File: GB_AxB_meta.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (890 lines) | stat: -rw-r--r-- 35,722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
//------------------------------------------------------------------------------
// GB_AxB_meta: C<M>=A*B meta algorithm
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C, C<M>, C<!M> = A*B, A'*B, A*B', or A'*B' : both symbolic and numeric, with
// the optional mask matrix.  This function is called by GB_mxm only.  If the
// mask matrix is present, it can be regular or complemented, and either valued
// or structural.

// This algorithm may decide that it is more efficient to apply the mask later,
// in GB_accum_mask, after this matrix C is computed, in GB_mxm.  The result is
// either the T matrix in GB_mxm, or (if done in-place), the final output
// matrix C passed in from the user (C_in).

// The method is chosen automatically:  a gather/scatter saxpy method
// (Gustavson), or a dot product method.

// FUTURE:: an outer-product method for C=A*B'

#define GB_FREE_WORKSPACE       \
{                               \
    GB_Matrix_free (&AT) ;      \
    GB_Matrix_free (&BT) ;      \
}

#define GB_FREE_ALL             \
{                               \
    GB_FREE_WORKSPACE ;         \
    GB_phybix_free (C) ;        \
    GB_phybix_free (MT) ;       \
}

#include "GB_mxm.h"
#include "GB_transpose.h"

GB_PUBLIC
GrB_Info GB_AxB_meta                // C<M>=A*B meta algorithm
(
    GrB_Matrix C,                   // output, static header (if not in-place)
    GrB_Matrix C_in,                // input/output matrix, if done in-place
    bool C_replace,                 // C matrix descriptor
    const bool C_is_csc,            // desired CSR/CSC format of C
    GrB_Matrix MT,                  // return MT = M' (static header)
    bool *M_transposed,             // true if MT = M' was computed
    const GrB_Matrix M_in,          // mask for C<M> (not complemented)
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,       // accum operator for C_in += A*B
    const GrB_Matrix A_in,          // input matrix
    const GrB_Matrix B_in,          // input matrix
    const GrB_Semiring semiring_in, // semiring that defines C=A*B
    bool A_transpose,               // if true, use A', else A
    bool B_transpose,               // if true, use B', else B
    bool flipxy,                    // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *mask_applied,             // if true, mask was applied
    bool *done_in_place,            // if true, C was computed in-place
    GrB_Desc_Value AxB_method,      // for auto vs user selection of methods
    const int do_sort,              // if nonzero, try to return C unjumbled
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK_OR_NULL (C_in, "C_in for meta A*B", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (M_in, "M for meta A*B", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for meta A*B", GB0) ;
    ASSERT_MATRIX_OK (A_in, "A_in for meta A*B", GB0) ;
    ASSERT_MATRIX_OK (B_in, "B_in for meta A*B", GB0) ;

    ASSERT (!GB_ZOMBIES (M_in)) ;
    ASSERT (GB_JUMBLED_OK (M_in)) ;
    ASSERT (!GB_PENDING (M_in)) ;

    ASSERT (!GB_ZOMBIES (A_in)) ;
    ASSERT (GB_JUMBLED_OK (A_in)) ;
    ASSERT (!GB_PENDING (A_in)) ;

    ASSERT (!GB_ZOMBIES (B_in)) ;
    ASSERT (GB_JUMBLED_OK (B_in)) ;
    ASSERT (!GB_PENDING (B_in)) ;

    ASSERT_SEMIRING_OK (semiring_in, "semiring_in for numeric A*B", GB0) ;
    ASSERT (mask_applied != NULL) ;
    ASSERT (C  != NULL && ( C->static_header || GBNSTATIC)) ;
    ASSERT (MT != NULL && (MT->static_header || GBNSTATIC)) ;

    //--------------------------------------------------------------------------
    // declare workspace
    //--------------------------------------------------------------------------

    GrB_Info info ;
    struct GB_Matrix_opaque AT_header, BT_header ;
    GrB_Matrix AT = NULL, BT = NULL ;

    (*mask_applied) = false ;
    (*done_in_place) = false ;

    //--------------------------------------------------------------------------
    // get the semiring_in
    //--------------------------------------------------------------------------

