File: GB_AxB_dot3_one_slice.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (274 lines) | stat: -rw-r--r-- 10,156 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//------------------------------------------------------------------------------
// GB_AxB_dot3_one_slice: slice the entries and vectors of a single matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Constructs a set of tasks that slice a single input matrix M.  This function
// is currently only used by GB_AxB_dot3, to slice the mask matrix M, which has
// the same pattern as the output matrix C.  However, this function is a very
// simple general-purpose method for slicing a single matrix.  It could be
// called GB_one_slice, and used for other methods as well.

#define GB_FREE_WORKSPACE                       \
{                                               \
    GB_WERK_POP (Coarse, int64_t) ;             \
}

#define GB_FREE_ALL                             \
{                                               \
    GB_FREE_WORKSPACE ;                         \
    GB_FREE_WORK (&TaskList, TaskList_size) ;   \
}

#include "GB_mxm.h"

#define GB_NTASKS_PER_THREAD 256

//------------------------------------------------------------------------------
// GB_AxB_dot3_one_slice
//------------------------------------------------------------------------------

GrB_Info GB_AxB_dot3_one_slice
(
    // output:
    GB_task_struct **p_TaskList,    // array of structs
    size_t *p_TaskList_size,        // size of TaskList
    int *p_ntasks,                  // # of tasks constructed
    int *p_nthreads,                // # of threads to use
    // input:
    const GrB_Matrix M,             // matrix to slice
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (p_TaskList != NULL) ;
    ASSERT (p_TaskList_size != NULL) ;
    ASSERT (p_ntasks != NULL) ;
    ASSERT (p_nthreads != NULL) ;
    ASSERT_MATRIX_OK (M, "M for dot3_one_slice", GB0) ;

    // the pattern of M is not accessed
    ASSERT (GB_ZOMBIES_OK (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (GB_PENDING_OK (M)) ;
    ASSERT (!GB_IS_BITMAP (M)) ;
    ASSERT (!GB_IS_FULL (M)) ;

    (*p_TaskList  ) = NULL ;
    (*p_TaskList_size) = 0 ;
    (*p_ntasks    ) = 0 ;
    (*p_nthreads  ) = 1 ;

    //--------------------------------------------------------------------------
    // determine # of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;

    //--------------------------------------------------------------------------
    // get M
    //--------------------------------------------------------------------------

    const int64_t *restrict Mp = M->p ;
    const int64_t mnz = GB_nnz_held (M) ;
    const int64_t mnvec = M->nvec ;
    const int64_t mvlen = M->vlen ;

    //--------------------------------------------------------------------------
    // allocate the initial TaskList
    //--------------------------------------------------------------------------

    GB_WERK_DECLARE (Coarse, int64_t) ;
    int ntasks1 = 0 ;
    int nthreads = GB_nthreads (mnz, chunk, nthreads_max) ;
    GB_task_struct *restrict TaskList = NULL ; size_t TaskList_size = 0 ;
    int max_ntasks = 0 ;
    int ntasks = 0 ;
    int ntasks0 = (nthreads == 1) ? 1 : (GB_NTASKS_PER_THREAD * nthreads) ;
    GB_REALLOC_TASK_WORK (TaskList, ntasks0, max_ntasks) ;

    //--------------------------------------------------------------------------
    // check for quick return for a single task
    //--------------------------------------------------------------------------

    if (mnvec == 0 || ntasks0 == 1)
    { 
        // construct a single coarse task that does all the work
        TaskList [0].kfirst = 0 ;
        TaskList [0].klast  = mnvec-1 ;
        (*p_TaskList  ) = TaskList ;
        (*p_TaskList_size) = TaskList_size ;
        (*p_ntasks    ) = (mnvec == 0) ? 0 : 1 ;
        (*p_nthreads  ) = 1 ;
        return (GrB_SUCCESS) ;
    }

    //--------------------------------------------------------------------------
    // determine # of threads and tasks
    //--------------------------------------------------------------------------

    double target_task_size = ((double) mnz) / (double) (ntasks0) ;
    target_task_size = GB_IMAX (target_task_size, chunk) ;
    ntasks1 = ((double) mnz) / target_task_size ;
    ntasks1 = GB_IMAX (ntasks1, 1) ;

