index **Aj,     // column indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ah_size, // size of Ah in bytes
    GrB_Index *Aj_size, // size of Aj in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvec,    // number of rows that appear in Ah
    bool *jumbled,      // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_HyperCSR  // unpack a hypersparse CSR matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // row "pointers"
    GrB_Index **Ah,     // row indices
    GrB_Index **Aj,     // column indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ah_size, // size of Ah in bytes
    GrB_Index *Aj_size, // size of Aj in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvec,    // number of rows that appear in Ah
    bool *jumbled,      // if true, indices in each row may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_HyperCSC // historical: use GxB_Matrix_unpack_HyperCSC
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    GrB_Index **Ap,     // column "pointers"
    GrB_Index **Ah,     // column indices
    GrB_Index **Ai,     // row indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ah_size, // size of Ah in bytes
    GrB_Index *Ai_size, // size of Ai in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvec,    // number of columns that appear in Ah
    bool *jumbled,      // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_HyperCSC  // unpack a hypersparse CSC matrix
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    GrB_Index **Ap,     // column "pointers"
    GrB_Index **Ah,     // column indices
    GrB_Index **Ai,     // row indices
    void **Ax,          // values
    GrB_Index *Ap_size, // size of Ap in bytes
    GrB_Index *Ah_size, // size of Ah in bytes
    GrB_Index *Ai_size, // size of Ai in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvec,    // number of columns that appear in Ah
    bool *jumbled,      // if true, indices in each column may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_BitmapR // historical: use GxB_Matrix_unpack_BitmapR
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    int8_t **Ab,        // bitmap
    void **Ax,          // values
    GrB_Index *Ab_size, // size of Ab in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvals,   // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_BitmapR  // unpack a bitmap matrix, by row
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap
    void **Ax,          // values
    GrB_Index *Ab_size, // size of Ab in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvals,   // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_BitmapC // historical: use GxB_Matrix_unpack_BitmapC
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    int8_t **Ab,        // bitmap
    void **Ax,          // values
    GrB_Index *Ab_size, // size of Ab in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvals,   // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_BitmapC  // unpack a bitmap matrix, by col
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    int8_t **Ab,        // bitmap
    void **Ax,          // values
    GrB_Index *Ab_size, // size of Ab in bytes
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    GrB_Index *nvals,   // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_FullR // historical: use GxB_Matrix_unpack_FullR
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    void **Ax,          // values
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_FullR  // unpack a full matrix, by row
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    void **Ax,          // values
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_FullC // historical: use GxB_Matrix_unpack_FullC
(
    GrB_Matrix *A,      // handle of matrix to export and free
    GrB_Type *type,     // type of matrix exported
    GrB_Index *nrows,   // number of rows of the matrix
    GrB_Index *ncols,   // number of columns of the matrix
    void **Ax,          // values
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_unpack_FullC  // unpack a full matrix, by column
(
    GrB_Matrix A,       // matrix to unpack (type, nrows, ncols unchanged)
    void **Ax,          // values
    GrB_Index *Ax_size, // size of Ax in bytes
    bool *iso,          // if true, A is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_export_CSC // historical: use GxB_Vector_unpack_CSC
(
    GrB_Vector *v,      // handle of vector to export and free
    GrB_Type *type,     // type of vector exported
    GrB_Index *n,       // length of the vector
    GrB_Index **vi,     // indices
    void **vx,          // values
    GrB_Index *vi_size, // size of vi in bytes
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    GrB_Index *nvals,   // # of entries in vector
    bool *jumbled,      // if true, indices may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_unpack_CSC  // unpack a CSC vector
(
    GrB_Vector v,       // vector to unpack (type and length unchanged)
    GrB_Index **vi,     // indices
    void **vx,          // values
    GrB_Index *vi_size, // size of vi in bytes
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    GrB_Index *nvals,   // # of entries in vector
    bool *jumbled,      // if true, indices may be unsorted
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_export_Bitmap // historical: use GxB_Vector_unpack_Bitmap
(
    GrB_Vector *v,      // handle of vector to export and free
    GrB_Type *type,     // type of vector exported
    GrB_Index *n,       // length of the vector
    int8_t **vb,        // bitmap
    void **vx,          // values
    GrB_Index *vb_size, // size of vb in bytes
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    GrB_Index *nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_unpack_Bitmap   // unpack a bitmap vector
(
    GrB_Vector v,       // vector to unpack (type and length unchanged)
    int8_t **vb,        // bitmap
    void **vx,          // values
    GrB_Index *vb_size, // size of vb in bytes
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    GrB_Index *nvals,    // # of entries in bitmap
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_export_Full // historical: use GxB_Vector_unpack_Full
(
    GrB_Vector *v,      // handle of vector to export and free
    GrB_Type *type,     // type of vector exported
    GrB_Index *n,       // length of the vector
    void **vx,          // values
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Vector_unpack_Full   // unpack a full vector
(
    GrB_Vector v,       // vector to unpack (type and length unchanged)
    void **vx,          // values
    GrB_Index *vx_size, // size of vx in bytes
    bool *iso,          // if true, v is iso
    const GrB_Descriptor desc
) ;

//------------------------------------------------------------------------------
// GxB hyper_hash pack/unpack
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS v7.3.0 adds a new internal component to the
// hypersparse matrix format: the hyper_hash GrB_Matrix A->Y.  The matrix
// provides a fast lookup into the hyperlist Ah.

// GxB_unpack_HyperHash unpacks the hyper_hash from the hypersparse matrix A.
// Normally, this method is called immediately before calling one of the four
// methods GxB_Matrix_(export/unpack)_Hyper(CSR/CSC).  For example, to unpack
// then pack a hypersparse CSC matrix:

//      GrB_Matrix Y = NULL ;
//
//      // to unpack all of A:
//      GxB_unpack_HyperHash (A, &Y, desc) ;    // first unpack A->Y into Y
//      GxB_Matrix_unpack_HyperCSC (A,          // then unpack the rest of A
//          &Ap, &Ah, &Ai, &Ax, &Ap_size, &Ah_size, &Ai_size, &Ax_size,
//          &iso, &nvec, &jumbled, descriptor) ;
//
//      // use the unpacked contents of A here, but do not change Ah or nvec.
//      ...
//      
//      // to pack the data back into A:
//      GxB_Matrix_pack_HyperCSC (A, ...) ;     // pack most of A, except A->Y 
//      GxB_pack_HyperHash (A, &Y, desc) ;      // then pack A->Y

// The same process is used with GxB_Matrix_unpack_HyperCSR,
// an the GxB_Matrix_export_Hyper* and GxB_Matrix_import_Hyper* methods.

// If A is not hypersparse on input to GxB_unpack_HyperHash, or if A is
// hypersparse but does yet not have a hyper_hash, then Y is returned as NULL.
// This is not an error condition, and GrB_SUCCESS is returned.  The hyper_hash
// of a hypersparse matrix A is a matrix that provides quick access to the
// inverse of Ah.  It is not always needed and may not be present.  It is left
// as pending work to be computed when needed.  GrB_Matrix_wait (A) will ensure
// that the hyper_hash is constructed, if A is hypersparse.

// If Y is moved from A and returned as non-NULL to the caller, then it is
// the responsibility of the user application to free it, or to re-pack it back
// into A via GxB_pack_HyperHash, as shown in the example above.

// If this method is called to remove the hyper_hash Y from the hypersparse
// matrix A, and then GrB_Matrix_wait (A) is called, a new hyper_hash matrix is
// constructed for A.

GB_PUBLIC
GrB_Info GxB_unpack_HyperHash       // move A->Y into Y
(
    GrB_Matrix A,                   // matrix to modify
    GrB_Matrix *Y,                  // hyper_hash matrix to move from A
    const GrB_Descriptor desc       // unused
) ;

// GxB_pack_HyperHash assigns the input Y matrix as the A->Y hyper_hash of the
// hypersparse matrix A.  Normally, this method is called immediately after
// calling one of the four methods GxB_Matrix_(import/pack)_Hyper(CSR/CSC).

// If A is not hypersparse on input to GxB_pack_HyperHash, or if A already has
// a hyper_hash matrix, or if Y is NULL on input, then nothing happens and Y is
// unchanged.  This is not an error condition and this method returns
// GrB_SUCCESS.  In this case, if Y is non-NULL after calling this method, it
// owned by the user application and freeing it is the responsibility of the
// user application.

// Basic checks are perfomed on Y: Y must have the right dimensions:  if A is
// HyperCSR and m-by-n with nvec vectors present in Ah, then Y must be n-by-v
// where v is a power of 2; if A is HyperCSR and m-by-n, then Y must be m-by-v.
// nvals(Y) must equal nvec.  Y must be sparse, held by column, and have type
// int64.  It cannot have any pending work.  It cannot have a hyper_hash
// of its own.  If any of these conditions hold, GrB_INVALID is returned and
// A and Y are unchanged.