    GB_Opcode opcode = semiring_in->multiply->opcode  ;
    bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
    bool op_is_first  = (opcode == GB_FIRST_binop_code) ;
    bool op_is_second = (opcode == GB_SECOND_binop_code) ;
    bool op_is_pair   = (opcode == GB_PAIR_binop_code) ;
    bool allow_scale = true ;
    if (semiring_in->multiply->binop_function == NULL &&
        (op_is_first || op_is_second))
    { 
        // GB_AxB_rowscale and GB_AxB_colscale do not handle the implicit FIRST
        // operator for GB_reduce_to_vector.  They do handle any other
        // positional operator (FIRSTI, FIRSTJ, SECONDI, SECONDJ, etc).
        allow_scale = false ;
    }

    //--------------------------------------------------------------------------
    // estimate the work to transpose A, B, and C
    //--------------------------------------------------------------------------

    double A_work = GB_nnz_held (A_in) ;    // work to transpose A
    double B_work = GB_nnz_held (B_in) ;    // work to transpose B
    // work to transpose C cannot be determined; assume it is full
    double C_work =
        (double) (A_transpose ? GB_NCOLS (A_in) : GB_NROWS (A_in)) *
        (double) (B_transpose ? GB_NROWS (B_in) : GB_NCOLS (B_in)) ;

    //--------------------------------------------------------------------------
    // see if the work can be done in-place
    //--------------------------------------------------------------------------

    // If C is hypersparse, sparse, or full:
    //
    //      C can be computed in-place if it is already dense, and if it is
    //      guaranteed to remain dense after the computation is done.  This
    //      case requires the accum operator to be present and it must match
    //      the monoid of the semiring.  C_replace must be false, or
    //      effectively false.
    //
    //      todo:  if C is full and accum is not present, it can be quickly
    //      converted to bitmap and then done in-place.
    //
    // If C is bitmap:
    //
    //      C can be computed in-place if its type is the same as the semiring
    //      monoid.  The accum must not be present, or if present it must match
    //      the semiring monoid.  C_replace can be true or false.
    //
    //      todo: modify GB_AxB_dot2 so it can compute C in-place,
    //      or add a bitmap dot product method.  Also modify GB_AxB_saxpy
    //      so it can compute a C bitmap in-place.
    //
    // In both cases, C must not be transposed, nor can it be aliased with any
    // input matrix.

    bool can_do_in_place = false ;

    if (C_in != NULL)
    {
        #if 0
        // disabled: this will work for most methods in the future is too
        // aggressive for dot4
        if (GB_IS_BITMAP (C_in))
        {
            // C is bitmap
            ASSERT (!GB_PENDING (C_in)) ; // no pending tuples in bitmap
            ASSERT (!GB_ZOMBIES (C_in)) ; // bitmap never has zombies
            can_do_in_place = (C_in->type == semiring_in->add->op->ztype)
                && ((accum == NULL) || (accum == semiring_in->add->op)) ;
        }
        else
        #endif
        if (accum != NULL)
        { 
            // C is hypersparse, sparse, or full, and accum is present.
            // check if C_in is competely dense:  no pending work.
            bool C_is_dense = GB_as_if_full (C_in) ;

            // accum must be present, and must match the monoid of the
            // semiring, and the ztype of the monoid must match the type of C
            bool accum_is_monoid = (accum == semiring_in->add->op)
                && (C_in->type == accum->ztype) ;

            // C += A*B with C_replace ignored (effectively false)
            // C<M> += A*B with C_replace false
            // C<!M> += A*B with C_replace false
            can_do_in_place = C_is_dense && accum_is_monoid
                && ((M_in == NULL) || (M_in != NULL && !C_replace)) ;
        }

        // C must also not be transposed on output; see below.  Nor can it be
        // aliased with any input matrix.  This test is done after handling the
        // CSR/CSC formats since the input matrices may be transposed (thus
        // breaking the alias with C).
    }

    //--------------------------------------------------------------------------
    // handle the CSR/CSC formats of C, M, A, and B
    //--------------------------------------------------------------------------

    // On input, A and/or B can be transposed, and all four matrices can be in
    // either CSR or CSC format, in any combination.  This gives a total of 64
    // possible combinations.  However, a CSR matrix that is transposed is just
    // the same as a non-transposed CSC matrix.

