1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
//------------------------------------------------------------------------------
// GB_AxB_dot2: compute C<#M>=A'*B, C is bitmap, or C<#M>=A*B (C bitmap/full)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This method always constructs C as bitmap; it then converts C to sparse or
// hyper if A or B are hypersparse. The C<M>=A'*B dot product when C is sparse
// is computed by GB_AxB_dot3. This method handles the case when C is bitmap.
// If A_not_transposed is true, then C=A*B is computed for GB_AxB_saxpy. A is
// bitmap or full, and the dot product method accesses A with a different
// stride than when computing C=A'*B.
// TODO: this is slower than it could be if A and B are both bitmap/full, when
// A->vlen is large. This is because the inner loop is a simple full/bitmap
// dot product, across the entire input vectors. No tiling is used, so cache
// performance is not as good as it could be. For large problems, C=(A')*B is
// faster with the saxpy3 method, as compared to this method with C=A'*B.
#define GB_FREE_ALL \
{ \
GB_Matrix_free (&M2) ; \
GB_Matrix_free (&A2) ; \
GB_Matrix_free (&B2) ; \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
GB_WERK_POP (B_slice, int64_t) ; \
GB_WERK_POP (A_slice, int64_t) ; \
}
#include "GB_mxm.h"
#include "GB_subref.h"
#include "GB_ek_slice.h"
#include "GB_bitmap_assign_methods.h"
#include "GB_stringify.h"
#include "GB_AxB__include1.h"
#ifndef GBCUDA_DEV
#include "GB_AxB__include2.h"
#endif
GB_PUBLIC
GrB_Info GB_AxB_dot2 // C=A'*B or C<#M>=A'*B, dot product method
(
GrB_Matrix C, // output matrix, static header
const bool C_iso, // true if C is iso
const GB_void *cscalar, // iso value of C
const GrB_Matrix M_in, // mask matrix for C<#M>=A'*B, may be NULL
const bool Mask_comp, // if true, use !M
const bool Mask_struct, // if true, use the only structure of M
const bool A_not_transposed, // if true, C=A*B, else C=A'*B
const GrB_Matrix A_in, // input matrix
const GrB_Matrix B_in, // input matrix
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
ASSERT_MATRIX_OK_OR_NULL (M_in, "M for dot A'*B", GB0) ;
ASSERT_MATRIX_OK (A_in, "A for dot A'*B", GB0) ;
ASSERT_MATRIX_OK (B_in, "B for dot A'*B", GB0) ;
ASSERT (!GB_ZOMBIES (M_in)) ;
ASSERT (GB_JUMBLED_OK (M_in)) ;
ASSERT (!GB_PENDING (M_in)) ;
ASSERT (!GB_ZOMBIES (A_in)) ;
ASSERT (!GB_JUMBLED (A_in)) ;
ASSERT (!GB_PENDING (A_in)) ;
ASSERT (!GB_ZOMBIES (B_in)) ;
ASSERT (!GB_JUMBLED (B_in)) ;
ASSERT (!GB_PENDING (B_in)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for numeric A'*B", GB0) ;
struct GB_Matrix_opaque A2_header, B2_header, M2_header ;
GrB_Matrix M = NULL, M2 = NULL, A2 = NULL, B2 = NULL, A = NULL, B = NULL ;
GB_WERK_DECLARE (A_slice, int64_t) ;
GB_WERK_DECLARE (B_slice, int64_t) ;
GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
// GB_AxB_saxpy punts to this dot2 method for for C=A*B, and in this case,
// A is bitmap or full, and B is hypersparse or sparse
bool A_is_full = GB_as_if_full (A_in) ;
bool B_is_full = GB_as_if_full (B_in) ;
bool A_bitmap_or_full = (GB_IS_BITMAP (A_in) || A_is_full) ;
bool B_bitmap_or_full = (GB_IS_BITMAP (B_in) || B_is_full) ;
ASSERT (GB_IMPLIES (A_not_transposed,
(GB_IS_BITMAP (A_in) || GB_IS_FULL (A_in)) &&
(GB_IS_SPARSE (B_in) || GB_IS_HYPERSPARSE (B_in)))) ;
//--------------------------------------------------------------------------
// construct hyper_shallow versions of A and B, if hypersparse
//--------------------------------------------------------------------------
// If A_in is hypersparse, a new sparse matrix A is constructed with
// A->vdim = A_in->nvec and the same vlen as A_in, and then the
// hyper_shallow C->vlen will equal A->vdim < cvlen_final.
