1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
//------------------------------------------------------------------------------
// GB_AxB_dot3_one_slice: slice the entries and vectors of a single matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Constructs a set of tasks that slice a single input matrix M. This function
// is currently only used by GB_AxB_dot3, to slice the mask matrix M, which has
// the same pattern as the output matrix C. However, this function is a very
// simple general-purpose method for slicing a single matrix. It could be
// called GB_one_slice, and used for other methods as well.
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Coarse, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_FREE_WORK (&TaskList, TaskList_size) ; \
}
#include "GB_mxm.h"
#define GB_NTASKS_PER_THREAD 256
//------------------------------------------------------------------------------
// GB_AxB_dot3_one_slice
//------------------------------------------------------------------------------
GrB_Info GB_AxB_dot3_one_slice
(
// output:
GB_task_struct **p_TaskList, // array of structs
size_t *p_TaskList_size, // size of TaskList
int *p_ntasks, // # of tasks constructed
int *p_nthreads, // # of threads to use
// input:
const GrB_Matrix M, // matrix to slice
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (p_TaskList != NULL) ;
ASSERT (p_TaskList_size != NULL) ;
ASSERT (p_ntasks != NULL) ;
ASSERT (p_nthreads != NULL) ;
ASSERT_MATRIX_OK (M, "M for dot3_one_slice", GB0) ;
// the pattern of M is not accessed
ASSERT (GB_ZOMBIES_OK (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (GB_PENDING_OK (M)) ;
ASSERT (!GB_IS_BITMAP (M)) ;
ASSERT (!GB_IS_FULL (M)) ;
(*p_TaskList ) = NULL ;
(*p_TaskList_size) = 0 ;
(*p_ntasks ) = 0 ;
(*p_nthreads ) = 1 ;
//--------------------------------------------------------------------------
// determine # of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// get M
//--------------------------------------------------------------------------
const int64_t *restrict Mp = M->p ;
const int64_t mnz = GB_nnz_held (M) ;
const int64_t mnvec = M->nvec ;
const int64_t mvlen = M->vlen ;
//--------------------------------------------------------------------------
// allocate the initial TaskList
//--------------------------------------------------------------------------
GB_WERK_DECLARE (Coarse, int64_t) ;
int ntasks1 = 0 ;
int nthreads = GB_nthreads (mnz, chunk, nthreads_max) ;
GB_task_struct *restrict TaskList = NULL ; size_t TaskList_size = 0 ;
int max_ntasks = 0 ;
int ntasks = 0 ;
int ntasks0 = (nthreads == 1) ? 1 : (GB_NTASKS_PER_THREAD * nthreads) ;
GB_REALLOC_TASK_WORK (TaskList, ntasks0, max_ntasks) ;
//--------------------------------------------------------------------------
// check for quick return for a single task
//--------------------------------------------------------------------------
if (mnvec == 0 || ntasks0 == 1)
{
// construct a single coarse task that does all the work
TaskList [0].kfirst = 0 ;
TaskList [0].klast = mnvec-1 ;
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = (mnvec == 0) ? 0 : 1 ;
(*p_nthreads ) = 1 ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// determine # of threads and tasks
//--------------------------------------------------------------------------
double target_task_size = ((double) mnz) / (double) (ntasks0) ;
target_task_size = GB_IMAX (target_task_size, chunk) ;
ntasks1 = ((double) mnz) / target_task_size ;
ntasks1 = GB_IMAX (ntasks1, 1) ;
//--------------------------------------------------------------------------
// slice the work into coarse tasks
//--------------------------------------------------------------------------
GB_WERK_PUSH (Coarse, ntasks1 + 1, int64_t) ;
if (Coarse == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (Coarse, Mp, mnvec, ntasks1, false) ;
//--------------------------------------------------------------------------
// construct all tasks, both coarse and fine
//--------------------------------------------------------------------------
for (int t = 0 ; t < ntasks1 ; t++)
{
//----------------------------------------------------------------------
// coarse task operates on M (:, k:klast)
//----------------------------------------------------------------------
int64_t k = Coarse [t] ;
int64_t klast = Coarse [t+1] - 1 ;
if (k >= mnvec)
{
//------------------------------------------------------------------
// all tasks have been constructed
//------------------------------------------------------------------
break ;
}
else if (k < klast)
{
//------------------------------------------------------------------
// coarse task has 2 or more vectors
//------------------------------------------------------------------
// This is a non-empty coarse-grain task that does two or more
// entire vectors of M and C, vectors k:klast, inclusive.
GB_REALLOC_TASK_WORK (TaskList, ntasks + 1, max_ntasks) ;
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = klast ;
ntasks++ ;
}
else
{
//------------------------------------------------------------------
// coarse task has 0 or 1 vectors
//------------------------------------------------------------------
// As a coarse-grain task, this task is empty or does a single
// vector, k. Vector k must be removed from the work done by this
// and any other coarse-grain task, and split into one or more
// fine-grain tasks.
for (int tt = t ; tt < ntasks1 ; tt++)
{
// remove k from the initial slice tt
if (Coarse [tt] == k)
{
// remove k from task tt
Coarse [tt] = k+1 ;
}
else
{
// break, k not in task tt
break ;
}
}
//------------------------------------------------------------------
// determine the # of fine-grain tasks to create for vector k
//------------------------------------------------------------------
int64_t mknz = (Mp == NULL) ? mvlen : (Mp [k+1] - Mp [k]) ;
int nfine = ((double) mknz) / target_task_size ;
nfine = GB_IMAX (nfine, 1) ;
// make the TaskList bigger, if needed
GB_REALLOC_TASK_WORK (TaskList, ntasks + nfine, max_ntasks) ;
//------------------------------------------------------------------
// create the fine-grain tasks
//------------------------------------------------------------------
if (nfine == 1)
{
//--------------------------------------------------------------
// this is a single coarse task for all of vector k
//--------------------------------------------------------------
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = k ;
ntasks++ ;
}
else
{
//--------------------------------------------------------------
// slice vector M(:,k) into nfine fine tasks
//--------------------------------------------------------------
ASSERT (ntasks < max_ntasks) ;
for (int tfine = 0 ; tfine < nfine ; tfine++)
{
// this fine task operates on vector M(:,k)
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = -1 ;
// slice M(:,k) for this task
int64_t p1, p2 ;
GB_PARTITION (p1, p2, mknz, tfine, nfine) ;
int64_t pM_start = GBP (Mp, k, mvlen) ;
int64_t pM = pM_start + p1 ;
int64_t pM_end = pM_start + p2 ;
TaskList [ntasks].pM = pM ;
TaskList [ntasks].pM_end = pM_end ;
ASSERT (TaskList [ntasks].pM <= TaskList [ntasks].pM_end) ;
ntasks++ ;
}
}
}
}
ASSERT (ntasks <= max_ntasks) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = ntasks ;
(*p_nthreads ) = nthreads ;
return (GrB_SUCCESS) ;
}
|