    // Use transpose to handle the CSR/CSC format.  If C is desired in CSR
    // format, treat it as if it were in format CSC but transposed.
    bool C_transpose = !C_is_csc ;

    // If the mask is not present, then treat it as having the same CSR/CSC
    // format as C.
    bool M_is_csc = (M_in == NULL) ? C_is_csc : M_in->is_csc ;

    // Treat M just like C.  If M is in CSR format, treat it as if it were CSC
    // but transposed, since there are no descriptors that transpose C or M.
    bool M_transpose = !M_is_csc ;

    // A can be transposed, and can also be in CSR or CSC format.  If A is in
    // CSR, treat it as A' in CSC, and if A' is in CSR, treat it as A in CSC.
    if (!A_in->is_csc)
    { 
        // Flip the sense of A_transpose
        A_transpose = !A_transpose ;
    }

    // B is treated just like A
    if (!B_in->is_csc)
    { 
        // Flip the sense of B_transpose
        B_transpose = !B_transpose ;
    }

        // Now all matrices C, M_in, A_in, and B_in, can be treated as if they
        // were all in CSC format, except any of them can be transposed.  There
        // are now 16 cases to handle, where M, A, and B are M_in, A_in, and
        // B_in and all matrices are CSR/CSC agnostic, and where C has not yet
        // been created.

        //      C <M > = A  * B
        //      C <M'> = A  * B
        //      C'<M > = A  * B
        //      C'<M'> = A  * B

        //      C <M > = A  * B'
        //      C <M'> = A  * B'
        //      C'<M > = A  * B'
        //      C'<M'> = A  * B'

        //      C <M > = A' * B
        //      C <M'> = A' * B
        //      C'<M > = A' * B
        //      C'<M'> = A' * B

        //      C <M > = A' * B'
        //      C <M'> = A' * B'
        //      C'<M > = A' * B'
        //      C'<M'> = A' * B'

    //==========================================================================
    // swap_rule: decide if C or C' should be computed
    //==========================================================================

    // This function can compute C or C', by setting C->is_csc as the negation
    // of the desired format C_is_csc.  This ensures that GB_accum_mask will
    // transpose C when this function is done.

    bool swap_rule = false ;
    int A_in_is_diagonal = -1 ;            // not yet computed
    int B_in_is_diagonal = -1 ;            // not yet computed

    if (C_transpose && A_transpose && B_transpose)
    { 

        //----------------------------------------------------------------------
        // C' = A'*B'       becomes C = B*A, never stays as-is
        //----------------------------------------------------------------------

        swap_rule = true ;

    }
    else if (!C_transpose && A_transpose && B_transpose)
    { 

        //----------------------------------------------------------------------
        // C  = A'*B'       becomes C = (B*A)', never stays as-is
        //----------------------------------------------------------------------

        swap_rule = true ;

    }
    else if (C_transpose && A_transpose && !B_transpose)
    { 

        //----------------------------------------------------------------------
        // C' = A'*B        becomes C = B'*A via swap rule, or stays C'=A'*B
        //----------------------------------------------------------------------

        // by default, use the swap rule and compute C=B'*A instead
        swap_rule = true ;

        // In v6.1.1 and earlier, this method always chose swap_rule = true.
        // The heuristic has been modified in v6.1.2 by adding the following
        // refinement, possibly selecting swap_rule as false instead:

        // see what the swap_rule == true would do for C=B'*A
        A_in_is_diagonal = GB_is_diagonal (A_in, Context) ;

        int tentative_axb_method ;
        GB_AxB_meta_adotb_control (&tentative_axb_method, C_in, M_in,
            Mask_comp, B_in, A_in, accum, semiring_in, flipxy, can_do_in_place,
            allow_scale, A_in_is_diagonal, AxB_method, Context) ;

        if (tentative_axb_method == GB_USE_SAXPY)
        { 
            // reconsider and do not use swap rule if saxpy C=B'*A is too
            // expensive.  C'=A'*B is either computed as-is with swap_rule
            // false, requiring a transpose of C and A.  Or, C=B'*A is
            // computed, with swap_rule true, requiring a transpose of B.
            swap_rule = (B_work < A_work + C_work) ;
        }

    }
    else if (C_transpose && !A_transpose && B_transpose)
    { 

        //----------------------------------------------------------------------
        // C' = A*B'        becomes C = B*A', or stays as C' = A*B'
        //----------------------------------------------------------------------

        // C'=A*B' is either computed as-is with C'=A*B', or C=B*A' with
        // swap_rule true.  Both require explicit transpose(s).
        // C'=A*B' requires B to be transposed, then C on output.
        // C=B*A' requires A to be transposed.