// If B_in is hypersparse, a new sparse matrix B is constructed with
// B->vdim = B_in->nvec and the same vlen as B_in, and then the
// hyper_shallow C->vdim will equal B->vdim < cvdim_final.
int64_t cvlen_final = (A_not_transposed) ? A_in->vlen : A_in->vdim ;
int64_t cvdim_final = B_in->vdim ;
ASSERT (A_in->vlen > 0) ;
bool A_is_hyper = GB_IS_HYPERSPARSE (A_in) ;
bool B_is_hyper = GB_IS_HYPERSPARSE (B_in) ;
bool A_or_B_hyper = A_is_hyper || B_is_hyper ;
GrB_Index *restrict Ah = (GrB_Index *) A_in->h ;
GrB_Index *restrict Bh = (GrB_Index *) B_in->h ;
if (A_is_hyper)
{
// A = hypershallow version of A_in
GB_CLEAR_STATIC_HEADER (A2, &A2_header) ;
A = GB_hyper_shallow (A2, A_in) ;
}
else
{
// use A_in as-is
A = A_in ;
}
if (B_is_hyper)
{
// B = hypershallow version of B_in
GB_CLEAR_STATIC_HEADER (B2, &B2_header) ;
B = GB_hyper_shallow (B2, B_in) ;
}
else
{
// use B_in as-is
B = B_in ;
}
ASSERT (!GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_IS_HYPERSPARSE (B)) ;
ASSERT (GB_IMPLIES (A_not_transposed, !A_is_hyper && (A == A_in))) ;
bool A_is_sparse = GB_IS_SPARSE (A) ;
bool B_is_sparse = GB_IS_SPARSE (B) ;
//--------------------------------------------------------------------------
// determine the size of C
//--------------------------------------------------------------------------
int64_t cnvec = B->nvec ;
int64_t cvlen = (A_not_transposed) ? A->vlen : A->vdim ;
int64_t cvdim = B->vdim ;
int64_t cnz ;
bool ok = GB_int64_multiply ((GrB_Index *) (&cnz), cvlen, cvdim) ;
//--------------------------------------------------------------------------
// extract the submask if A or B are hypersparse
//--------------------------------------------------------------------------
if (A_or_B_hyper && M_in != NULL)
{
// M2 = M_in (Ah, Bh), where M2 has a static header
// if Mask_struct then M2 is extracted as iso
GB_CLEAR_STATIC_HEADER (M2, &M2_header) ;
GB_OK (GB_subref (M2, Mask_struct, M_in->is_csc, M_in,
(A_is_hyper) ? Ah : GrB_ALL, cvlen,
(B_is_hyper) ? Bh : GrB_ALL, cvdim, false, Context)) ;
M = M2 ;
ASSERT_MATRIX_OK_OR_NULL (M, "M submask dot A'*B", GB0) ;
}
else
{
// use the mask as-is
M = M_in ;
}
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
int64_t naslice = 0 ;
int64_t nbslice = 0 ;
int64_t anvec = (A_not_transposed) ? A->vlen : A->nvec ;
double anz = (double) GB_nnz_held (A) ;
int64_t bnvec = B->nvec ;
double bnz = (double) GB_nnz_held (B) ;
double work ;
if (A_bitmap_or_full && !B_bitmap_or_full)
{
// A is bitmap/full, B is sparse/hyper; only B is scanned
work = bnz ;
}
else if (!A_bitmap_or_full && B_bitmap_or_full)
{
// A is sparse/hyper, B is bitmap/full; only A is scanned
work = anz ;
}
else if (A_bitmap_or_full && B_bitmap_or_full)
{
// All of A and B are scanned (unless the mask is present)
work = ((double) cnz) * ((double) B->vlen) ;
}
else
{
// In this case, most of both A and B are scanned. This is a very
// rough estimate of the work required.
