File: GB_AxB_dot4.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (254 lines) | stat: -rw-r--r-- 9,275 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//------------------------------------------------------------------------------
// GB_AxB_dot4: compute C+=A'*B in-place
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// GB_AxB_dot4 does its computation in a single phase, computing its result in
// the input matrix C, which is already as-if-full (in any format).  The mask M
// is not handled by this function.  C is not iso on output, but might be iso
// on input (if so, C is converted from iso on input to non-iso on output).

// The accum operator is the same as monoid operator semiring->add->op, and the
// type of C (C->type) matches the accum->ztype so no typecasting is needed.

// The ANY monoid is not supported, since its use as accum would be unusual.

//------------------------------------------------------------------------------

#include "GB_mxm.h"
#include "GB_binop.h"
#include "GB_unused.h"
#ifndef GBCUDA_DEV
#include "GB_AxB__include2.h"
#endif

#define GB_FREE_WORKSPACE               \
{                                       \
    GB_WERK_POP (B_slice, int64_t) ;    \
    GB_WERK_POP (A_slice, int64_t) ;    \
}

#define GB_FREE_ALL                     \
{                                       \
    GB_FREE_WORKSPACE ;                 \
    GB_phybix_free (C) ;                \
}

//------------------------------------------------------------------------------
// GB_AxB_dot4: compute C+=A'*B in-place
//------------------------------------------------------------------------------

GrB_Info GB_AxB_dot4                // C+=A'*B, dot product method
(
    GrB_Matrix C,                   // input/output matrix, must be as-if-full
    const GrB_Matrix A,             // input matrix
    const GrB_Matrix B,             // input matrix
    const GrB_Semiring semiring,    // semiring that defines C+=A*B and accum
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *done_in_place,            // if true, dot4 has computed the result
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // dot4 is disabled if GraphBLAS is compiled as compact
    //--------------------------------------------------------------------------

    #ifdef GBCUDA_DEV
    GBURBLE ("(always punt) ") ;
    return (GrB_NO_VALUE) ;
    #else

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT_MATRIX_OK (C, "C for dot in-place += A'*B", GB0) ;
    ASSERT_MATRIX_OK (A, "A for dot in-place += A'*B", GB0) ;
    ASSERT_MATRIX_OK (B, "B for dot in-place += A'*B", GB0) ;
    ASSERT (GB_as_if_full (C)) ;
    ASSERT (!GB_ZOMBIES (C)) ;
    ASSERT (!GB_JUMBLED (C)) ;
    ASSERT (!GB_PENDING (C)) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (!GB_JUMBLED (A)) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (!GB_ZOMBIES (B)) ;
    ASSERT (!GB_JUMBLED (B)) ;
    ASSERT (!GB_PENDING (B)) ;
    ASSERT_SEMIRING_OK (semiring, "semiring for in-place += A'*B", GB0) ;
    ASSERT (A->vlen == B->vlen) ;

    GB_WERK_DECLARE (A_slice, int64_t) ;
    GB_WERK_DECLARE (B_slice, int64_t) ;

    //--------------------------------------------------------------------------
    // get the semiring operators
    //--------------------------------------------------------------------------

    GrB_BinaryOp mult = semiring->multiply ;
    GrB_Monoid add = semiring->add ;
    ASSERT (mult->ztype == add->op->ztype) ;
    ASSERT (C->type     == add->op->ztype) ;

    bool op_is_first  = mult->opcode == GB_FIRST_binop_code ;
    bool op_is_second = mult->opcode == GB_SECOND_binop_code ;
    bool op_is_pair   = mult->opcode == GB_PAIR_binop_code ;
    bool A_is_pattern = false ;
    bool B_is_pattern = false ;

    if (flipxy)
    { 
        // z = fmult (b,a) will be computed
        A_is_pattern = op_is_first  || op_is_pair ;
        B_is_pattern = op_is_second || op_is_pair ;
        ASSERT (GB_IMPLIES (!A_is_pattern,
            GB_Type_compatible (A->type, mult->ytype))) ;
        ASSERT (GB_IMPLIES (!B_is_pattern,
            GB_Type_compatible (B->type, mult->xtype))) ;
    }
    else
    { 
        // z = fmult (a,b) will be computed
        A_is_pattern = op_is_second || op_is_pair ;
        B_is_pattern = op_is_first  || op_is_pair ;
        ASSERT (GB_IMPLIES (!A_is_pattern,
            GB_Type_compatible (A->type, mult->xtype))) ;
        ASSERT (GB_IMPLIES (!B_is_pattern,
            GB_Type_compatible (B->type, mult->ytype))) ;
    }