        // In v5.1 and earlier swap_rule = true was used for this case.
        // If C is very large, this will still be true.  swap_rule can only be
        // false if C is small.

        swap_rule = (A_work < B_work + C_work) ;

    }
    else if (!C_transpose && !A_transpose && B_transpose)
    { 

        //----------------------------------------------------------------------
        // C  = A*B'        becomes C'=B*A' or stays C=A*B'
        //----------------------------------------------------------------------

        // C=A*B' is either computed as-is with C=A*B', or C'=B*A' with
        // swap_rule true.  Both require explicit transpose(s).
        // C'=B*A' requires A to be transposed, then C on output.
        // C=A*B' requires B to be transposed.

        // In v5.1 and earlier swap_rule = false was used for this case.
        // If C is very large, this will still be false.  swap_rule can only be
        // true if C is small.

        swap_rule = (B_work > A_work + C_work) ;

    }
    else if (!C_transpose && A_transpose && !B_transpose)
    { 

        //----------------------------------------------------------------------
        // C  = A'*B        becomes C'=B'*A or stays C=A'*B
        //----------------------------------------------------------------------

        // by default, do not use the swap rule and compute C=A'*B as-is
        swap_rule = false ;

        // In v6.1.1 and earlier, this method always chose swap_rule = false.
        // The heuristic has been modified in v6.1.2 by adding the following
        // refinement, possibly selecting swap_rule as true instead:

        // see what method C=A'*B would use if swap_rule is false
        B_in_is_diagonal = GB_is_diagonal (B_in, Context) ;

        int tentative_axb_method ;
        GB_AxB_meta_adotb_control (&tentative_axb_method, C_in, M_in,
            Mask_comp, A_in, B_in, accum, semiring_in, flipxy, can_do_in_place,
            allow_scale, B_in_is_diagonal, AxB_method, Context) ;

        if (tentative_axb_method == GB_USE_SAXPY)
        { 
            // reconsider and use swap rule if saxpy C=(A')*B is too expensive.
            // C=(A')*B is either computed as-is, requiring a transpose of A,
            // or it is computed as C'=(B')*A using the swap rule, requiring a
            // transpose of C and B.
            swap_rule = (A_work > B_work + C_work) ;
        }

    }
    else if (C_transpose && !A_transpose && !B_transpose)
    { 

        //----------------------------------------------------------------------
        // C' = A*B         stays as-is
        //----------------------------------------------------------------------

        swap_rule = false ;

    }
    else
    { 

        //----------------------------------------------------------------------
        // C  = A*B         stays as-is
        //----------------------------------------------------------------------

        swap_rule = false ;
    }

    //--------------------------------------------------------------------------
    // apply the swap_rule
    //--------------------------------------------------------------------------

    GrB_Matrix A, B ;
    bool atrans, btrans ;
    int A_is_diagonal = -1 ;            // not yet computed
    int B_is_diagonal = -1 ;            // not yet computed

    if (swap_rule)
    { 
        // Replace C'=(A'*B') with C=B*A, and so on.  Swap A and B and transose
        // them, transpose M, negate flipxy, and transpose M and C.
        A = B_in ; atrans = !B_transpose ;
        B = A_in ; btrans = !A_transpose ;
        flipxy = !flipxy ;              // flipxy is modified here
        M_transpose = !M_transpose ;
        C_transpose = !C_transpose ;
        A_is_diagonal = B_in_is_diagonal ;
        B_is_diagonal = -1 ;
    }
    else
    { 
        // use the input matrices as-is
        A = A_in ; atrans = A_transpose ;
        B = B_in ; btrans = B_transpose ;
        A_is_diagonal = -1 ;
        B_is_diagonal = B_in_is_diagonal ;
    }

    ASSERT_MATRIX_OK (A, "final A for A*B", GB0) ;
    ASSERT_MATRIX_OK (B, "final B for A*B", GB0) ;