// If Y is moved into A as its hyper_hash, then the caller's Y is set to NULL
// to indicate that it has been moved into A.  It is no longer owned by the
// caller, but is instead an opaque component of the A matrix.  It will be
// freed by SuiteSparse:GraphBLAS if A is modified or freed.

// Results are undefined if the input Y was not created by GxB_unpack_HyperHash
// (see the example above) or if the Ah contents or nvec of the matrix A are
// modified after they were exported/unpacked by
// GxB_Matrix_(export/unpack)_Hyper(CSR/CSC).

GB_PUBLIC
GrB_Info GxB_pack_HyperHash         // move Y into A->Y
(
    GrB_Matrix A,                   // matrix to modify
    GrB_Matrix *Y,                  // hyper_hash matrix to pack into A
    const GrB_Descriptor desc       // unused
) ;

//==============================================================================
// GrB import/export
//==============================================================================

// The GrB_Matrix_import method copies from user-provided arrays into an
// opaque GrB_Matrix and GrB_Matrix_export copies data out, from an opaque
// GrB_Matrix into user-provided arrays.  Unlike the GxB pack/unpack methods,
// memory is not handed off between the user application and GraphBLAS.

// These methods are much slower than the GxB pack/unpack methods, since they
// require a copy of the data to be made.  GrB_Matrix_import also must assume
// its input data cannot be trusted, and so it does extensive checks.  The GxB
// pack takes O(1) time in all cases (unless it is told the input data is
// untrusted, via the descriptor).  GxB unpack takes O(1) time unless the
// matrix is exported in a different format than it currently has.

// No typecasting of the values is done on import or export.

// The GrB C API specification supports 3 formats:

typedef enum
{
    GrB_CSR_FORMAT = 0,     // CSR format (equiv to GxB_SPARSE with GxB_BY_ROW)
    GrB_CSC_FORMAT = 1,     // CSC format (equiv to GxB_SPARSE with GxB_BY_COL)
    GrB_COO_FORMAT = 2      // triplet format (like input to GrB*build)
}
GrB_Format ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_BOOL     // import a GrB_BOOL matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_BOOL)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const bool *Ax,         // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_INT8     // import a GrB_INT8 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_iNT8)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const int8_t *Ax,       // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_INT16    // import a GrB_INT16 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_INT16)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const int16_t *Ax,      // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_INT32    // import a GrB_INT32 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_INT32)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const int32_t *Ax,      // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_INT64    // import a GrB_INT64 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_INT64)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const int64_t *Ax,      // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_UINT8    // import a GrB_UINT8 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_UINT8)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const uint8_t *Ax,      // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_UINT16   // import a GrB_UINT16 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_UINT16)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const uint16_t *Ax,     // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_UINT32   // import a GrB_UINT32 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_UINT32)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const uint32_t *Ax,     // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_UINT64   // import a GrB_UINT64 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_UINT64)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const uint64_t *Ax,     // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_FP32   // import a GrB_FP32 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_FP32)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const float *Ax,        // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_FP64   // import a GrB_FP64 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GrB_FP64)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const double *Ax,       // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_import_FC32   // import a GxB_FC32 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GxB_FC32)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const GxB_FC32_t *Ax,   // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_import_FC64   // import a GxB_FC64 matrix
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create (must be GxB_FC64)
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const GxB_FC64_t *Ax,   // values
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_import_UDT    // import a matrix with a user-defined type
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create
    GrB_Index nrows,        // number of rows of the matrix
    GrB_Index ncols,        // number of columns of the matrix
    const GrB_Index *Ap,    // pointers for CSR, CSC, column indices for COO
    const GrB_Index *Ai,    // row indices for CSR, CSC
    const void *Ax,         // values (must match the type parameter)
    GrB_Index Ap_len,       // number of entries in Ap (not # of bytes)
    GrB_Index Ai_len,       // number of entries in Ai (not # of bytes)
    GrB_Index Ax_len,       // number of entries in Ax (not # of bytes)
    GrB_Format format       // import format
) ;

#if GxB_STDC_VERSION >= 201112L
#define GrB_Matrix_import(A,type,nrows,ncols,Ap,Ai,Ax,Ap_len,Ai_len,Ax_len,fmt)\
    _Generic                                                    \
    (                                                           \
        (Ax),                                                   \
            GB_CASES (*, GrB, Matrix_import)                    \
    )                                                           \
    (A, type, nrows, ncols, Ap, Ai, Ax, Ap_len, Ai_len, Ax_len, fmt)
#endif

// For GrB_Matrix_export_T: on input, Ap_len, Ai_len, and Ax_len are
// the size of the 3 arrays Ap, Ai, and Ax, in terms of the # of entries.
// On output, these 3 values are modified to be the # of entries copied
// into those 3 arrays.

GB_PUBLIC
GrB_Info GrB_Matrix_export_BOOL     // export a GrB_BOOL matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    bool *Ax,               // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_BOOL)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_INT8     // export a GrB_INT8 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    int8_t *Ax,             // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_INT8)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_INT16     // export a GrB_INT16 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    int16_t *Ax,            // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_INT16)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_INT32     // export a GrB_INT32 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    int32_t *Ax,            // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_INT32)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_INT64     // export a GrB_INT64 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    int64_t *Ax,            // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_INT64)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_UINT8     // export a GrB_UINT8 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    uint8_t *Ax,            // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_UINT8)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_UINT16     // export a GrB_UINT16 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    uint16_t *Ax,           // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_UINT16)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_UINT32     // export a GrB_UINT32 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    uint32_t *Ax,           // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_UINT32)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_UINT64     // export a GrB_UINT64 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    uint64_t *Ax,           // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_UINT64)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_FP32     // export a GrB_FP32 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    float *Ax,              // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_FP32)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_FP64     // export a GrB_FP64 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    double *Ax,             // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_FP64)
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_FC32     // export a GrB_FC32 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    GxB_FC32_t *Ax,         // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_FC32)
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_export_FC64     // export a GrB_FC64 matrix
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    GxB_FC64_t *Ax,         // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export (must be of type GrB_FC64)
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_export_UDT      // export a matrix with a user-defined type
(
    GrB_Index *Ap,          // pointers for CSR, CSC, column indices for COO
    GrB_Index *Ai,          // col indices for CSR/COO, row indices for CSC
    void *Ax,               // values (must match the type of A)
    GrB_Index *Ap_len,      // number of entries in Ap (not # of bytes)
    GrB_Index *Ai_len,      // number of entries in Ai (not # of bytes)
    GrB_Index *Ax_len,      // number of entries in Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export
) ;

#if GxB_STDC_VERSION >= 201112L
#define GrB_Matrix_export(Ap,Ai,Ax,Ap_len,Ai_len,Ax_len,fmt,A)  \
    _Generic                                                    \
    (                                                           \
        (Ax),                                                   \
            GB_CASES (*, GrB, Matrix_export)                    \
    )                                                           \
    (Ap, Ai, Ax, Ap_len, Ai_len, Ax_len, fmt, A)
#endif

GB_PUBLIC
GrB_Info GrB_Matrix_exportSize  // determine sizes of user arrays for export
(
    GrB_Index *Ap_len,      // # of entries required for Ap (not # of bytes)
    GrB_Index *Ai_len,      // # of entries required for Ai (not # of bytes)
    GrB_Index *Ax_len,      // # of entries required for Ax (not # of bytes)
    GrB_Format format,      // export format
    GrB_Matrix A            // matrix to export
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_exportHint  // suggest the best export format
(
    GrB_Format *format,     // export format
    GrB_Matrix A            // matrix to export
) ;

//==============================================================================
// serialize/deserialize
//==============================================================================

// GxB_Matrix_serialize copies the contents of a GrB_Matrix into a single array
// of bytes (the "blob").  The contents of the blob are implementation
// dependent.  The blob can be saved to a file, or sent across a communication
// channel, and then a GrB_Matrix can be reconstructed from the blob, even on
// another process or another machine, using the same version of
// SuiteSparse:GraphBLAS (v5.2.0 or later).  The goal is that future versions
// of SuiteSparse:GraphBLAS should be able to read in the blob as well, and
// reconstruct a matrix.  The matrix can be reconstructed from the blob using
// GxB_Matrix_deserialize.  The blob is compressed, by default, and
// uncompressed by GxB_Matrix_deserialize.

// GrB_Matrix_serialize/deserialize are slightly different from their GxB*
// counterparts.  The blob is allocated by GxB_Matrix_serialize, and must be
// freed by the same free() method passed to GxB_init (or the ANSI C11 free()
// if GrB_init was used).  By contrast, the GrB* methods require the user
// application to pass in a preallocated blob to GrB_Matrix_serialize, whose
// size can be given by GrB_Matrix_serializeSize (as a loose upper bound).

// The GrB* and GxB* methods can be mixed.  GrB_Matrix_serialize and
// GxB_Matrix_serialize construct the same blob (assuming they are given the
// same # of threads to do the work).  Both GrB_Matrix_deserialize and
// GxB_Matrix_deserialize can deserialize a blob coming from either
// GrB_Matrix_serialize or GxB_Matrix_serialize.