    //--------------------------------------------------------------------------
    // slice the work into coarse tasks
    //--------------------------------------------------------------------------

    GB_WERK_PUSH (Coarse, ntasks1 + 1, int64_t) ;
    if (Coarse == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    GB_pslice (Coarse, Mp, mnvec, ntasks1, false) ;

    //--------------------------------------------------------------------------
    // construct all tasks, both coarse and fine
    //--------------------------------------------------------------------------

    for (int t = 0 ; t < ntasks1 ; t++)
    {

        //----------------------------------------------------------------------
        // coarse task operates on M (:, k:klast)
        //----------------------------------------------------------------------

        int64_t k = Coarse [t] ;
        int64_t klast = Coarse [t+1] - 1 ;

        if (k >= mnvec)
        { 

            //------------------------------------------------------------------
            // all tasks have been constructed
            //------------------------------------------------------------------

            break ;

        }
        else if (k < klast)
        { 

            //------------------------------------------------------------------
            // coarse task has 2 or more vectors
            //------------------------------------------------------------------

            // This is a non-empty coarse-grain task that does two or more
            // entire vectors of M and C, vectors k:klast, inclusive.
            GB_REALLOC_TASK_WORK (TaskList, ntasks + 1, max_ntasks) ;
            TaskList [ntasks].kfirst = k ;
            TaskList [ntasks].klast  = klast ;
            ntasks++ ;

        }
        else
        {

            //------------------------------------------------------------------
            // coarse task has 0 or 1 vectors
            //------------------------------------------------------------------

            // As a coarse-grain task, this task is empty or does a single
            // vector, k.  Vector k must be removed from the work done by this
            // and any other coarse-grain task, and split into one or more
            // fine-grain tasks.

            for (int tt = t ; tt < ntasks1 ; tt++)
            {
                // remove k from the initial slice tt
                if (Coarse [tt] == k)
                { 
                    // remove k from task tt
                    Coarse [tt] = k+1 ;
                }
                else
                { 
                    // break, k not in task tt
                    break ;
                }
            }

            //------------------------------------------------------------------
            // determine the # of fine-grain tasks to create for vector k
            //------------------------------------------------------------------

            int64_t mknz = (Mp == NULL) ? mvlen : (Mp [k+1] - Mp [k]) ;
            int nfine = ((double) mknz) / target_task_size ;
            nfine = GB_IMAX (nfine, 1) ;

            // make the TaskList bigger, if needed
            GB_REALLOC_TASK_WORK (TaskList, ntasks + nfine, max_ntasks) ;

            //------------------------------------------------------------------
            // create the fine-grain tasks
            //------------------------------------------------------------------

            if (nfine == 1)
            { 

                //--------------------------------------------------------------
                // this is a single coarse task for all of vector k
                //--------------------------------------------------------------

                TaskList [ntasks].kfirst = k ;
                TaskList [ntasks].klast  = k ;
                ntasks++ ;

            }
            else
            {

                //--------------------------------------------------------------
                // slice vector M(:,k) into nfine fine tasks
                //--------------------------------------------------------------

                ASSERT (ntasks < max_ntasks) ;

                for (int tfine = 0 ; tfine < nfine ; tfine++)
                { 

                    // this fine task operates on vector M(:,k)
                    TaskList [ntasks].kfirst = k ;
                    TaskList [ntasks].klast  = -1 ;

                    // slice M(:,k) for this task
                    int64_t p1, p2 ;
                    GB_PARTITION (p1, p2, mknz, tfine, nfine) ;
                    int64_t pM_start = GBP (Mp, k, mvlen) ;
                    int64_t pM     = pM_start + p1 ;
                    int64_t pM_end = pM_start + p2 ;
                    TaskList [ntasks].pM     = pM ;
                    TaskList [ntasks].pM_end = pM_end ;

                    ASSERT (TaskList [ntasks].pM <= TaskList [ntasks].pM_end) ;
                    ntasks++ ;
                }
            }
        }
    }

    ASSERT (ntasks <= max_ntasks) ;

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    (*p_TaskList  ) = TaskList ;
    (*p_TaskList_size) = TaskList_size ;
    (*p_ntasks    ) = ntasks ;
    (*p_nthreads  ) = nthreads ;
    return (GrB_SUCCESS) ;
}