    GB_Opcode mult_binop_code, add_binop_code ;
    GB_Type_code xcode, ycode, zcode ;
    bool builtin_semiring = GB_AxB_semiring_builtin (A, A_is_pattern, B,
        B_is_pattern, semiring, flipxy, &mult_binop_code, &add_binop_code,
        &xcode, &ycode, &zcode) ;

    if (!builtin_semiring || (add_binop_code == GB_ANY_binop_code))
    { 
        // The semiring must be built-in, and cannot use the ANY monoid.
        return (GrB_NO_VALUE) ;
    }

    GBURBLE ("(dot4: %s += %s'*%s) ",
        GB_sparsity_char_matrix (C),
        GB_sparsity_char_matrix (A),
        GB_sparsity_char_matrix (B)) ;

    //--------------------------------------------------------------------------
    // determine the number of threads to use
    //--------------------------------------------------------------------------

    int64_t anz = GB_nnz_held (A) ;
    int64_t bnz = GB_nnz_held (B) ;
    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    int nthreads = GB_nthreads (anz + bnz, chunk, nthreads_max) ;

    //--------------------------------------------------------------------------
    // slice A and B
    //--------------------------------------------------------------------------

    // A and B can have any sparsity: sparse/hyper/bitmap/full.
    // C is always as-if-full.

    int64_t anvec = A->nvec ;
    int64_t vlen  = A->vlen ;
    int64_t bnvec = B->nvec ;
    int naslice, nbslice ;

    if (nthreads == 1)
    {
        naslice = 1 ;
        nbslice = 1 ;
    }
    else
    {
        bool A_is_sparse_or_hyper = GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A) ;
        bool B_is_sparse_or_hyper = GB_IS_SPARSE (B) || GB_IS_HYPERSPARSE (B) ;
        if (A_is_sparse_or_hyper && B_is_sparse_or_hyper)
        {
            // both A and B are sparse/hyper; split them finely
            naslice = 16 * nthreads ;
            nbslice = 16 * nthreads ;
        }
        else if (!A_is_sparse_or_hyper && B_is_sparse_or_hyper)
        {
            // A is bitmap/full and B is sparse/hyper; only split B
            naslice = 1 ;
            nbslice = 16 * nthreads ;
        }
        else if (A_is_sparse_or_hyper && !B_is_sparse_or_hyper)
        {
            // A is sparse/hyper and B is bitmap/full; is only split A
            naslice = 16 * nthreads ;
            nbslice = 1 ;
        }
        else
        {
            // A and B are bitmap/full; split them coarsely
            naslice = nthreads ;
            nbslice = nthreads ;
        }
    }

    // ensure each slice has at least one vector
    naslice = GB_IMIN (naslice, anvec) ;
    nbslice = GB_IMIN (nbslice, bnvec) ;

    GB_WERK_PUSH (A_slice, naslice + 1, int64_t) ;
    GB_WERK_PUSH (B_slice, nbslice + 1, int64_t) ;
    if (A_slice == NULL || B_slice == NULL)
    { 
        // out of memory
        GB_FREE_WORKSPACE ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    GB_pslice (A_slice, A->p, anvec, naslice, false) ;
    GB_pslice (B_slice, B->p, bnvec, nbslice, false) ;

    //--------------------------------------------------------------------------
    // define the worker for the switch factory
    //--------------------------------------------------------------------------

    info = GrB_NO_VALUE ;

    #define GB_Adot4B(add,mult,xname) GB (_Adot4B_ ## add ## mult ## xname)
    #define GB_AxB_WORKER(add,mult,xname)                           \
    {                                                               \
        info = GB_Adot4B (add,mult,xname) (C, A, A_slice, naslice,  \
            B, B_slice, nbslice, nthreads, Context) ;               \
    }                                                               \
    break ;

    //--------------------------------------------------------------------------
    // launch the switch factory
    //--------------------------------------------------------------------------

    // disabled the ANY monoid
    #define GB_NO_ANY_MONOID
    #include "GB_AxB_factory.c"

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    if (info == GrB_NO_VALUE)
    { 
        // dot4 doesn't handle this case; punt to dot2 or dot3
        GBURBLE ("(punt) ") ;
    }
    else if (info == GrB_SUCCESS)
    { 
        ASSERT_MATRIX_OK (C, "dot4: output", GB0) ;
        (*done_in_place) = true ;
    }
    return (info) ;
    #endif
}