// Deserialization of untrusted data is a common security problem; see
// https://cwe.mitre.org/data/definitions/502.html. The deserialization methods
// below do a few basic checks so that no out-of-bounds access occurs during
// deserialization, but the output matrix itself may still be corrupted.  If
// the data is untrusted, use this to check the matrix:
//      GxB_Matrix_fprint (A, "A deserialized", GrB_SILENT, NULL)

// Example usage:

/*
    //--------------------------------------------------------------------------
    // using GxB serialize/deserialize
    //--------------------------------------------------------------------------

    // Given a GrB_Matrix A: assuming a user-defined type:
    void *blob ;
    GrB_Index blob_size ;
    GxB_Matrix_serialize (&blob, &blob_size, A, NULL) ;
    FILE *f = fopen ("myblob", "w") ;
    fwrite (blob_size, sizeof (size_t), 1, f) ;
    fwrite (blob, sizeof (uint8_t), blob_size, f) ;
    fclose (f) ;
    GrB_Matrix_free (&A) ;
    // B is a copy of A
    GxB_Matrix_deserialize (&B, MyQtype, blob, blob_size, NULL) ;
    GrB_Matrix_free (&B) ;
    free (blob) ;
    GrB_finalize ( ) ;

    // --- in another process, to recreate the GrB_Matrix A:
    GrB_init (GrB_NONBLOCKING) ;
    FILE *f = fopen ("myblob", "r") ;
    fread (&blob_size, sizeof (size_t), 1, f) ;
    blob = malloc (blob_size) ;
    fread (blob, sizeof (uint8_t), blob_size, f) ;
    fclose (f) ;
    char type_name [GxB_MAX_NAME_LEN] ;
    GxB_deserialize_type_name (type_name, blob, blob_size) ;
    printf ("blob type is: %s\n", type_name) ;
    GrB_Type user_type = NULL ;
    if (strncmp (type_name, "myquaternion", GxB_MAX_NAME_LEN) == 0)
        user_type = MyQtype ;
    GxB_Matrix_deserialize (&A, user_type, blob, blob_size, NULL) ;
    free (blob) ;               // note, freed by the user, not GraphBLAS

    //--------------------------------------------------------------------------
    // using GrB serialize/deserialize
    //--------------------------------------------------------------------------

    // Given a GrB_Matrix A: assuming a user-defined type, MyQType:
    void *blob = NULL ;
    GrB_Index blob_size = 0 ;
    GrB_Matrix A, B = NULL ;
    // construct a matrix A, then serialized it:
    GrB_Matrix_serializeSize (&blob_size, A) ;      // loose upper bound
    blob = malloc (blob_size) ;
    GrB_Matrix_serialize (blob, &blob_size, A) ;    // returns actual size
    blob = realloc (blob, blob_size) ;              // user can shrink the blob
    FILE *f = fopen ("myblob", "w") ;
    fwrite (blob_size, sizeof (size_t), 1, f) ;
    fwrite (blob, sizeof (uint8_t), blob_size, f) ;
    fclose (f) ;
    GrB_Matrix_free (&A) ;
    // B is a copy of A:
    GrB_Matrix_deserialize (&B, MyQtype, blob, blob_size) ;
    GrB_Matrix_free (&B) ;
    free (blob) ;
    GrB_finalize ( ) ;

    // --- in another process, to recreate the GrB_Matrix A:
    GrB_init (GrB_NONBLOCKING) ;
    FILE *f = fopen ("myblob", "r") ;
    fread (&blob_size, sizeof (size_t), 1, f) ;
    blob = malloc (blob_size) ;
    fread (blob, sizeof (uint8_t), blob_size, f) ;
    fclose (f) ;
    // the user must know the type of A is MyQType
    GrB_Matrix_deserialize (&A, MyQtype, blob, blob_size) ;
    free (blob) ;
*/

// Currently implemented: no compression, LZ4, LZ4HC, and ZSTD
#define GxB_COMPRESSION_NONE -1     // no compression
#define GxB_COMPRESSION_DEFAULT 0   // ZSTD (level 1)
#define GxB_COMPRESSION_LZ4   1000  // LZ4
#define GxB_COMPRESSION_LZ4HC 2000  // LZ4HC, with default level 9
#define GxB_COMPRESSION_ZSTD  3000  // ZSTD, with default level 1

#define GxB_COMPRESSION_INTEL   1000000 // not yet supported

// Most of the above methods have a level parameter that controls the tradeoff
// between run time and the amount of compression obtained.  Higher levels
// result in a more compact result, at the cost of higher run time:

//  LZ4     no level setting
//  LZ4HC   1: fast, 9: default, 9: max
//  ZSTD:   1: fast, 1: default, 19: max

// For all methods, a level of zero results in the default level setting.
// These settings can be added, so to use LZ4HC at level 5, use method =
// GxB_COMPRESSION_LZ4HC + 5.

// If the level setting is out of range, the default is used for that method.
// If the method is negative, no compression is performed.  If the method is
// positive but unrecognized, the default is used (GxB_COMPRESSION_ZSTD,
// level 1).

GB_PUBLIC
GrB_Info GxB_Matrix_serialize       // serialize a GrB_Matrix to a blob
(
    // output:
    void **blob_handle,             // the blob, allocated on output
    GrB_Index *blob_size_handle,    // size of the blob on output
    // input:
    GrB_Matrix A,                   // matrix to serialize
    const GrB_Descriptor desc       // descriptor to select compression method
                                    // and to control # of threads used
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_serialize       // serialize a GrB_Matrix to a blob
(
    // output:
    void *blob,                     // the blob, already allocated in input
    // input/output:
    GrB_Index *blob_size_handle,    // size of the blob on input.  On output,
                                    // the # of bytes used in the blob.
    // input:
    GrB_Matrix A                    // matrix to serialize
) ;

GB_PUBLIC
GrB_Info GxB_Vector_serialize       // serialize a GrB_Vector to a blob
(
    // output:
    void **blob_handle,             // the blob, allocated on output
    GrB_Index *blob_size_handle,    // size of the blob on output
    // input:
    GrB_Vector u,                   // vector to serialize
    const GrB_Descriptor desc       // descriptor to select compression method
                                    // and to control # of threads used
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_serializeSize   // estimate the size of a blob
(
    // output:
    GrB_Index *blob_size_handle,    // upper bound on the required size of the
                                    // blob on output.
    // input:
    GrB_Matrix A                    // matrix to serialize
) ;

// The GrB* and GxB* deserialize methods are nearly identical.  The GxB*
// deserialize methods simply add the descriptor, which allows for optional
// control of the # of threads used to deserialize the blob.

GB_PUBLIC
GrB_Info GxB_Matrix_deserialize     // deserialize blob into a GrB_Matrix
(
    // output:
    GrB_Matrix *C,      // output matrix created from the blob
    // input:
    GrB_Type type,      // type of the matrix C.  Required if the blob holds a
                        // matrix of user-defined type.  May be NULL if blob
                        // holds a built-in type; otherwise must match the
                        // type of C.
    const void *blob,       // the blob
    GrB_Index blob_size,    // size of the blob
    const GrB_Descriptor desc       // to control # of threads used
) ;

GB_PUBLIC
GrB_Info GrB_Matrix_deserialize     // deserialize blob into a GrB_Matrix
(
    // output:
    GrB_Matrix *C,      // output matrix created from the blob
    // input:
    GrB_Type type,      // type of the matrix C.  Required if the blob holds a
                        // matrix of user-defined type.  May be NULL if blob
                        // holds a built-in type; otherwise must match the
                        // type of C.
    const void *blob,       // the blob
    GrB_Index blob_size     // size of the blob
) ;

GB_PUBLIC
GrB_Info GxB_Vector_deserialize     // deserialize blob into a GrB_Vector
(
    // output:
    GrB_Vector *w,      // output vector created from the blob
    // input:
    GrB_Type type,      // type of the vector w.  Required if the blob holds a
                        // vector of user-defined type.  May be NULL if blob
                        // holds a built-in type; otherwise must match the
                        // type of w.
    const void *blob,       // the blob
    GrB_Index blob_size,    // size of the blob
    const GrB_Descriptor desc       // to control # of threads used
) ;

// GxB_deserialize_type_name extracts the type_name of the GrB_Type of the
// GrB_Matrix or GrB_Vector held in a serialized blob.  On input, type_name
// must point to a user-owned char array of size at least GxB_MAX_NAME_LEN (it
// must not point into the blob itself).  On output, type_name will contain a
// null-terminated string with the corresponding C type name.  If the blob
// holds a matrix of a built-in type, the name is returned as "bool" for
// GrB_BOOL, "uint8_t" for GrB_UINT8, "float complex" for GxB_FC32, etc.
// See GxB_Type_name to convert this name into a GrB_Type.
GB_PUBLIC
GrB_Info GxB_deserialize_type_name  // return the type name of a blob
(
    // output:
    char *type_name,        // name of the type (char array of size at least
                            // GxB_MAX_NAME_LEN, owned by the user application).
    // input, not modified:
    const void *blob,       // the blob
    GrB_Index blob_size     // size of the blob
) ;

