1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3.h: definitions for C=A*B saxpy3 method
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy3 method uses a mix of Gustavson's method and the Hash method,
// combining the two for any given C=A*B computation.
#ifndef GB_AXB_SAXPY3_H
#define GB_AXB_SAXPY3_H
#include "GB.h"
#include "GB_hash.h"
GrB_Info GB_AxB_saxpy3 // C = A*B using Gustavson+Hash
(
GrB_Matrix C, // output matrix, static header
const bool C_iso, // true if C is iso
const GB_void *cscalar, // iso value of C
int C_sparsity, // construct C as sparse or hypersparse
const GrB_Matrix M_input, // optional mask matrix
const bool Mask_comp_input, // if true, use !M
const bool Mask_struct, // if true, use the only structure of M
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
bool *mask_applied, // if true, then mask was applied
GrB_Desc_Value AxB_method, // Default, Gustavson, or Hash
const int do_sort, // if nonzero, try to sort in saxpy3
GB_Context Context
) ;
//------------------------------------------------------------------------------
// GB_saxpy3task_struct: task descriptor for GB_AxB_saxpy3
//------------------------------------------------------------------------------
// A coarse task computes C(:,j1:j2) = A*B(:,j1:j2), for a contiguous set of
// vectors j1:j2. A coarse taskid is denoted by SaxpyTasks [taskid].vector ==
// -1, kfirst = SaxpyTasks [taskid].start, and klast = SaxpyTasks [taskid].end,
// and where j1 = GBH (Bh, kstart) and likewise for j2. No summation is needed
// for the final result of each coarse task.
// A fine taskid computes A*B(k1:k2,j) for a single vector C(:,j), for a
// contiguous range k1:k2, where kk = Tasklist[taskid].vector (which is >= 0),
// k1 = Bi [SaxpyTasks [taskid].start], k2 = Bi [SaxpyTasks [taskid].end]. It
// sums its computations in a hash table shared by all fine tasks that compute
// C(:,j), via atomics. The vector index j is GBH (Bh, kk).
// Both tasks use a hash table allocated uniquely for the task, in Hi, Hf, and
// Hx. The size of the hash table is determined by the maximum # of flops
// needed to compute any vector in C(:,j1:j2) for a coarse task, or the entire
// computation of the single vector in a fine task. For the Hash method, the
// table has a size that is twice the smallest a power of 2 larger than the
// flop count. If this size is a significant fraction of C->vlen, then the
// Hash method is not used, and Gustavson's method is used, with the hash size
// is set to C->vlen.
typedef struct
{
int64_t start ; // starting vector for coarse task, p for fine task
int64_t end ; // ending vector for coarse task, p for fine task
int64_t vector ; // -1 for coarse task, vector j for fine task
int64_t hsize ; // size of hash table
int64_t *Hi ; // Hi array for hash table (coarse hash tasks only)
GB_void *Hf ; // Hf array for hash table (int8_t or int64_t)
GB_void *Hx ; // Hx array for hash table
int64_t my_cjnz ; // # entries in C(:,j) found by this fine task
int leader ; // leader fine task for the vector C(:,j)
int team_size ; // # of fine tasks in the team for vector C(:,j)
}
GB_saxpy3task_struct ;
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_flopcount: compute flops for GB_AxB_saxpy3
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info GB_AxB_saxpy3_flopcount
(
int64_t *Mwork, // amount of work to handle the mask M
int64_t *Bflops, // size B->nvec+1 and all zero
const GrB_Matrix M, // optional mask matrix
const bool Mask_comp, // if true, mask is complemented
const GrB_Matrix A,
const GrB_Matrix B,
GB_Context Context
) ;
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_cumsum: cumulative sum of C->p for GB_AxB_saxpy3
//------------------------------------------------------------------------------
void GB_AxB_saxpy3_cumsum
(
GrB_Matrix C, // finalize C->p
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
int nfine, // number of fine tasks
double chunk, // chunk size
int nthreads, // number of threads
GB_Context Context
) ;
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_slice_balanced: create balanced parallel tasks for saxpy3
//------------------------------------------------------------------------------
GrB_Info GB_AxB_saxpy3_slice_balanced
(
// inputs
GrB_Matrix C, // output matrix
const GrB_Matrix M, // optional mask matrix
const bool Mask_comp, // if true, use !M
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
GrB_Desc_Value AxB_method, // Default, Gustavson, or Hash
bool builtin_semiring, // if true, semiring is builtin
// outputs
GB_saxpy3task_struct **SaxpyTasks_handle,
size_t *SaxpyTasks_size_handle,
bool *apply_mask, // if true, apply M during sapxy3
bool *M_in_place, // if true, use M in-place
int *ntasks, // # of tasks created (coarse and fine)
int *nfine, // # of fine tasks created
int *nthreads, // # of threads to use
