File: GB_AxB_saxpy.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (281 lines) | stat: -rw-r--r-- 11,500 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//------------------------------------------------------------------------------
// GB_AxB_saxpy: compute C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "GB_mxm.h"
#include "GB_bitmap_AxB_saxpy.h"
#include "GB_stringify.h"

// TODO: allow bitmap multiply to work in-place as well

GrB_Info GB_AxB_saxpy               // C = A*B using Gustavson/Hash/Bitmap
(
    GrB_Matrix C,                   // output, static header
    GrB_Matrix C_in,                // original input matrix
    const GrB_Matrix M,             // optional mask matrix
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,
    const GrB_Matrix A,             // input matrix A
    const GrB_Matrix B,             // input matrix B
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *mask_applied,             // if true, then mask was applied
    bool *done_in_place,            // if true, C was computed in-place 
    const GrB_Desc_Value AxB_method,
    const int do_sort,              // if nonzero, try to sort in saxpy3
    GB_Context Context
)
{
// double tt1 = omp_get_wtime ( ) ;

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    (*mask_applied) = false ;
    ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;

    ASSERT_MATRIX_OK_OR_NULL (M, "M for saxpy A*B", GB0) ;
    ASSERT (!GB_PENDING (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (!GB_ZOMBIES (M)) ;

    ASSERT_MATRIX_OK (A, "A for saxpy A*B", GB0) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;

    ASSERT_MATRIX_OK (B, "B for saxpy A*B", GB0) ;
    ASSERT (!GB_PENDING (B)) ;
    ASSERT (GB_JUMBLED_OK (B)) ;
    ASSERT (!GB_ZOMBIES (B)) ;

    ASSERT_SEMIRING_OK (semiring, "semiring for saxpy A*B", GB0) ;
    ASSERT (A->vdim == B->vlen) ;

    //--------------------------------------------------------------------------
    // determine the sparsity of C
    //--------------------------------------------------------------------------

    int C_sparsity, saxpy_method ;
    GB_AxB_saxpy_sparsity (&C_sparsity, &saxpy_method,
        M, Mask_comp, A, B, Context) ;

    //--------------------------------------------------------------------------
    // determine if C is iso
    //--------------------------------------------------------------------------

    GrB_Type ztype = semiring->add->op->ztype ;
    size_t zsize = ztype->size ;
    GB_void cscalar [GB_VLA(zsize)] ;
    bool C_iso = GB_iso_AxB (cscalar, A, B, A->vdim, semiring, flipxy, false) ;
    if (C_iso)
    {
        // revise the method if A and B are both iso and full
        if (A->iso && GB_as_if_full (A) && B->iso && GB_as_if_full (B))
        { 
            saxpy_method = GB_SAXPY_METHOD_ISO_FULL ;
            C_sparsity = GxB_FULL ;
        }
    }

    //--------------------------------------------------------------------------
    // determine if saxpy4 or saxpy5 can be used: C += A*B where C is full
    //--------------------------------------------------------------------------

    if (!C_iso                              // C must be non-iso on output
        && C_in != NULL                     // GB_AxB_meta says it is OK
        && GB_as_if_full (C_in)             // C must be "as if" full
        && M == NULL                        // no mask present
        && (accum != NULL)                  // accum is present
        && (accum == semiring->add->op)     // accum is same as monoid
        && (C_in->type == accum->ztype))    // no typecast from accum output
    {
        if ((GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A))
        &&  (GB_IS_BITMAP (B) || GB_as_if_full (B)))
        { 
            // GB_AxB_saxpy4 computes C += A*B where C is as-if-full, no mask
            // is present, accum is present and matches the monoid, no
            // typecasting, A is sparse or hypersparse, and B is bitmap or
            // as-if-full.  Only built-in semirings are supported, but not all:
            // (1) the ANY monoid is not supported since it would be unusual to
            // use ANY as the accum, and (2) only monoids that can be done
            // atomically without a critical section are supported.  The method
            // is not used if A*B is iso; C may be iso on input but it is
            // non-iso on output.

            #ifdef GB_DEBUGIFY_DEFN
            GB_debugify_mxm (C_iso, GB_sparsity (C_in), ztype, M,
                Mask_struct, Mask_comp, semiring, flipxy, A, B) ;
            #endif

            info = GB_AxB_saxpy4 (C_in, A, B, semiring, flipxy, done_in_place,
                Context) ;
            if (info != GrB_NO_VALUE)
            { 
                // return if saxpy4 has handled this case, otherwise fall
                // through to saxpy3, dot2, or bitmap_saxpy below.
                return (info) ;
            }
        }
        else if ((GB_IS_BITMAP (A) || GB_as_if_full (A))
             &&  (GB_IS_SPARSE (B) || GB_IS_HYPERSPARSE (B)))
        {
            // GB_AxB_saxpy5 computes C+=A*B where C is as-if-full, just like
            // GB_AxB_saxpy4, except that the sparsity format of A and B are
            // reversed.  A is bitmap or full, and B is sparse or hypersparse.
            // Only built-in semirings are supported, except for the ANY
            // monoid.  Unlike GB_AxB_saxpy4, built-in monoids without their
            // own atomics (TIMES for complex) are supported.