    //--------------------------------------------------------------------------
    // finalize the semiring after flipping the binary multiplicative operator
    //--------------------------------------------------------------------------

    struct GB_Semiring_opaque semiring_struct ;
    GrB_Semiring semiring = &semiring_struct ;
    semiring->magic = GB_MAGIC ;
    semiring->header_size = 0 ;
    semiring->add = semiring_in->add ;
    semiring->multiply = GB_flip_binop (semiring_in->multiply, false, &flipxy) ;

    opcode = semiring->multiply->opcode  ;
    op_is_first  = (opcode == GB_FIRST_binop_code) ;
    op_is_second = (opcode == GB_SECOND_binop_code) ;

    // flipxy is now false for all built-in semirings, and for all user-defined
    // semirings that use built-in multiplicative operators that are handled by
    // GB_flip_binop.

    //--------------------------------------------------------------------------
    // explicitly transpose the mask
    //--------------------------------------------------------------------------

    GrB_Matrix M ;

    if (M_transpose && M_in != NULL)
    { 
        // MT = M_in' also typecasting to boolean.  It is not freed here
        // unless an error occurs, but is returned to the caller.
        // If Mask_struct is true, MT = one(M') is iso.
        GBURBLE ("(M transpose) ") ;
        GB_OK (GB_transpose_cast (MT, GrB_BOOL, C_is_csc, M_in, Mask_struct,
            Context)) ;
        M = MT ;
        (*M_transposed) = true ;
    }
    else
    { 
        // M_in can be used as-is; it may be NULL
        M = M_in ;
        (*M_transposed) = false ;
    }

    ASSERT_MATRIX_OK_OR_NULL (M, "final M for A*B", GB0) ;

    //--------------------------------------------------------------------------
    // check additional conditions for in-place computation of C
    //--------------------------------------------------------------------------

    if (can_do_in_place)
    {
        // C cannot be done in-place if it is aliased with any input matrix.
        // Also cannot compute C in-place if it is to be transposed.
        bool C_aliased = GB_aliased (C_in, M) || GB_aliased (C_in, A) ||
            GB_aliased (C_in, B) ;
        if (C_transpose || C_aliased)
        { 
            can_do_in_place = false ;
        }
        // todo: A and B can be transposed below, so this check should be
        // done after any such transposings.
    }

    //--------------------------------------------------------------------------
    // burble
    //--------------------------------------------------------------------------

    const char *M_str = (M == NULL) ? "" : (Mask_comp ?  "<!M>" : "<M>") ;
    #define GB_PROP_LEN (GxB_MAX_NAME_LEN+128)
    char A_str [GB_PROP_LEN+1] ;
    char B_str [GB_PROP_LEN+1] ;
    if (GB_Global_burble_get ( ))
    {
        int64_t anz = GB_nnz (A) ;
        int64_t bnz = GB_nnz (B) ;
        snprintf (A_str, GB_PROP_LEN, "A: " GBd "-by-" GBd ", %s, " GBd
            " entries", GB_NROWS (A), GB_NCOLS (A), A->type->name, anz) ;
        snprintf (B_str, GB_PROP_LEN, "B: " GBd "-by-" GBd ", %s, " GBd
            " entries", GB_NROWS (B), GB_NCOLS (B), B->type->name, bnz) ;
    }

    //--------------------------------------------------------------------------
    // typecast A and B when transposing them, if needed
    //--------------------------------------------------------------------------

    bool A_is_pattern ;
    bool B_is_pattern ;
    GrB_Type atype_cast, btype_cast ;
    if (flipxy)
    { 
        // A is passed as y, and B as x, in z = mult(x,y)
        // The built-in first, second, pair, and positional ops have all been
        // renamed, so A and B are not pattern-only if flipxy is still true.
        A_is_pattern = false ;
        B_is_pattern = false ;
        atype_cast = semiring->multiply->ytype ;
        btype_cast = semiring->multiply->xtype ;
    }
    else
    { 
        // A is passed as x, and B as y, in z = mult(x,y)
        A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
        B_is_pattern = op_is_first  || op_is_pair || op_is_positional ;
        atype_cast = semiring->multiply->xtype ;
        btype_cast = semiring->multiply->ytype ;
    }

