File: GB_AxB_dot.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (228 lines) | stat: -rw-r--r-- 9,268 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//------------------------------------------------------------------------------
// GB_AxB_dot: C<M>=A'*B using dot products
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Parallel matrix-matrix multiply, A'*B, with optional mask M.  This
// method is used by GrB_mxm, GrB_vxm, and GrB_mxv.  For both of the latter two
// methods, B on input will be an nrows-by-1 column vxector.

// This function, and the matrices C, M, A, and B are all CSR/CSC agnostic.
// For this discussion, suppose they are CSC, with vlen = # of rows, and vdim =
// # of columns.

// C=A'*B, C<M>=A'*B or C<!M>=A'*B is being computed.  A has not been
// transposed yet (and will not be).  A and B must have the same vector length,
// vlen (as if both A and B are CSC matrices with the same number of rows, for
// example).  GB_AxB_dot2 and GB_AxB_dot3 operate on A' without forming it.
// GB_AxB_dot2 computes C=A'*B and C<!M>=A'*B, and it takes Omega(m*n) time,
// if C is m-by-n.  It is thus only suitable for cases when A and B are large,
// and C is small.  GB_AxB_dot3 computes C<M>=A'*B, and it only needs to
// examine entries in M, taking Omega(nnz(M)) time.  It can thus be used for
// very large matrices C.  GB_AxB_dot4 computes C+=A'*B when C is dense.

// The output matrix C has not been allocated.  It is an uninitialzed static
// header on input.  The mask M is optional.

// If the result is computed in-place, then the C parameter is ignored, and the
// result is computed in C_in instead.  This case requires the accum operator
// to match the monoid of the semiring.

// The semiring defines C=A*B.  flipxy modifies how the semiring multiply
// operator is applied.  If false, then fmult(aik,bkj) is computed.  If true,
// then the operands are swapped, and fmult(bkj,aij) is done instead.

// Context: the GB_Context containing the # of threads to use, a string of the
// user-callable function that is calling this function (GrB_mxm, GrB_mxv, or
// GxB_vxm) and detailed error reports.

#include "GB_mxm.h"
#include "GB_stringify.h"
#define GB_FREE_ALL ;

GrB_Info GB_AxB_dot                 // dot product (multiple methods)
(
    GrB_Matrix C,                   // output matrix, static header
    GrB_Matrix C_in,                // input/output matrix, if done in-place
    GrB_Matrix M,                   // optional mask matrix
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,
    const GrB_Matrix A,             // input matrix A
    const GrB_Matrix B,             // input matrix B
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *mask_applied,             // if true, mask was applied
    bool *done_in_place,            // if true, C_in was computed in-place
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;

    ASSERT_MATRIX_OK_OR_NULL (M, "M for dot A'*B", GB0) ;
    ASSERT (!GB_PENDING (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (!GB_ZOMBIES (M)) ;

    ASSERT_MATRIX_OK (A, "A for dot A'*B", GB0) ;
    GB_MATRIX_WAIT (A) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (!GB_JUMBLED (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;

    ASSERT_MATRIX_OK (B, "B for dot A'*B", GB0) ;
    GB_MATRIX_WAIT (B) ;
    ASSERT (!GB_PENDING (B)) ;
    ASSERT (!GB_JUMBLED (B)) ;
    ASSERT (!GB_ZOMBIES (B)) ;

    ASSERT_SEMIRING_OK (semiring, "semiring for dot A'*B", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (C_in, "C_in for dot A'*B", GB0) ;

    //--------------------------------------------------------------------------
    // determine if C is iso
    //--------------------------------------------------------------------------

    GrB_Type ztype = semiring->add->op->ztype ;
    size_t zsize = ztype->size ;
    GB_void cscalar [GB_VLA(zsize)] ;
    bool C_iso = GB_iso_AxB (cscalar, A, B, A->vlen, semiring, flipxy, false) ;

    if (C_iso)
    {
        // revise the method if A and B are both iso and full
        if (A->iso && GB_as_if_full (A) && B->iso && GB_as_if_full (B))
        {

            //------------------------------------------------------------------
            // C is iso and full; do not apply the mask
            //------------------------------------------------------------------