//==============================================================================
// GxB_Vector_sort and GxB_Matrix_sort: sort a matrix or vector
//==============================================================================

GB_PUBLIC
GrB_Info GxB_Vector_sort
(
    // output:
    GrB_Vector w,           // vector of sorted values
    GrB_Vector p,           // vector containing the permutation
    // input
    GrB_BinaryOp op,        // comparator op
    GrB_Vector u,           // vector to sort
    const GrB_Descriptor desc
) ;

GB_PUBLIC
GrB_Info GxB_Matrix_sort
(
    // output:
    GrB_Matrix C,           // matrix of sorted values
    GrB_Matrix P,           // matrix containing the permutations
    // input
    GrB_BinaryOp op,        // comparator op
    GrB_Matrix A,           // matrix to sort
    const GrB_Descriptor desc
) ;

#define GxB_sort(arg1,...)                                  \
    _Generic                                                \
    (                                                       \
        (arg1),                                             \
              GrB_Vector : GxB_Vector_sort ,                \
              GrB_Matrix : GxB_Matrix_sort                  \
    )                                                       \
    (arg1, __VA_ARGS__)

//==============================================================================
// GxB_Matrix_reshape and GxB_Matrix_reshapeDup:  reshape a matrix
//==============================================================================

// GxB_Matrix_reshape changes the dimensions of a matrix, reshaping the entries
// by row or by column.

// For example, if C is 3-by-4 on input, and is reshaped by column to have
// dimensions 2-by-6:

//      C on input      C on output (by_col true)
//      00 01 02 03     00 20 11 02 22 13
//      10 11 12 13     10 01 21 12 03 23
//      20 21 22 23

// If the same C on input is reshaped by row to dimensions 2-by-6:

//      C on input      C on output (by_col false)
//      00 01 02 03     00 01 02 03 10 11
//      10 11 12 13     12 13 20 21 22 23
//      20 21 22 23

// If the input matrix is nrows-by-ncols, and the size of the reshaped matrix
// is nrows_new-by-ncols_new, then nrows*ncols must equal nrows_new*ncols_new.
// The format of the input matrix (by row or by column) is unchanged; this
// format need not match the by_col input parameter.

GB_PUBLIC
GrB_Info GxB_Matrix_reshape     // reshape a GrB_Matrix in place
(
    // input/output:
    GrB_Matrix C,               // input/output matrix, reshaped in place
    // input:
    bool by_col,                // true if reshape by column, false if by row
    GrB_Index nrows_new,        // new number of rows of C
    GrB_Index ncols_new,        // new number of columns of C
    const GrB_Descriptor desc   // to control # of threads used
) ;

// GxB_Matrix_reshapeDup reshapes a matrix into another matrix.

// If the input matrix A is nrows-by-ncols, and the size of the newly-created
// matrix C is nrows_new-by-ncols_new, then nrows*ncols must equal
// nrows_new*ncols_new.  The format of the input matrix A (by row or by column)
// determines the format of the output matrix C, which need not match the
// by_col input parameter.

GB_PUBLIC
GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix
(
    // output:
    GrB_Matrix *C,              // newly created output matrix, not in place
    // input:
    GrB_Matrix A,               // input matrix, not modified
    bool by_col,                // true if reshape by column, false if by row
    GrB_Index nrows_new,        // number of rows of C
    GrB_Index ncols_new,        // number of columns of C
    const GrB_Descriptor desc   // to control # of threads used
) ;

//==============================================================================
// GxB_Iterator: an object that iterates over the entries of a matrix or vector
//==============================================================================

/* Example usage:

single thread iteration of a whole matrix, one row at a time (in the
outer loop), and one entry at a time within the row (in the inner loop):

    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the matrix A, known to be type GrB_FP64
    GrB_Info info = GxB_rowIterator_attach (iterator, A, NULL) ;
    if (info < 0) { handle the failure ... }
    // seek to A(0,:)
    info = GxB_rowIterator_seekRow (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // iterate over entries in A(i,:)
        GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;
        while (info == GrB_SUCCESS)
        {
            // get the entry A(i,j)
            GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;
            double  aij = GxB_Iterator_get_FP64 (iterator) ;
            // move to the next entry in A(i,:)
            info = GxB_rowIterator_nextCol (iterator) ;
        }
        // move to the next row, A(i+1,:)
        info = GxB_rowIterator_nextRow (iterator) ;
    }
    GrB_free (&iterator) ;

parallel iteration using 4 threads (work may be imbalanced however):

    GrB_Index nrows ;
    GrB_wait (A, GrB_MATERIALIZE) ;     // this is essential
    GrB_Matrix_nrows (&nrows, A) ;
    #pragma omp parallel for num_threads(4)
    for (int tid = 0 ; tid < 4 ; tid++)
    {
        // thread tid operates on A(row1:row2-1,:)
        GrB_Index row1 = tid * (nrows / 4) ;
        GrB_Index row2 = (tid == 3) ? nrows : ((tid+1) * (nrows / 4)) ;
        GxB_Iterator iterator ;
        GxB_Iterator_new (&iterator) ;
        GrB_Info info = GxB_rowIterator_attach (iterator, A, NULL) ;
        if (info < 0) { handle the failure ... }
        // seek to A(row1,:)
        info = GxB_rowIterator_seekRow (iterator, row1) ;
        while (info != GxB_EXHAUSTED)
        {
            // iterate over entries in A(i,:)
            GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;
            if (i >= row2) break ;
            while (info == GrB_SUCCESS)
            {
                // get the entry A(i,j)
                GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;
                double  aij = GxB_Iterator_get_FP64 (iterator) ;
                // move to the next entry in A(i,:)
                info = GxB_rowIterator_nextCol (iterator) ;
            }
            // move to the next row, A(i+1,:)
            info = GxB_rowIterator_nextRow (iterator) ;
        }
        GrB_free (&iterator) ;
    }

    In the parallel example above, a more balanced work distribution can be
    obtained by first computing the row degree via GrB_mxv (see LAGraph), and
    then compute the cumulative sum (ideally in parallel).  Next, partition the
    cumulative sum into one part per thread via binary search, and divide the
    rows into parts accordingly.

*/

//------------------------------------------------------------------------------
// GxB_Iterator: definition and new/free methods
//------------------------------------------------------------------------------

// The contents of an iterator must not be directly accessed by the user
// application.  Only the functions and macros provided here may access
// "iterator->..." contents.  The iterator is defined here only so that macros
// can be used to speed up the use of the iterator methods.  User applications
// must not use "iterator->..." directly.

struct GB_Iterator_opaque
{
    // these components change as the iterator moves (via seek or next):
    int64_t pstart ;            // the start of the current vector
    int64_t pend ;              // the end of the current vector
    int64_t p ;                 // position of the current entry
    int64_t k ;                 // the current vector

    // only changes when the iterator is created:
    size_t header_size ;        // size of this iterator object

    // these components only change when the iterator is attached:
    int64_t pmax ;              // avlen*avdim for bitmap; nvals(A) otherwise
    int64_t avlen ;             // length of each vector in the matrix
    int64_t avdim ;             // number of vectors in the matrix dimension
    int64_t anvec ;             // # of vectors present in the matrix
    const int64_t *GB_restrict Ap ;      // pointers for sparse and hypersparse
    const int64_t *GB_restrict Ah ;      // vector names for hypersparse
    const int8_t  *GB_restrict Ab ;      // bitmap
    const int64_t *GB_restrict Ai ;      // indices for sparse and hypersparse
    const void    *GB_restrict Ax ;      // values for all 4 data structures
    size_t type_size ;          // size of the type of A
    int A_sparsity ;            // sparse, hyper, bitmap, or full
    bool iso ;                  // true if A is iso-valued, false otherwise
    bool by_col ;               // true if A is held by column, false if by row
} ;

typedef struct GB_Iterator_opaque *GxB_Iterator ;

// GxB_Iterator_new: create a new iterator, not attached to any matrix/vector
GB_PUBLIC GrB_Info GxB_Iterator_new (GxB_Iterator *iterator) ;

// GxB_Iterator_free: free an iterator
GB_PUBLIC GrB_Info GxB_Iterator_free (GxB_Iterator *iterator) ;

//==============================================================================
// GB_Iterator_*: implements user-callable GxB_*Iterator_* methods
//==============================================================================

// GB_* methods are not user-callable.  These methods appear here so that the
// iterator methods can be done via macros.