    //==========================================================================
    // select the final algorithm and perform the matrix multiply
    //==========================================================================

    // use GB_AxB_saxpy3 by default
    int axb_method = GB_USE_SAXPY ;

    if (atrans)
    {

        //----------------------------------------------------------------------
        // C<M> = A'*B' or A'*B
        //----------------------------------------------------------------------

        if (B_is_diagonal == -1)
        {
            B_is_diagonal = GB_is_diagonal (B, Context) ;
        }

        // explicitly transpose B
        if (btrans && !B_is_diagonal)
        {
            // B = B', or B = one(B') if only the pattern of B is needed.
            // This is currently unused, since C=A'*B' and C'=A'*B' are always
            // converted to C=(B*A)' and C=B*A, respectively.  It is left here
            // in case the swap_rule changes.
            GB_CLEAR_STATIC_HEADER (BT, &BT_header) ;
            GB_OK (GB_transpose_cast (BT, btype_cast, true, B, B_is_pattern,
                Context)) ;
            B = BT ;
        }

        //----------------------------------------------------------------------
        // select the method for C<M>=A'*B
        //----------------------------------------------------------------------

        GB_AxB_meta_adotb_control (&axb_method, C_in, M,
            Mask_comp, A, B, accum, semiring, flipxy, can_do_in_place,
            allow_scale, B_is_diagonal, AxB_method, Context) ;

        //----------------------------------------------------------------------
        // AT = A'
        //----------------------------------------------------------------------

        if (axb_method == GB_USE_COLSCALE || axb_method == GB_USE_SAXPY)
        {
            // AT = A', or AT=one(A') if only the pattern is needed.
            GB_CLEAR_STATIC_HEADER (AT, &AT_header) ;
            GB_OK (GB_transpose_cast (AT, atype_cast, true, A, A_is_pattern,
                Context)) ;
            // do not use colscale if AT is now bitmap
            if (GB_IS_BITMAP (AT))
            { 
                axb_method = GB_USE_SAXPY ;
            }
        }

        //----------------------------------------------------------------------
        // C<M>=A'*B
        //----------------------------------------------------------------------

        switch (axb_method)
        {
            case GB_USE_ROWSCALE : 
                // C = D*B using rowscale
                GBURBLE ("C%s=A'*B, rowscale ", M_str) ;
                GB_OK (GB_AxB_rowscale (C, A, B, semiring, flipxy,
                    Context)) ;
                break ;

            case GB_USE_COLSCALE : 
                // C = A'*D using colscale
                GBURBLE ("C%s=A'*B, colscale (transposed %s) ", M_str, A_str) ;
                GB_OK (GB_AxB_colscale (C, AT, B, semiring, flipxy,
                    Context)) ;
                break ;

            case GB_USE_DOT : 
                // C<M>=A'*B via dot, or C_in<M>+=A'*B if in-place
                GBURBLE ("C%s=A'*B, %sdot_product ", M_str,
                    (M != NULL && !Mask_comp) ? "masked_" : "") ;
                GB_OK (GB_AxB_dot (C, (can_do_in_place) ? C_in : NULL,
                    M, Mask_comp, Mask_struct, accum, A, B, semiring, flipxy,
                    mask_applied, done_in_place, Context)) ;
                break ;

            default : 
                // C = A'*B via saxpy: Gustavson + Hash method
                GBURBLE ("C%s=A'*B, saxpy (transposed %s) ", M_str, A_str) ;
                GB_OK (GB_AxB_saxpy (C, can_do_in_place ? C_in : NULL, M,
                    Mask_comp, Mask_struct, accum, AT, B, semiring, flipxy,
                    mask_applied, done_in_place, AxB_method, do_sort,
                    Context)) ;
                break ;
        }

    }
    else if (btrans)
    {

        //----------------------------------------------------------------------
        // select the method for C<M> = A*B'
        //----------------------------------------------------------------------

        if (allow_scale && M == NULL
            && !GB_IS_BITMAP (A)     // todo: A*D colscale with A bitmap
            && ((B_is_diagonal == -1) ?
                GB_is_diagonal (B, Context) : B_is_diagonal))
        { 
            // C = A*D, column scale
            axb_method = GB_USE_COLSCALE ;
        }
        else if (allow_scale && M == NULL
            && !GB_IS_BITMAP (B)     // todo: D*B' rowscale with B bitmap
            && ((A_is_diagonal == -1) ?
                GB_is_diagonal (A, Context) : A_is_diagonal))
        { 
            // C = D*B', row scale
            axb_method = GB_USE_ROWSCALE ;
        }
        else if (AxB_method == GxB_AxB_DOT)
        { 
            // only use the dot product method if explicitly requested
            axb_method = GB_USE_DOT ;
        }