            GBURBLE ("(iso full dot) ") ;
            (*done_in_place) = false ;
            (*mask_applied) = false ;
            // set C->iso = true    OK
            info = GB_new_bix (&C, // existing header
                ztype, A->vdim, B->vdim, GB_Ap_null, true, GxB_FULL, false,
                GB_HYPER_SWITCH_DEFAULT, -1, 1, true, true, Context) ;
            if (info == GrB_SUCCESS)
            { 
                C->magic = GB_MAGIC ;
                memcpy (C->x, cscalar, zsize) ;
            }
            return (info) ;
        }
    }

    const char *iso_kind = (C_iso) ? "iso " : "" ;

    //--------------------------------------------------------------------------
    // in-place C+=A'*B.  mask is not present (and not applied)
    //--------------------------------------------------------------------------

    if (GB_AxB_dot4_control (C_iso, C_in, M, Mask_comp, accum, semiring))
    { 
        // C_in must be as-if-full on input.  M must be NULL and not
        // complemented.  the C iso case is not handled (where C is iso on
        // output), but C_in might be iso on input.

        #ifdef GB_DEBUGIFY_DEFN
        GB_debugify_mxm (C_iso, GxB_FULL, ztype, M, Mask_struct,
            Mask_comp, semiring, flipxy, A, B) ;
        #endif

        (*mask_applied) = false ;    // no mask to apply
        info = GB_AxB_dot4 (C_in, A, B, semiring, flipxy, done_in_place,
            Context) ;
        if (info != GrB_NO_VALUE)
        { 
            // return if dot4 has handled this case, otherwise fall through
            // to dot2 or dot3 below.
            return (info) ;
        }
    }

    //--------------------------------------------------------------------------
    // check the empty case
    //--------------------------------------------------------------------------

    if (A->vlen == 0)
    { 
        // no work to do; C is an empty matrix, normally hypersparse
        GBURBLE ("(empty dot) ") ;
        if (C_in != NULL) return (GrB_SUCCESS) ;
        return (GB_new (&C, // auto sparsity, existing header
            ztype, A->vdim, B->vdim, GB_Ap_calloc, true, GxB_AUTO_SPARSITY,
            GB_Global_hyper_switch_get ( ), 1, Context)) ;
    }

    //--------------------------------------------------------------------------
    // C<M>=A'*B: general case
    //--------------------------------------------------------------------------

    if (GB_AxB_dot3_control (M, Mask_comp))
    { 

        // use dot3 if M is present and not complemented, and either sparse or
        // hypersparse
        GBURBLE ("(%sdot3) ", iso_kind) ;
        (*mask_applied) = true ;    // mask is always applied
        (*done_in_place) = false ;
        GrB_Info info ;

        // construct the hyper hashes for A and B
        GB_OK (GB_hyper_hash_build (A, Context)) ;
        GB_OK (GB_hyper_hash_build (B, Context)) ;

        GBURBLE ("(%s%s%s%s = %s'*%s) ",
            GB_sparsity_char_matrix (M),    // C has the same sparsity as M
            Mask_struct ? "{" : "<",
            GB_sparsity_char_matrix (M),
            Mask_struct ? "}" : ">",
            GB_sparsity_char_matrix (A),
            GB_sparsity_char_matrix (B)) ;

        #ifdef GB_DEBUGIFY_DEFN
        GB_debugify_mxm (C_iso, GB_sparsity (M), ztype, M,
            Mask_struct, Mask_comp, semiring, flipxy, A, B) ;
        #endif

        #if defined ( GBCUDA )
        if (!C_iso &&   // fixme for CUDA, remove and create C iso on output
            GB_AxB_dot3_cuda_branch (M, Mask_struct, A, B, semiring,
            flipxy, Context))
        {
            info = (GB_AxB_dot3_cuda (C, M, Mask_struct, A, B, semiring,
                flipxy, Context)) ;
        }
        else
        #endif
        { 
            // use the CPU
            info = (GB_AxB_dot3 (C, C_iso, cscalar, M, Mask_struct, A, B,
                semiring, flipxy, Context)) ;
        }
        return (info) ;
    }

    //--------------------------------------------------------------------------
    // general case: C<M>=A'*B, C<!M>=A'*B, or C=A'*B, not in-place
    //--------------------------------------------------------------------------

    GBURBLE ("(%sdot2) ", iso_kind) ;
    (*mask_applied) = (M != NULL) ; // mask applied if present
    (*done_in_place) = false ;      // TODO: allow dot2 to work in-place
    return (GB_AxB_dot2 (C, C_iso, cscalar, M, Mask_comp, Mask_struct,
        false, A, B, semiring, flipxy, Context)) ;
}