GB_Context Context
) ;
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_slice_quick: create a single sequential task for saxpy3
//------------------------------------------------------------------------------
GrB_Info GB_AxB_saxpy3_slice_quick
(
// inputs
GrB_Matrix C, // output matrix
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
// outputs
GB_saxpy3task_struct **SaxpyTasks_handle,
size_t *SaxpyTasks_size_handle,
int *ntasks, // # of tasks created (coarse and fine)
int *nfine, // # of fine tasks created
int *nthreads, // # of threads to use
GB_Context Context
) ;
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_symbolic: symbolic analysis for GB_AxB_saxpy3
//------------------------------------------------------------------------------
void GB_AxB_saxpy3_symbolic
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_comp, // M complemented, or not
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_bh // C=A*B, A is bitmap, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_bs // C = A*B, A is bitmap, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_fh // C = A*B, A is full, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_fs // C = A*B, A is full, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_hb // C = A*B, A is hypersparse, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_hf // C = A*B, A is hypersparse, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_hh // C = A*B, A is hypersparse, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_hs // C = A*B, A is hypersparse, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_sb // C = A*B, A is sparse, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_sf // C = A*B, A is sparse, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_sh // C = A*B, A is sparse, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_ss // C = A*B, A is sparse, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mbb // C<M> = A*B, A is bitmap, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mbf // C<M> = A*B, A is bitmap, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mbh // C<M> = A*B, A is bitmap, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mbs // C<M> = A*B, A is bitmap, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mfb // C<M> = A*B, A is full, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mff // C<M> = A*B, A is full, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mfh // C<M> = A*B, A is full, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mfs // C<M> = A*B, A is full, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mhb // C<M> = A*B, A is hypersparse, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mhf // C<M> = A*B, A is hypersparse, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mhh // C<M> = A*B, A and B are hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mhs // C<M> = A*B, A is hypersparse, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_msb // C<M> = A*B, A is sparse, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_msf // C<M> = A*B, A is sparse, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_msh // C<M> = A*B, A is sparse, B is hyperparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_mss // C<M> = A*B, A is sparse, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nbh // C<!M> = A*B, A is bitmap, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nbs // C<!M> = A*B, A is bitmap, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nfh // C<!M> = A*B, A is full, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nfs // C<!M> = A*B, A is full, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nhb // C<!M> = A*B, A is hypersparse, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nhf // C<!M> = A*B, A is hypersparse, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nhh // C<!M> = A*B, A and B re hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nhs // C<!M> = A*B, A is hypersparse, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nsb // C<!M> = A*B, A is sparse, B is bitmap
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nsf // C<!M> = A*B, A is sparse, B is full
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nsh // C<!M> = A*B, A is sparse, B is hypersparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
void GB_AxB_saxpy3_sym_nss // C<!M> = A*B, A is sparse, B is sparse
(
GrB_Matrix C, // Cp is computed for coarse tasks
const GrB_Matrix M, // mask matrix M
const bool Mask_struct, // M structural, or not
const bool M_in_place,
const GrB_Matrix A, // A matrix; only the pattern is accessed
const GrB_Matrix B, // B matrix; only the pattern is accessed
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
const int ntasks, // total number of tasks
const int nfine, // number of fine tasks
const int nthreads // number of threads
) ;
#endif
|