        //----------------------------------------------------------------------
        // BT = B'
        //----------------------------------------------------------------------

        if (axb_method != GB_USE_COLSCALE)
        {
            // BT = B', or BT=one(B') if only the pattern of B is needed
            GB_CLEAR_STATIC_HEADER (BT, &BT_header) ;
            GB_OK (GB_transpose_cast (BT, btype_cast, true, B, B_is_pattern,
                Context)) ;
            // do not use rowscale if BT is now bitmap
            if (axb_method == GB_USE_ROWSCALE && GB_IS_BITMAP (BT))
            { 
                axb_method = GB_USE_SAXPY ;
            }
        }

        //----------------------------------------------------------------------
        // C<M> = A*B'
        //----------------------------------------------------------------------

        switch (axb_method)
        {
            case GB_USE_COLSCALE : 
                // C = A*D
                GBURBLE ("C%s=A*B', colscale ", M_str) ;
                GB_OK (GB_AxB_colscale (C, A, B, semiring, flipxy,
                    Context)) ;
                break ;

            case GB_USE_ROWSCALE : 
                // C = D*B'
                GBURBLE ("C%s=A*B', rowscale (transposed %s) ", M_str, B_str) ;
                GB_OK (GB_AxB_rowscale (C, A, BT, semiring, flipxy,
                    Context)) ;
                break ;

            case GB_USE_DOT : 
                // C<M>=A*B' via dot product, or C_in<M>+=A*B' if in-place
                GBURBLE ("C%s=A*B', dot_product (transposed %s) "
                    "(transposed %s) ", M_str, A_str, B_str) ;
                GB_CLEAR_STATIC_HEADER (AT, &AT_header) ;
                GB_OK (GB_transpose_cast (AT, atype_cast, true, A, A_is_pattern,
                    Context)) ;
                GB_OK (GB_AxB_dot (C, (can_do_in_place) ? C_in : NULL,
                    M, Mask_comp, Mask_struct, accum, AT, BT, semiring, flipxy,
                    mask_applied, done_in_place, Context)) ;
                break ;

            default : 
                // C = A*B' via saxpy: Gustavson + Hash method
                GBURBLE ("C%s=A*B', saxpy (transposed %s) ", M_str, B_str) ;
                GB_OK (GB_AxB_saxpy (C, can_do_in_place ? C_in : NULL, M,
                    Mask_comp, Mask_struct, accum, A, BT, semiring, flipxy,
                    mask_applied, done_in_place, AxB_method, do_sort,
                    Context)) ;
                break ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // select the method for C<M> = A*B
        //----------------------------------------------------------------------