//------------------------------------------------------------------------------
// GB_Iterator_attach: attach a row/col/entry iterator to a matrix
//------------------------------------------------------------------------------

GB_PUBLIC GrB_Info GB_Iterator_attach
(
    GxB_Iterator iterator,      // iterator to attach to the matrix A
    GrB_Matrix A,               // matrix to attach
    GxB_Format_Value format,    // by row, by col, or by entry (GxB_NO_FORMAT)
    GrB_Descriptor desc
) ;

//------------------------------------------------------------------------------
// GB_Iterator_rc_seek: seek a row/col iterator to a particular vector
//------------------------------------------------------------------------------

GB_PUBLIC GrB_Info GB_Iterator_rc_seek
(
    GxB_Iterator iterator,
    GrB_Index j,
    bool jth_vector
) ;

//------------------------------------------------------------------------------
// GB_Iterator_rc_bitmap_next: move a row/col iterator to next entry in bitmap
//------------------------------------------------------------------------------

GB_PUBLIC GrB_Info GB_Iterator_rc_bitmap_next (GxB_Iterator iterator) ;

//------------------------------------------------------------------------------
// GB_Iterator_rc_knext: move a row/col iterator to the next vector
//------------------------------------------------------------------------------

#define GB_Iterator_rc_knext(iterator)                                      \
(                                                                           \
    /* move to the next vector, and check if iterator is exhausted */       \
    (++(iterator->k) >= iterator->anvec) ?                                  \
    (                                                                       \
        /* iterator is at the end of the matrix */                          \
        iterator->pstart = 0,                                               \
        iterator->pend = 0,                                                 \
        iterator->p = 0,                                                    \
        iterator->k = iterator->anvec,                                      \
        GxB_EXHAUSTED                                                       \
    )                                                                       \
    :                                                                       \
    (                                                                       \
        /* find first entry in vector, and pstart/pend for this vector */   \
        (iterator->A_sparsity <= GxB_SPARSE) ?                              \
        (                                                                   \
            /* matrix is sparse or hypersparse */                           \
            iterator->pstart = iterator->Ap [iterator->k],                  \
            iterator->pend = iterator->Ap [iterator->k+1],                  \
            iterator->p = iterator->pstart,                                 \
            ((iterator->p >= iterator->pend) ? GrB_NO_VALUE : GrB_SUCCESS)  \
        )                                                                   \
        :                                                                   \
        (                                                                   \
            /* matrix is bitmap or full */                                  \
            iterator->pstart += iterator->avlen,                            \
            iterator->pend += iterator->avlen,                              \
            iterator->p = iterator->pstart,                                 \
            (iterator->A_sparsity <= GxB_BITMAP) ?                          \
            (                                                               \
                /* matrix is bitmap */                                      \
                GB_Iterator_rc_bitmap_next (iterator)                       \
            )                                                               \
            :                                                               \
            (                                                               \
                /* matrix is full */                                        \
                ((iterator->p >= iterator->pend) ? GrB_NO_VALUE : GrB_SUCCESS) \
            )                                                               \
        )                                                                   \
    )                                                                       \
)

//------------------------------------------------------------------------------
// GB_Iterator_rc_inext: move a row/col iterator the next entry in the vector
//------------------------------------------------------------------------------

#define GB_Iterator_rc_inext(iterator)                                      \
(                                                                           \
    /* move to the next entry in the vector */                              \
    (++(iterator->p) >= iterator->pend) ?                                   \
    (                                                                       \
        /* no more entries in the current vector */                         \
        GrB_NO_VALUE                                                        \
    )                                                                       \
    :                                                                       \
    (                                                                       \
        (iterator->A_sparsity == GxB_BITMAP) ?                              \
        (                                                                   \
            /* the matrix is in bitmap form */                              \
            GB_Iterator_rc_bitmap_next (iterator)                           \
        )                                                                   \
        :                                                                   \
        (                                                                   \
            GrB_SUCCESS                                                     \
        )                                                                   \
    )                                                                       \
)


//------------------------------------------------------------------------------
// GB_Iterator_rc_getj: get index of current vector for row/col iterator
//------------------------------------------------------------------------------

#define GB_Iterator_rc_getj(iterator)                                       \
(                                                                           \
    (iterator->k >= iterator->anvec) ?                                      \
    (                                                                       \
        /* iterator is past the end of the matrix */                        \
        iterator->avdim                                                     \
    )                                                                       \
    :                                                                       \
    (                                                                       \
        (iterator->A_sparsity == GxB_HYPERSPARSE) ?                         \
        (                                                                   \
            /* return the name of kth vector: j = Ah [k] if it appears */   \
            iterator->Ah [iterator->k]                                      \
        )                                                                   \
        :                                                                   \
        (                                                                   \
            /* return the kth vector: j = k */                              \
            iterator->k                                                     \
        )                                                                   \
    )                                                                       \
)

//------------------------------------------------------------------------------
// GB_Iterator_rc_geti: return index of current entry for row/col iterator
//------------------------------------------------------------------------------

#define GB_Iterator_rc_geti(iterator)                                       \
(                                                                           \
    (iterator->Ai != NULL) ?                                                \
    (                                                                       \
        iterator->Ai [iterator->p]                                          \
    )                                                                       \
    :                                                                       \
    (                                                                       \
        (iterator->p - iterator->pstart)                                    \
    )                                                                       \
)

//==============================================================================
// GxB_rowIterator_*: iterate over the rows of a matrix
//==============================================================================

#undef GxB_rowIterator_attach
#undef GxB_rowIterator_kount
#undef GxB_rowIterator_seekRow
#undef GxB_rowIterator_kseek
#undef GxB_rowIterator_nextRow
#undef GxB_rowIterator_nextCol
#undef GxB_rowIterator_getRowIndex
#undef GxB_rowIterator_getColIndex

//------------------------------------------------------------------------------
// GxB_rowIterator_attach: attach a row iterator to a matrix
//------------------------------------------------------------------------------

// On input, the iterator must already exist, having been created by
// GxB_Iterator_new.

// GxB_rowIterator_attach attaches a row iterator to a matrix.  If the iterator
// is already attached to a matrix, it is detached and then attached to the
// given matrix A.

// The following error conditions are returned:
// GrB_NULL_POINTER:    if the iterator or A are NULL.
// GrB_INVALID_OBJECT:  if the matrix A is invalid.
// GrB_NOT_IMPLEMENTED: if the matrix A cannot be iterated by row.
// GrB_OUT_OF_MEMORY:   if the method runs out of memory.

// If successful, the row iterator is attached to the matrix, but not to any
// specific row.  Use GxB_rowIterator_*seek* to move the iterator to a row.

GB_PUBLIC
GrB_Info GxB_rowIterator_attach
(
    GxB_Iterator iterator,
    GrB_Matrix A,
    GrB_Descriptor desc
) ;

#define GxB_rowIterator_attach(iterator, A, desc)                           \
(                                                                           \
    GB_Iterator_attach (iterator, A, GxB_BY_ROW, desc)                      \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_kount: upper bound on the # of nonempty rows of a matrix
//------------------------------------------------------------------------------

// On input, the row iterator must be attached to a matrix, but need not be at
// any specific row; results are undefined if this condition is not met.

// GxB_rowIterator_kount returns an upper bound on the # of non-empty rows of a
// matrix.  A GraphBLAS library may always return this as simply nrows(A), but
// in some libraries, it may be a value between the # of rows with at least one
// entry, and nrows(A), inclusive.  Any value in this range is a valid return
// value from this function.

// For SuiteSparse:GraphBLAS: If A is m-by-n, and sparse, bitmap, or full, then
// kount == m.  If A is hypersparse, kount is the # of vectors held in the data
// structure for the matrix, some of which may be empty, and kount <= m.

GB_PUBLIC
GrB_Index GxB_rowIterator_kount (GxB_Iterator iterator) ;

#define GxB_rowIterator_kount(iterator)                                     \
(                                                                           \
    (iterator)->anvec                                                       \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_seekRow:  move a row iterator to a different row of a matrix
//------------------------------------------------------------------------------

// On input, the row iterator must be attached to a matrix, but need not be at
// any specific row; results are undefined if this condition is not met.

// GxB_rowIterator_seekRow moves a row iterator to the first entry of A(row,:).
// If A(row,:) has no entries, the iterator may move to the first entry of next
// nonempty row i for some i > row.  The row index can be determined by
// GxB_rowIterator_getRowIndex.

// For SuiteSparse:GraphBLAS: If the matrix is hypersparse, and the row
// does not appear in the hyperlist, then the iterator is moved to the first
// row after the given row that does appear in the hyperlist.

// The method is always successful; the following are conditions are returned:
// GxB_EXHAUSTED:   if the row index is >= nrows(A); the row iterator is
//                  exhausted, but is still attached to the matrix.
// GrB_NO_VALUE:    if the row index is valid but A(row,:) has no entries; the
//                  row iterator is positioned at A(row,:).
// GrB_SUCCESS:     if the row index is valid and A(row,:) has at least one
//                  entry. The row iterator is positioned at A(row,:).
//                  GxB_rowIterator_get* can be used to return the indices of
//                  the first entry in A(row,:), and GxB_Iterator_get* can
//                  return its value.