work = 10 * (anz + bnz) ;
}
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (work, chunk, nthreads_max) ;
#define GB_NTASKS_PER_THREAD 32
if (nthreads == 1)
{
// do the entire computation with a single thread
naslice = 1 ;
nbslice = 1 ;
}
else
{
// determine number of slices for A' and B
if (bnvec == 1)
{
// C and B are single vectors
naslice = GB_NTASKS_PER_THREAD * nthreads ;
nbslice = 1 ;
}
else if (anvec == 1 || bnvec == 0
|| bnvec > GB_NTASKS_PER_THREAD * nthreads)
{
// A is a single vector, or B is empty, or B is large: just slice B
naslice = 1 ;
nbslice = GB_NTASKS_PER_THREAD * nthreads ;
}
else
{
// slice B into individual vectors
nbslice = bnvec ;
// slice A' to get a total of about 16*nthreads tasks
naslice = (GB_NTASKS_PER_THREAD * nthreads) / nbslice ;
// but do not slice A too finely
naslice = GB_IMIN (naslice, anvec/4) ;
naslice = GB_IMAX (naslice, nthreads) ;
}
}
GBURBLE ("(nthreads: %d naslice %g nbslice %g) ", nthreads,
(double) naslice, (double) nbslice) ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
GrB_Monoid add = semiring->add ;
ASSERT (mult->ztype == add->op->ztype) ;
bool A_is_pattern, B_is_pattern ;
GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;
//--------------------------------------------------------------------------
// allocate workspace and slice A and B
//--------------------------------------------------------------------------
// A and B can have any sparsity: full, bitmap, sparse, or hypersparse.
// C is always created as bitmap
GB_WERK_PUSH (A_slice, naslice + 1, int64_t) ;
GB_WERK_PUSH (B_slice, nbslice + 1, int64_t) ;
if (A_slice == NULL || B_slice == NULL || !ok)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (A_slice, A->p, anvec, naslice, false) ;
GB_pslice (B_slice, B->p, bnvec, nbslice, false) ;
//--------------------------------------------------------------------------
// allocate C
//--------------------------------------------------------------------------
// if M is sparse/hyper, then calloc C->b; otherwise use malloc
bool M_is_sparse_or_hyper = (M != NULL) &&
(GB_IS_SPARSE (M) || GB_IS_HYPERSPARSE (M)) ;
GrB_Type ctype = add->op->ztype ;
// determine the sparsity of C
int C_sparsity = GxB_BITMAP ;
if (M == NULL)
{
// no mask is present so C can be bitmap or full
if (A_is_full && B_is_full)
{
// C = A*B or A'*B, both A and B full: C is full
C_sparsity = GxB_FULL ;
}
else if (A_is_full && B_is_sparse)
{
// C = A*B or A'*B, where A is full and B sparse
if (B->nvec_nonempty < 0)
{
B->nvec_nonempty = GB_nvec_nonempty (B, Context) ;
}
// C is full if all vectors of B are present
C_sparsity = (B->nvec_nonempty == B->vdim) ?
GxB_FULL : GxB_BITMAP ;
}
else if (A_is_sparse && B_is_full)
{
// C = A'*B, where A is sparse and B is full
if (A->nvec_nonempty < 0)
{
// A->nvec_nonempty is used to select the method
A->nvec_nonempty = GB_nvec_nonempty (A, Context) ;
}
// C is full if all vectors of A are present
C_sparsity = (A->nvec_nonempty == A->vdim) ?
GxB_FULL : GxB_BITMAP ;
}
}
if (M_in == NULL)
{
GBURBLE ("(dot %s = %s%s*%s) ",
GB_sparsity_char (C_sparsity),
GB_sparsity_char_matrix (A_in),
A_not_transposed ? "" : "'",
GB_sparsity_char_matrix (B_in)) ;
}
else
{
GBURBLE ("(dot %s%s%s%s%s = %s%s*%s) ",
GB_sparsity_char (C_sparsity),
Mask_struct ? "{" : "<",
Mask_comp ? "!" : "",
GB_sparsity_char_matrix (M_in),
Mask_struct ? "}" : ">",
GB_sparsity_char_matrix (A_in),
A_not_transposed ? "" : "'",
GB_sparsity_char_matrix (B_in)) ;
}
// set C->iso = C_iso
GB_OK (GB_new_bix (&C, // bitmap/full, existing header
ctype, cvlen, cvdim, GB_Ap_malloc, true, C_sparsity,
M_is_sparse_or_hyper, B->hyper_switch, cnvec, cnz, true, C_iso,
Context)) ;
#ifdef GB_DEBUGIFY_DEFN
GB_debugify_mxm (C_iso, C_sparsity, ctype, M,
Mask_struct, Mask_comp, semiring, flipxy, A, B) ;
#endif
//--------------------------------------------------------------------------
// if M is sparse/hyper, scatter it into the C bitmap
//--------------------------------------------------------------------------
if (M_is_sparse_or_hyper)
{
// FUTURE:: could just set Cb [pC] = 2 since Cb has just been calloc'd.