        if (allow_scale && M == NULL
            && !GB_IS_BITMAP (A)     // todo: A*D colscale with A bitmap
            && ((B_is_diagonal == -1) ?
                GB_is_diagonal (B, Context) : B_is_diagonal))
        { 
            // C = A*D, column scale
            axb_method = GB_USE_COLSCALE ;
        }
        else if (allow_scale && M == NULL
            && !GB_IS_BITMAP (B)     // todo: D*B rowscale with B bitmap
            && ((A_is_diagonal == -1) ?
                GB_is_diagonal (A, Context) : A_is_diagonal))
        { 
            // C = D*B, row scale
            axb_method = GB_USE_ROWSCALE ;
        }
        else if (AxB_method == GxB_AxB_DOT)
        { 
            // C<M>=A*B via dot product, or C_in<M>+=A*B if in-place.
            axb_method = GB_USE_DOT ;
        }
        else if (AxB_method == GxB_AxB_SAXPY
              || AxB_method == GxB_AxB_HASH
              || AxB_method == GxB_AxB_GUSTAVSON)
        { 
            // C<M>=A*B via saxpy
            axb_method = GB_USE_SAXPY ;
        }
        else
        {
            // C = A*B: auto selection: select saxpy or dot
            if (GB_IS_HYPERSPARSE (A) && (GB_IS_BITMAP (B) || GB_IS_FULL (B)))
            {
                // If A is hyper and B is bitmap/full, then saxpy will compute
                // C as sparse or bitmap.  If bitmap, use saxpy; if sparse, use
                // dot product instead.
                int ignore, saxpy_method ;
                GB_AxB_saxpy_sparsity (&ignore, &saxpy_method, M, Mask_comp,
                    A, B, Context) ;
                if (saxpy_method == GB_SAXPY_METHOD_BITMAP)
                { 
                    // bitmap = hyper * (bitmap or full) is very efficient
                    // to do via GB_bitmap_AxB_saxpy.
                    axb_method = GB_USE_SAXPY ;
                }
                else
                { 
                    // sparse = hyper * (bitmap or full) would use
                    // GB_AxB_saxpy3, which can be slow, so use dot instead.
                    axb_method = GB_USE_DOT ;
                }
            }
            else
            { 
                // otherwise, always use GB_AxB_saxpy
                axb_method = GB_USE_SAXPY ;
            }
        }

        //----------------------------------------------------------------------
        // C<M> = A*B
        //----------------------------------------------------------------------

        switch (axb_method)
        {
            case GB_USE_COLSCALE : 
                // C = A*D, column scale
                GBURBLE ("C%s=A*B, colscale ", M_str) ;
                GB_OK (GB_AxB_colscale (C, A, B, semiring, flipxy, Context)) ;
                break ;

            case GB_USE_ROWSCALE : 
                // C = D*B, row scale
                GBURBLE ("C%s=A*B, rowscale ", M_str) ;
                GB_OK (GB_AxB_rowscale (C, A, B, semiring, flipxy, Context)) ;
                break ;

            case GB_USE_DOT : 
                // C<M>=A*B via dot product, or C_in<M>+=A*B if in-place.
                GBURBLE ("C%s=A*B', dot_product (transposed %s) ",
                    M_str, A_str) ;
                GB_CLEAR_STATIC_HEADER (AT, &AT_header) ;
                GB_OK (GB_transpose_cast (AT, atype_cast, true, A, A_is_pattern,
                    Context)) ;
                GB_OK (GB_AxB_dot (C, (can_do_in_place) ? C_in : NULL,
                    M, Mask_comp, Mask_struct, accum, AT, B, semiring, flipxy,
                    mask_applied, done_in_place, Context)) ;
                break ;

            default : 
                // C = A*B via saxpy: Gustavson + Hash method
                GBURBLE ("C%s=A*B, saxpy ", M_str) ;
                GB_OK (GB_AxB_saxpy (C, can_do_in_place ? C_in : NULL, M,
                    Mask_comp, Mask_struct, accum, A, B, semiring, flipxy,
                    mask_applied, done_in_place, AxB_method, do_sort,
                    Context)) ;
                break ;
        }
    }

    if (*M_transposed) { GBURBLE ("(M transposed) ") ; }
    if ((M != NULL) && !(*mask_applied)) { GBURBLE ("(mask later) ") ; }

    //--------------------------------------------------------------------------
    // handle C_transpose and assign the CSR/CSC format
    //--------------------------------------------------------------------------

    // If C_transpose is true, then C' has been computed.  In this case, negate
    // the desired C_is_csc so that GB_accum_mask transposes the result before
    // applying the accum operator and/or writing the result back to the user's
    // C.

    if (*done_in_place)
    { 
        GBURBLE ("(C in place) ") ;
        // C can be done in-place only if C is not transposed on output
        ASSERT_MATRIX_OK (C_in, "C_in output for all C=A*B", GB0) ;
        ASSERT (C_in->is_csc == C_is_csc) ;
    }
    else
    { 
        C->is_csc = C_transpose ? !C_is_csc : C_is_csc ;
        ASSERT_MATRIX_OK (C, "C output for all C=A*B", GB0) ;
    }

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    // do not free MT; return it to the caller
    #ifdef GB_DEBUG
    if (*M_transposed) ASSERT_MATRIX_OK (MT, "MT computed", GB0) ;
    #endif
    return (GrB_SUCCESS) ;
}