GB_PUBLIC
GrB_Info GxB_rowIterator_seekRow (GxB_Iterator iterator, GrB_Index row) ;

#define GxB_rowIterator_seekRow(iterator, row)                              \
(                                                                           \
    GB_Iterator_rc_seek (iterator, row, false)                              \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_kseek:  move a row iterator to a different row of a matrix
//------------------------------------------------------------------------------

// On input, the row iterator must be attached to a matrix, but need not be at
// any specific row; results are undefined if this condition is not met.

// GxB_rowIterator_kseek is identical to GxB_rowIterator_seekRow, except for
// how the row index is specified.  The row is the kth non-empty row of A.
// More precisely, k is in the range 0 to kount-1, where kount is the value
// returned by GxB_rowIterator_kount.

GB_PUBLIC
GrB_Info GxB_rowIterator_kseek (GxB_Iterator iterator, GrB_Index k) ;

#define GxB_rowIterator_kseek(iterator, k)                                  \
(                                                                           \
    GB_Iterator_rc_seek (iterator, k, true)                                 \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_nextRow: move a row iterator to the next row of a matrix
//------------------------------------------------------------------------------

// On input, the row iterator must already be attached to a matrix via a prior
// call to GxB_rowIterator_attach, and the iterator must be at a specific row,
// via a prior call to GxB_rowIterator_*seek* or GxB_rowIterator_nextRow;
// results are undefined if this condition is not met.

// If the the row iterator is currently at A(row,:), it is moved to A(row+1,:),
// or to the first non-empty row after A(row,:), at the discretion of this
// method.  That is, empty rows may be skipped.

// The method is always successful, and the return conditions are identical to
// the return conditions of GxB_rowIterator_seekRow.

GB_PUBLIC
GrB_Info GxB_rowIterator_nextRow (GxB_Iterator iterator) ;

#define GxB_rowIterator_nextRow(iterator)                                   \
(                                                                           \
    GB_Iterator_rc_knext (iterator)                                         \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_nextCol: move a row iterator to the next entry in A(row,:)
//------------------------------------------------------------------------------

// On input, the row iterator must already be attached to a matrix via a prior
// call to GxB_rowIterator_attach, and the iterator must be at a specific row,
// via a prior call to GxB_rowIterator_*seek* or GxB_rowIterator_nextRow;
// results are undefined if this condition is not met.

// The method is always successful, and returns the following conditions:
// GrB_NO_VALUE:    If the iterator is already exhausted, or if there is no
//                  entry in the current A(row,;),
// GrB_SUCCESS:     If the row iterator has been moved to the next entry in
//                  A(row,:).

GB_PUBLIC
GrB_Info GxB_rowIterator_nextCol (GxB_Iterator iterator) ;

#define GxB_rowIterator_nextCol(iterator)                                   \
(                                                                           \
    GB_Iterator_rc_inext ((iterator))                                       \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_getRowIndex: get current row index of a row iterator
//------------------------------------------------------------------------------

// On input, the iterator must be already successfully attached to matrix as a
// row iterator; results are undefined if this condition is not met.

// The method returns nrows(A) if the iterator is exhausted, or the current
// row index otherwise.  There need not be any entry in the current row.
// Zero is returned if the iterator is attached to the matrix but
// GxB_rowIterator_*seek* has not been called, but this does not mean the
// iterator is positioned at row zero.

GB_PUBLIC
GrB_Index GxB_rowIterator_getRowIndex (GxB_Iterator iterator) ;

#define GxB_rowIterator_getRowIndex(iterator)                               \
(                                                                           \
    GB_Iterator_rc_getj ((iterator))                                        \
)

//------------------------------------------------------------------------------
// GxB_rowIterator_getColIndex: get current column index of a row iterator
//------------------------------------------------------------------------------

// On input, the iterator must be already successfully attached to matrix as a
// row iterator, and in addition, the row iterator must be positioned at a
// valid entry present in the matrix.  That is, the last call to
// GxB_rowIterator_*seek* or GxB_rowIterator_*next*, must have returned
// GrB_SUCCESS.  Results are undefined if this condition is not met.

GB_PUBLIC
GrB_Index GxB_rowIterator_getColIndex (GxB_Iterator iterator) ;

#define GxB_rowIterator_getColIndex(iterator)                               \
(                                                                           \
    GB_Iterator_rc_geti ((iterator))                                        \
)

//==============================================================================
// GxB_colIterator_*: iterate over columns of a matrix
//==============================================================================

// The column iterator is analoguous to the row iterator.

#undef GxB_colIterator_attach
#undef GxB_colIterator_kount
#undef GxB_colIterator_seekCol
#undef GxB_colIterator_kseek
#undef GxB_colIterator_nextCol
#undef GxB_colIterator_nextRow
#undef GxB_colIterator_getColIndex
#undef GxB_colIterator_getRowIndex

// GxB_colIterator_attach: attach a column iterator to a matrix
GB_PUBLIC
GrB_Info GxB_colIterator_attach
(
    GxB_Iterator iterator,
    GrB_Matrix A,
    GrB_Descriptor desc
) ;
#define GxB_colIterator_attach(iterator, A, desc)                           \
(                                                                           \
    GB_Iterator_attach (iterator, A, GxB_BY_COL, desc)                      \
)

// GxB_colIterator_kount: return # of nonempty columns of the matrix
GB_PUBLIC
GrB_Index GxB_colIterator_kount (GxB_Iterator iterator) ;
#define GxB_colIterator_kount(iterator)                                     \
(                                                                           \
    (iterator)->anvec                                                       \
)

// GxB_colIterator_seekCol: move a column iterator to A(:,col)
GB_PUBLIC
GrB_Info GxB_colIterator_seekCol (GxB_Iterator iterator, GrB_Index col) ;
#define GxB_colIterator_seekCol(iterator, col)                              \
(                                                                           \
    GB_Iterator_rc_seek (iterator, col, false)                              \
)

// GxB_colIterator_kseek: move a column iterator to kth non-empty column of A
GB_PUBLIC
GrB_Info GxB_colIterator_kseek (GxB_Iterator iterator, GrB_Index k) ;
#define GxB_colIterator_kseek(iterator, k)                                  \
(                                                                           \
    GB_Iterator_rc_seek (iterator, k, true)                                 \
)

// GxB_colIterator_nextCol: move a column iterator to first entry of next column
GB_PUBLIC
GrB_Info GxB_colIterator_nextCol (GxB_Iterator iterator) ;
#define GxB_colIterator_nextCol(iterator)                                   \
(                                                                           \
    GB_Iterator_rc_knext ((iterator))                                       \
)

// GxB_colIterator_nextRow: move a column iterator to next entry in column
GB_PUBLIC
GrB_Info GxB_colIterator_nextRow (GxB_Iterator iterator) ;
#define GxB_colIterator_nextRow(iterator)                                   \
(                                                                           \
    GB_Iterator_rc_inext ((iterator))                                       \
)

// GxB_colIterator_getColIndex: return the column index of current entry
GB_PUBLIC
GrB_Index GxB_colIterator_getColIndex (GxB_Iterator iterator) ;
#define GxB_colIterator_getColIndex(iterator)                               \
(                                                                           \
    GB_Iterator_rc_getj ((iterator))                                        \
)

// GxB_colIterator_getRowIndex: return the row index of current entry
GB_PUBLIC
GrB_Index GxB_colIterator_getRowIndex (GxB_Iterator iterator) ;
#define GxB_colIterator_getRowIndex(iterator)                               \
(                                                                           \
    GB_Iterator_rc_geti ((iterator))                                        \
)

//==============================================================================
// GxB_Matrix_Iterator_*: iterate over the entries of a matrix
//==============================================================================

// Example usage:

// single thread iteration of a whole matrix, one entry at at time

/*
    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the matrix A, known to be type GrB_FP64
    GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, NULL) ;
    if (info < 0) { handle the failure ... }
    // seek to the first entry
    info = GxB_Matrix_Iterator_seek (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // get the entry A(i,j)
        GrB_Index i, j ;
        GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;
        double aij = GxB_Iterator_get_FP64 (iterator) ;
        // move to the next entry in A
        info = GxB_Matrix_Iterator_next (iterator) ;
    }
    GrB_free (&iterator) ;
*/

//------------------------------------------------------------------------------
// GxB_Matrix_Iterator_attach: attach an entry iterator to a matrix
//------------------------------------------------------------------------------

// On input, the iterator must already exist, having been created by
// GxB_Iterator_new.

// GxB_Matrix_Iterator_attach attaches an entry iterator to a matrix.  If the
// iterator is already attached to a matrix, it is detached and then attached
// to the given matrix A.

// The following error conditions are returned:
// GrB_NULL_POINTER:    if the iterator or A are NULL.
// GrB_INVALID_OBJECT:  if the matrix A is invalid.
// GrB_OUT_OF_MEMORY:   if the method runs out of memory.

