1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_cumsum: finalize nnz(C(:,j)) and find cumulative sum of Cp
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// phase3: fine tasks finalize their computation nnz(C(:,j))
// phase4: cumulative sum of C->p
#include "GB_AxB_saxpy3.h"
#include "GB_unused.h"
void GB_AxB_saxpy3_cumsum
(
GrB_Matrix C, // finalize C->p
GB_saxpy3task_struct *SaxpyTasks, // list of tasks, and workspace
int nfine, // number of fine tasks
double chunk, // chunk size
int nthreads, // number of threads
GB_Context Context
)
{
//--------------------------------------------------------------------------
// get C
//--------------------------------------------------------------------------
ASSERT (!GB_IS_BITMAP (C)) ;
ASSERT (!GB_IS_FULL (C)) ;
int64_t *restrict Cp = C->p ;
const int64_t cvlen = C->vlen ;
const int64_t cnvec = C->nvec ;
//==========================================================================
// phase3: count nnz(C(:,j)) for fine tasks
//==========================================================================
int taskid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (taskid = 0 ; taskid < nfine ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
// int64_t kk = SaxpyTasks [taskid].vector ;
int64_t hash_size = SaxpyTasks [taskid].hsize ;
bool use_Gustavson = (hash_size == cvlen) ;
int team_size = SaxpyTasks [taskid].team_size ;
int leader = SaxpyTasks [taskid].leader ;
int my_teamid = taskid - leader ;
int64_t my_cjnz = 0 ;
if (use_Gustavson)
{
//------------------------------------------------------------------
// phase3: fine Gustavson task, C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------
// Hf [i] == 2 if C(i,j) is an entry in C(:,j)
int8_t *restrict Hf ;
Hf = (int8_t *restrict) SaxpyTasks [taskid].Hf ;
int64_t istart, iend ;
GB_PARTITION (istart, iend, cvlen, my_teamid, team_size) ;
for (int64_t i = istart ; i < iend ; i++)
{
if (Hf [i] == 2)
{
my_cjnz++ ;
}
}
}
else
{
//------------------------------------------------------------------
// phase3: fine hash task, C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------
// (Hf [hash] & 3) == 2 if C(i,j) is an entry in C(:,j),
// and the index i of the entry is (Hf [hash] >> 2) - 1.
int64_t *restrict Hf = (int64_t *restrict) SaxpyTasks [taskid].Hf ;
int64_t mystart, myend ;
GB_PARTITION (mystart, myend, hash_size, my_teamid, team_size) ;
for (int64_t hash = mystart ; hash < myend ; hash++)
{
if ((Hf [hash] & 3) == 2)
{
my_cjnz++ ;
}
}
}
SaxpyTasks [taskid].my_cjnz = my_cjnz ; // count my nnz(C(:,j))
}
//==========================================================================
// phase4: compute Cp with cumulative sum
//==========================================================================
//--------------------------------------------------------------------------
// sum nnz (C (:,j)) for fine tasks
//--------------------------------------------------------------------------
// SaxpyTasks [taskid].my_cjnz is the # of unique entries found in C(:,j) by
// that task. Sum these terms to compute total # of entries in C(:,j).
for (taskid = 0 ; taskid < nfine ; taskid++)
{
int64_t kk = SaxpyTasks [taskid].vector ;
Cp [kk] = 0 ;
}
for (taskid = 0 ; taskid < nfine ; taskid++)
{
int64_t kk = SaxpyTasks [taskid].vector ;
int64_t my_cjnz = SaxpyTasks [taskid].my_cjnz ;
Cp [kk] += my_cjnz ;
ASSERT (my_cjnz <= cvlen) ;
}
//--------------------------------------------------------------------------
// cumulative sum for Cp (fine and coarse tasks)
//--------------------------------------------------------------------------
// Cp [kk] is now nnz (C (:,j)), for all vectors j, whether computed by
// fine tasks or coarse tasks, and where j == GBH (Bh, kk)
int nth = GB_nthreads (cnvec, chunk, nthreads) ;
GB_cumsum (Cp, cnvec, &(C->nvec_nonempty), nth, Context) ;
//--------------------------------------------------------------------------
// cumulative sum of nnz (C (:,j)) for each team of fine tasks
//--------------------------------------------------------------------------
int64_t cjnz_sum = 0 ;
for (taskid = 0 ; taskid < nfine ; taskid++)
{
if (taskid == SaxpyTasks [taskid].leader)
{
cjnz_sum = 0 ;
// also find the max (C (:,j)) for any fine hash tasks
int64_t hash_size = SaxpyTasks [taskid].hsize ;
bool use_Gustavson = (hash_size == cvlen) ;
if (!use_Gustavson)
{
int64_t kk = SaxpyTasks [taskid].vector ;
int64_t cjnz = Cp [kk+1] - Cp [kk] ;
}
}
int64_t my_cjnz = SaxpyTasks [taskid].my_cjnz ;
SaxpyTasks [taskid].my_cjnz = cjnz_sum ;
cjnz_sum += my_cjnz ;
}
}
|