// However, in the future, this method might be able to modify C on
// input, in which case C->b will not be all zero.
ASSERT (C_sparsity == GxB_BITMAP) ;
int M_ntasks, M_nthreads ;
GB_SLICE_MATRIX (M, 8, chunk) ;
// Cb [pC] += 2 for each entry M(i,j) in the mask
GB_bitmap_M_scatter (C,
NULL, 0, GB_ALL, NULL, NULL, 0, GB_ALL, NULL,
M, Mask_struct, GB_ASSIGN, GB_BITMAP_M_SCATTER_PLUS_2,
M_ek_slicing, M_ntasks, M_nthreads, Context) ;
// the bitmap of C now contains:
// Cb (i,j) = 0: cij not present, mij zero
// Cb (i,j) = 1: cij present, mij zero (not used yet)
// Cb (i,j) = 2: cij not present, mij 1
// Cb (i,j) = 3: cij present, mij 1 (not used yet)
GB_WERK_POP (M_ek_slicing, int64_t) ;
}
//--------------------------------------------------------------------------
// C<#>=A'*B, computing each entry with a dot product, via builtin semiring
//--------------------------------------------------------------------------
if (C_iso)
{
//----------------------------------------------------------------------
// C is iso; compute the pattern of C<#>=A'*B with the any_pair semiring
//----------------------------------------------------------------------
GBURBLE ("(iso dot2) ") ;
memcpy (C->x, cscalar, ctype->size) ;
info = GB (_Adot2B__any_pair_iso) (C, M, Mask_comp, Mask_struct,
A_not_transposed, A, A_slice, B, B_slice,
nthreads, naslice, nbslice) ;
ASSERT (info != GrB_NO_VALUE) ;
}
else
{
//----------------------------------------------------------------------
// C is non-iso
//----------------------------------------------------------------------
bool done = false ;
#ifndef GBCUDA_DEV
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_Adot2B(add,mult,xname) \
GB (_Adot2B_ ## add ## mult ## xname)
#define GB_AxB_WORKER(add,mult,xname) \
{ \
info = GB_Adot2B (add,mult,xname) (C, M, Mask_comp, \
Mask_struct, A_not_transposed, A, A_slice, \
B, B_slice, nthreads, naslice, nbslice) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
GB_Opcode mult_binop_code, add_binop_code ;
GB_Type_code xcode, ycode, zcode ;
if (GB_AxB_semiring_builtin (A, A_is_pattern, B, B_is_pattern,
semiring, flipxy, &mult_binop_code, &add_binop_code, &xcode,
&ycode, &zcode))
{
#include "GB_AxB_factory.c"
}
ASSERT (info == GrB_SUCCESS || info == GrB_NO_VALUE) ;
#endif
//----------------------------------------------------------------------
// C = A'*B or A*B, using the dot product method, with typecasting
//----------------------------------------------------------------------
if (!done)
{
#define GB_DOT2_GENERIC
GB_BURBLE_MATRIX (C, "(generic C%s=A%s*B, C %s) ",
(M == NULL) ? "" : (Mask_comp ? "<!M>" : "<M>"),
A_not_transposed ? "" : "'",
(C_sparsity == GxB_BITMAP) ? "bitmap" : "full") ;
#include "GB_AxB_dot_generic.c"
}
}
//--------------------------------------------------------------------------
// free workspace
//--------------------------------------------------------------------------
GB_FREE_ALL ;
C->magic = GB_MAGIC ;
ASSERT_MATRIX_OK (C, "dot2: result C, before expand", GB0) ;
ASSERT (!GB_ZOMBIES (C)) ;
//--------------------------------------------------------------------------
// convert C to sparse/hyper if A or B are hypersparse on input
//--------------------------------------------------------------------------
if (A_or_B_hyper)
{
GB_OK (GB_bitmap_expand_to_hyper (C, cvlen_final, cvdim_final,
A_in, B_in, Context)) ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "dot2: result C, after expand", GB0) ;
ASSERT (GB_ZOMBIES_OK (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (C->nvec_nonempty >= 0) ;
return (GrB_SUCCESS) ;
}
|