// If successful, the entry iterator is attached to the matrix, but not to any
// specific entry.  Use GxB_Matrix_Iterator_*seek* to move the iterator to a
// particular entry.

GB_PUBLIC
GrB_Info GxB_Matrix_Iterator_attach
(
    GxB_Iterator iterator,
    GrB_Matrix A,
    GrB_Descriptor desc
) ;

//------------------------------------------------------------------------------
// GxB_Matrix_Iterator_getpmax: return the range of the iterator
//------------------------------------------------------------------------------

// On input, the entry iterator must be already attached to a matrix via
// GxB_Matrix_Iterator_attach; results are undefined if this condition is not
// met.

// Entries in a matrix are given an index p, ranging from 0 to pmax-1, where
// pmax >= nvals(A).  For sparse, hypersparse, and full matrices, pmax is equal
// to nvals(A).  For an m-by-n bitmap matrix, pmax=m*n, or pmax=0 if the
// matrix has no entries.

GB_PUBLIC
GrB_Index GxB_Matrix_Iterator_getpmax (GxB_Iterator iterator) ;

//------------------------------------------------------------------------------
// GxB_Matrix_Iterator_seek: seek to a specific entry
//------------------------------------------------------------------------------

// On input, the entry iterator must be already attached to a matrix via
// GxB_Matrix_Iterator_attach; results are undefined if this condition is not
// met.

// The input p is in range 0 to pmax-1, which points to an entry in the matrix,
// or p >= pmax if the iterator is exhausted, where pmax is the return value
// from GxB_Matrix_Iterator_getpmax.

// Returns GrB_SUCCESS if the iterator is at an entry that exists in the
// matrix, or GxB_EXHAUSTED if the iterator is exhausted.

GB_PUBLIC
GrB_Info GxB_Matrix_Iterator_seek (GxB_Iterator iterator, GrB_Index p) ;

//------------------------------------------------------------------------------
// GxB_Matrix_Iterator_next: move to the next entry of a matrix
//------------------------------------------------------------------------------

// On input, the entry iterator must be already attached to a matrix via
// GxB_Matrix_Iterator_attach, and the position of the iterator must also have
// been defined by a prior call to GxB_Matrix_Iterator_seek or
// GxB_Matrix_Iterator_next.  Results are undefined if these conditions are not
// met.

// Returns GrB_SUCCESS if the iterator is at an entry that exists in the
// matrix, or GxB_EXHAUSTED if the iterator is exhausted.

GB_PUBLIC
GrB_Info GxB_Matrix_Iterator_next (GxB_Iterator iterator) ;

//------------------------------------------------------------------------------
// GxB_Matrix_Iterator_getp: get the current position of a matrix iterator
//------------------------------------------------------------------------------

// On input, the entry iterator must be already attached to a matrix via
// GxB_Matrix_Iterator_attach, and the position of the iterator must also have
// been defined by a prior call to GxB_Matrix_Iterator_seek or
// GxB_Matrix_Iterator_next.  Results are undefined if these conditions are not
// met.

GB_PUBLIC
GrB_Index GxB_Matrix_Iterator_getp (GxB_Iterator iterator) ;

//------------------------------------------------------------------------------
// GxB_Matrix_Iterator_getIndex: get the row and column index of a matrix entry
//------------------------------------------------------------------------------

// On input, the entry iterator must be already attached to a matrix via
// GxB_Matrix_Iterator_attach, and the position of the iterator must also have
// been defined by a prior call to GxB_Matrix_Iterator_seek or
// GxB_Matrix_Iterator_next, with a return value of GrB_SUCCESS.  Results are
// undefined if these conditions are not met.

GB_PUBLIC
void GxB_Matrix_Iterator_getIndex
(
    GxB_Iterator iterator,
    GrB_Index *row,
    GrB_Index *col
) ;

//==============================================================================
// GxB_Vector_Iterator_*: iterate over the entries of a vector
//==============================================================================

/* Example usage:

single thread iteration of a whole vector, one entry at at time

    // create an iterator
    GxB_Iterator iterator ;
    GxB_Iterator_new (&iterator) ;
    // attach it to the vector v, known to be type GrB_FP64
    GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, NULL) ;
    if (info < 0) { handle the failure ... }
    // seek to the first entry
    info = GxB_Vector_Iterator_seek (iterator, 0) ;
    while (info != GxB_EXHAUSTED)
    {
        // get the entry v(i)
        GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;
        double vi = GxB_Iterator_get_FP64 (iterator) ;
        // move to the next entry in v
        info = GxB_Vector_Iterator_next (iterator) ;
    }
    GrB_free (&iterator) ;

*/

#undef GxB_Vector_Iterator_getpmax
#undef GxB_Vector_Iterator_seek
#undef GxB_Vector_Iterator_next
#undef GxB_Vector_Iterator_getp
#undef GxB_Vector_Iterator_getIndex

//------------------------------------------------------------------------------
// GxB_Vector_Iterator_attach: attach an iterator to a vector
//------------------------------------------------------------------------------

// On input, the iterator must already exist, having been created by
// GxB_Iterator_new.

// GxB_Vector_Iterator_attach attaches an iterator to a vector.  If the
// iterator is already attached to a vector or matrix, it is detached and then
// attached to the given vector v.

// The following error conditions are returned:
// GrB_NULL_POINTER:    if the iterator or v are NULL.
// GrB_INVALID_OBJECT:  if the vector v is invalid.
// GrB_OUT_OF_MEMORY:   if the method runs out of memory.

// If successful, the iterator is attached to the vector, but not to any
// specific entry.  Use GxB_Vector_Iterator_seek to move the iterator to a
// particular entry.

GB_PUBLIC GrB_Info GxB_Vector_Iterator_attach
(
    GxB_Iterator iterator,
    GrB_Vector v,
    GrB_Descriptor desc
) ;

//------------------------------------------------------------------------------
// GxB_Vector_Iterator_getpmax: return the range of the vector iterator
//------------------------------------------------------------------------------

// On input, the iterator must be already attached to a vector via
// GxB_Vector_Iterator_attach; results are undefined if this condition is not
// met.

// Entries in a vector are given an index p, ranging from 0 to pmax-1, where
// pmax >= nvals(v).  For sparse and full vectors, pmax is equal to nvals(v).
// For a size-m bitmap vector, pmax=m, or pmax=0 if the vector has no entries.

GB_PUBLIC
GrB_Index GxB_Vector_Iterator_getpmax (GxB_Iterator iterator) ;

#define GxB_Vector_Iterator_getpmax(iterator)                               \
(                                                                           \
    (iterator->pmax)                                                        \
)

//------------------------------------------------------------------------------
// GxB_Vector_Iterator_seek: seek to a specific entry in the vector
//------------------------------------------------------------------------------

// On input, the iterator must be already attached to a vector via
// GxB_Vector_Iterator_attach; results are undefined if this condition is not
// met.

// The input p is in range 0 to pmax-1, which points to an entry in the vector,
// or p >= pmax if the iterator is exhausted, where pmax is the return value
// from GxB_Vector_Iterator_getpmax.

// Returns GrB_SUCCESS if the iterator is at an entry that exists in the
// vector, or GxB_EXHAUSTED if the iterator is exhausted.

GB_PUBLIC
GrB_Info GB_Vector_Iterator_bitmap_seek (GxB_Iterator iterator,
    GrB_Index unused) ; // unused parameter to be removed in v8.x

GB_PUBLIC
GrB_Info GxB_Vector_Iterator_seek (GxB_Iterator iterator, GrB_Index p) ;

#define GB_Vector_Iterator_seek(iterator, q)                                \
(                                                                           \
    (q >= iterator->pmax) ?                                                 \
    (                                                                       \
        /* the iterator is exhausted */                                     \
        iterator->p = iterator->pmax,                                       \
        GxB_EXHAUSTED                                                       \
    )                                                                       \
    :                                                                       \
    (                                                                       \
        /* seek to an arbitrary position in the vector */                   \
        iterator->p = q,                                                    \
        (iterator->A_sparsity == GxB_BITMAP) ?                              \
        (                                                                   \
            GB_Vector_Iterator_bitmap_seek (iterator, 0)                    \
        )                                                                   \
        :                                                                   \
        (                                                                   \
            GrB_SUCCESS                                                     \
        )                                                                   \
    )                                                                       \
)

#define GxB_Vector_Iterator_seek(iterator, p)                               \
(                                                                           \
    GB_Vector_Iterator_seek (iterator, p)                                   \
)

//------------------------------------------------------------------------------
// GxB_Vector_Iterator_next: move to the next entry of a vector
//------------------------------------------------------------------------------

// On input, the iterator must be already attached to a vector via
// GxB_Vector_Iterator_attach, and the position of the iterator must also have
// been defined by a prior call to GxB_Vector_Iterator_seek or
// GxB_Vector_Iterator_next.  Results are undefined if these conditions are not
// met.