            #ifdef GB_DEBUGIFY_DEFN
            GB_debugify_mxm (C_iso, GB_sparsity (C_in), ztype, M,
                Mask_struct, Mask_comp, semiring, flipxy, A, B) ;
            #endif

            info = GB_AxB_saxpy5 (C_in, A, B, semiring, flipxy, done_in_place,
                Context) ;
            if (info != GrB_NO_VALUE)
            { 
                // return if saxpy5 has handled this case, otherwise fall
                // through to saxpy3, dot2, or bitmap_saxpy below.
                return (info) ;
            }
        }
    }

    //--------------------------------------------------------------------------
    // burble
    //--------------------------------------------------------------------------

    if (M == NULL)
    { 
        GBURBLE ("(%s = %s*%s, anz: %g bnz: %g) ",
            GB_sparsity_char (C_sparsity),
            GB_sparsity_char_matrix (A),
            GB_sparsity_char_matrix (B),
            (double) GB_nnz (A), (double) GB_nnz (B)) ;
    }
    else
    { 
        GBURBLE ("(%s%s%s%s%s = %s*%s) ",
            GB_sparsity_char (C_sparsity),
            Mask_struct ? "{" : "<",
            Mask_comp ? "!" : "",
            GB_sparsity_char_matrix (M),
            Mask_struct ? "}" : ">",
            GB_sparsity_char_matrix (A),
            GB_sparsity_char_matrix (B)) ;
    }

    //--------------------------------------------------------------------------
    // select the method to use
    //--------------------------------------------------------------------------

    if (saxpy_method == GB_SAXPY_METHOD_ISO_FULL)
    {

        //----------------------------------------------------------------------
        // C is iso and full; do not apply the mask
        //----------------------------------------------------------------------

        GBURBLE ("(iso full saxpy) ") ;
        ASSERT (C_sparsity == GxB_FULL) ;
        // set C->iso = true    OK
        info = GB_new_bix (&C, // existing header
            ztype, A->vlen, B->vdim, GB_Ap_null, true, GxB_FULL, false,
            GB_HYPER_SWITCH_DEFAULT, -1, 1, true, true, Context) ;
        if (info == GrB_SUCCESS)
        { 
            C->magic = GB_MAGIC ;
            memcpy (C->x, cscalar, zsize) ;
        }

    }
    else if (saxpy_method == GB_SAXPY_METHOD_3)
    {

        //----------------------------------------------------------------------
        // saxpy3: general-purpose Gustavson/Hash method, C is sparse/hyper
        //----------------------------------------------------------------------

        // C is sparse or hypersparse

        // This method allocates its own workspace, which is very small if the
        // Hash method is used.  The workspace for Gustavson's method is
        // larger, but saxpy3 selects that method only if the total work is
        // high enough so that the time to initialize the space.  C is sparse
        // or hypersparse.

        #ifdef GB_DEBUGIFY_DEFN
        GB_debugify_mxm (C_iso, C_sparsity, ztype, M,
            Mask_struct, Mask_comp, semiring, flipxy, A, B) ;
        #endif

        ASSERT (C_sparsity == GxB_HYPERSPARSE || C_sparsity == GxB_SPARSE) ;
        info = GB_AxB_saxpy3 (C, C_iso, cscalar, C_sparsity, M, Mask_comp,
            Mask_struct, A, B, semiring, flipxy, mask_applied, AxB_method,
            do_sort, Context) ;

        if (info == GrB_NO_VALUE)
        { 
            // The mask is present but has been discarded since it results in
            // too much work.  The analysis must be redone, which is done by
            // calling this function once again, recursively, without the mask.
            // GB_AxB_saxpy_sparsity will be called again, and it might choose
            // the bitmap method instead.  If saxpy3 is still chosen, this
            // results in a different analysis in GB_AxB_saxpy3, with no mask
            // present.  Otherwise, GB_bitmap_AxB_saxpy, below, is called.
            ASSERT (M != NULL) ;
            info = GB_AxB_saxpy (C, NULL, NULL, false, false, NULL, A, B,
                semiring, flipxy, mask_applied, done_in_place, AxB_method,
                do_sort, Context) ;
        }

    }
    else
    { 

        //----------------------------------------------------------------------
        // bitmap method: C is bitmap
        //----------------------------------------------------------------------

        ASSERT (C_sparsity == GxB_BITMAP) ;

        if ((GB_IS_BITMAP (A) || GB_IS_FULL (A)) &&
            (GB_IS_SPARSE (B) || GB_IS_HYPERSPARSE (B)))
        { 
            // C<#M> = A*B via dot products, where A is bitmap or full and B is
            // sparse or hypersparse, using the dot2 method with A not
            // explicitly transposed.
            info = GB_AxB_dot2 (C, C_iso, cscalar, M, Mask_comp, Mask_struct,
                true, A, B, semiring, flipxy, Context) ;
        }
        else
        { 

            #ifdef GB_DEBUGIFY_DEFN
            GB_debugify_mxm (C_iso, GxB_BITMAP, ztype, M,
                Mask_struct, Mask_comp, semiring, flipxy, A, B) ;
            #endif

            // C<#M> = A*B via bitmap saxpy method
            info = GB_bitmap_AxB_saxpy (C, C_iso, cscalar, M,
                Mask_comp, Mask_struct, A, B, semiring, flipxy, Context) ;
        }

        // the mask is always applied if present
        (*mask_applied) = (M != NULL && info == GrB_SUCCESS) ;
    }

// tt1 = omp_get_wtime ( ) - tt1 ; printf ("saxpy time: %g\n", tt1) ;
    return (info) ;
}