// Returns GrB_SUCCESS if the iterator is at an entry that exists in the
// vector, or GxB_EXHAUSTED if the iterator is exhausted.

GB_PUBLIC
GrB_Info GxB_Vector_Iterator_next (GxB_Iterator iterator) ;

#define GB_Vector_Iterator_next(iterator)                                   \
(                                                                           \
    /* move to the next entry */                                            \
    (++(iterator->p) >= iterator->pmax) ?                                   \
    (                                                                       \
        /* the iterator is exhausted */                                     \
        iterator->p = iterator->pmax,                                       \
        GxB_EXHAUSTED                                                       \
    )                                                                       \
    :                                                                       \
    (                                                                       \
        (iterator->A_sparsity == GxB_BITMAP) ?                              \
        (                                                                   \
            /* bitmap: seek to the next entry present in the bitmap */      \
            GB_Vector_Iterator_bitmap_seek (iterator, 0)                    \
        )                                                                   \
        :                                                                   \
        (                                                                   \
            /* other formats: already at the next entry */                  \
            GrB_SUCCESS                                                     \
        )                                                                   \
    )                                                                       \
)

#define GxB_Vector_Iterator_next(iterator)                                  \
(                                                                           \
    GB_Vector_Iterator_next (iterator)                                      \
)

//------------------------------------------------------------------------------
// GxB_Vector_Iterator_getp: get the current position of a vector iterator
//------------------------------------------------------------------------------

// On input, the iterator must be already attached to a vector via
// GxB_Vector_Iterator_attach, and the position of the iterator must also have
// been defined by a prior call to GxB_Vector_Iterator_seek or
// GxB_Vector_Iterator_next.  Results are undefined if these conditions are not
// met.

GB_PUBLIC
GrB_Index GxB_Vector_Iterator_getp (GxB_Iterator iterator) ;

#define GxB_Vector_Iterator_getp(iterator)                                  \
(                                                                           \
    (iterator->p)                                                           \
)

//------------------------------------------------------------------------------
// GxB_Vector_Iterator_getIndex: get the index of a vector entry
//------------------------------------------------------------------------------

// On input, the iterator must be already attached to a vector via
// GxB_Vector_Iterator_attach, and the position of the iterator must also have
// been defined by a prior call to GxB_Vector_Iterator_seek or
// GxB_Vector_Iterator_next, with a return value of GrB_SUCCESS.  Results are
// undefined if these conditions are not met.

GB_PUBLIC
GrB_Index GxB_Vector_Iterator_getIndex (GxB_Iterator iterator) ;

#define GxB_Vector_Iterator_getIndex(iterator)                              \
(                                                                           \
    ((iterator->Ai != NULL) ? iterator->Ai [iterator->p] : iterator->p)     \
)

//==============================================================================
// GxB_Iterator_get_TYPE: get value of the current entry for any iterator
//==============================================================================

// On input, the prior call to GxB_*Iterator_*seek*, or GxB_*Iterator_*next*
// must have returned GrB_SUCCESS, indicating that the iterator is at a valid
// current entry for either a matrix or vector.

// Returns the value of the current entry at the position determined by the
// iterator.  No typecasting is permitted; the method name must match the
// type of the matrix or vector.

#undef GxB_Iterator_get_BOOL
#undef GxB_Iterator_get_INT8
#undef GxB_Iterator_get_INT16
#undef GxB_Iterator_get_INT32
#undef GxB_Iterator_get_INT64
#undef GxB_Iterator_get_UINT8
#undef GxB_Iterator_get_UINT16
#undef GxB_Iterator_get_UINT32
#undef GxB_Iterator_get_UINT64
#undef GxB_Iterator_get_FP32
#undef GxB_Iterator_get_FP64
#undef GxB_Iterator_get_FC32
#undef GxB_Iterator_get_FC64
#undef GxB_Iterator_get_UDT

GB_PUBLIC bool       GxB_Iterator_get_BOOL   (GxB_Iterator iterator) ;
GB_PUBLIC int8_t     GxB_Iterator_get_INT8   (GxB_Iterator iterator) ;
GB_PUBLIC int16_t    GxB_Iterator_get_INT16  (GxB_Iterator iterator) ;
GB_PUBLIC int32_t    GxB_Iterator_get_INT32  (GxB_Iterator iterator) ;
GB_PUBLIC int64_t    GxB_Iterator_get_INT64  (GxB_Iterator iterator) ;
GB_PUBLIC uint8_t    GxB_Iterator_get_UINT8  (GxB_Iterator iterator) ;
GB_PUBLIC uint16_t   GxB_Iterator_get_UINT16 (GxB_Iterator iterator) ;
GB_PUBLIC uint32_t   GxB_Iterator_get_UINT32 (GxB_Iterator iterator) ;
GB_PUBLIC uint64_t   GxB_Iterator_get_UINT64 (GxB_Iterator iterator) ;
GB_PUBLIC float      GxB_Iterator_get_FP32   (GxB_Iterator iterator) ;
GB_PUBLIC double     GxB_Iterator_get_FP64   (GxB_Iterator iterator) ;
GB_PUBLIC GxB_FC32_t GxB_Iterator_get_FC32   (GxB_Iterator iterator) ;
GB_PUBLIC GxB_FC64_t GxB_Iterator_get_FC64   (GxB_Iterator iterator) ;
GB_PUBLIC void       GxB_Iterator_get_UDT    (GxB_Iterator iterator,
                                              void *value) ;

#define GB_Iterator_get(iterator, type)                                     \
(                                                                           \
    (((type *) (iterator)->Ax) [(iterator)->iso ? 0 : (iterator)->p])       \
)

#define GxB_Iterator_get_BOOL(iterator)   GB_Iterator_get (iterator, bool)
#define GxB_Iterator_get_INT8(iterator)   GB_Iterator_get (iterator, int8_t)
#define GxB_Iterator_get_INT16(iterator)  GB_Iterator_get (iterator, int16_t)
#define GxB_Iterator_get_INT32(iterator)  GB_Iterator_get (iterator, int32_t)
#define GxB_Iterator_get_INT64(iterator)  GB_Iterator_get (iterator, int64_t)
#define GxB_Iterator_get_UINT8(iterator)  GB_Iterator_get (iterator, uint8_t)
#define GxB_Iterator_get_UINT16(iterator) GB_Iterator_get (iterator, uint16_t)
#define GxB_Iterator_get_UINT32(iterator) GB_Iterator_get (iterator, uint32_t)
#define GxB_Iterator_get_UINT64(iterator) GB_Iterator_get (iterator, uint64_t)
#define GxB_Iterator_get_FP32(iterator)   GB_Iterator_get (iterator, float)
#define GxB_Iterator_get_FP64(iterator)   GB_Iterator_get (iterator, double)
#define GxB_Iterator_get_FC32(iterator)   GB_Iterator_get (iterator, GxB_FC32_t)
#define GxB_Iterator_get_FC64(iterator)   GB_Iterator_get (iterator, GxB_FC64_t)

#define GxB_Iterator_get_UDT(iterator, value)                               \
(                                                                           \
    (void) memcpy ((void *) value, ((const uint8_t *) ((iterator)->Ax)) +   \
        ((iterator)->iso ? 0 : ((iterator)->type_size * (iterator)->p)),    \
        (iterator)->type_size)                                              \
)

//------------------------------------------------------------------------------
// Rapids Memory Manager wrappers for SuiteSparse:GraphBLAS
//------------------------------------------------------------------------------

#ifndef RMM_WRAP_H
#define RMM_WRAP_H

#ifdef __cplusplus
extern "C" {
#endif

// TODO describe the modes
typedef enum
{
    rmm_wrap_host = 0,
    rmm_wrap_host_pinned = 1,
    rmm_wrap_device = 2,
    rmm_wrap_managed = 3
} RMM_MODE ;

void rmm_wrap_finalize (void) ;

int rmm_wrap_initialize
(
    RMM_MODE mode,
    size_t init_pool_size,
    size_t max_pool_size
) ;

// example usage:
    //  rmm_wrap_initialize (rmm_wrap_managed, INT32_MAX, INT64_MAX) ;
    //  GxB_init (GxB_NONBLOCKING_GPU, rmm_wrap_malloc, rmm_wrap_calloc,
    //      rmm_wrap_realloc, rmm_wrap_free) ;
    //  use GraphBLAS ... with the GPU
    //  GrB_finalize ( ) ;
    //  rmm_wrap_finalize ( ) ;

// The two PMR-based allocate/deallocate signatures (C-style):
void *rmm_wrap_allocate (size_t *size) ;
void  rmm_wrap_deallocate (void *p, size_t size) ;

// The four malloc/calloc/realloc/free signatures:
void *rmm_wrap_malloc (size_t size) ;
void *rmm_wrap_calloc (size_t n, size_t size) ;
void *rmm_wrap_realloc (void *p, size_t newsize) ;
void  rmm_wrap_free (void *p) ;

#ifdef __cplusplus
}
#endif
#endif

#endif