File: GB_AxB_saxpy3_flopcount.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (487 lines) | stat: -rw-r--r-- 18,546 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_flopcount:  compute flops for GB_AxB_saxpy3
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// On input, A, B, and M (optional) are matrices for C=A*B, C<M>=A*B, or
// C<!M>=A*B.  The flop count for each B(:,j) is computed, and returned as a
// cumulative sum.  This function is CSR/CSC agnostic, but for simplicity of
// this description, assume A and B are both CSC matrices, so that ncols(A) ==
// nrows(B).  For both CSR and CSC, A->vdim == B->vlen holds.  A and/or B may
// be hypersparse, in any combination.

// Bflops has size (B->nvec)+1, for both standard and hypersparse B.  Let
// n=B->vdim be the column dimension of B (that is, B is m-by-n).

// If B is a standard CSC matrix then Bflops has size n+1 == B->nvec+1, and on
// output, Bflops [j] is the # of flops required to compute C (:, 0:j-1).  B->h
// is NULL, and is implicitly the vector 0:(n-1).

// If B is hypersparse, then let Bh = B->h.  Its size is B->nvec, and j = Bh
// [kk] is the (kk)th column in the data structure for B.  C will also be
// hypersparse, and only C(:,Bh) will be computed (C may have fewer non-empty
// columns than B).  On output, Bflops [kk] is the number of needed flops to
// compute C (:, Bh [0:kk-1]).

// In both cases, Bflops [0] = 0, and Bflops [B->nvec] = total number of flops.
// The size of Bflops is B->nvec+1 so that it has the same size as B->p.  The
// first entry of B->p and Bflops are both zero.  This allows B to be sliced
// either by # of entries in B (by slicing B->p) or by the flop count required
// (by slicing Bflops).

// This algorithm does not look at the values of M, A, or B, just their
// patterns.  The flop count of C=A*B, C<M>=A*B, or C<!M>=A*B is computed for a
// saxpy-based method; the work for A'*B for the dot product method is not
// computed.

// The algorithm scans all nonzeros in B.  It only scans at most the min and
// max (first and last) row indices in A and M (if M is present).  If A and M
// are not hypersparse, the time taken is O(nnz(B)+n).  If all matrices are
// hypersparse, the time is O(nnz(B)*log(h)) where h = max # of vectors present
// in A and M.  Assuming B is in standard (not hypersparse) form:

/*
    [m n] = size (B) ;
    Bflops = zeros (1,n+1) ;        % (set to zero in the caller)
    Mwork = 0 ;
    for each column j in B:
        if (B (:,j) is empty) continue ;
        mjnz = nnz (M (:,j))
        if (M is present, not complemented, and M (:,j) is empty) continue ;
        Bflops (j) = mjnz if M present and not dense, to scatter M(:,j)
        Mwork += mjnz
        for each k where B (k,j) is nonzero:
            aknz = nnz (A (:,k))
            if (aknz == 0) continue ;
            % numerical phase will compute: C(:,j)<#M(:,j)> += A(:,k)*B(k,j)
            % where #M is no mask, M, or !M.  This typically takes aknz flops,
            % or with a binary search if nnz(M(:,j)) << nnz(A(:,k)).
            Bflops (j) += aknz
        end
    end
*/ 

#include "GB_mxm.h"
#include "GB_ek_slice.h"
#include "GB_AxB_saxpy3.h"
#include "GB_unused.h"

#define GB_FREE_ALL                         \
{                                           \
    GB_WERK_POP (Work, int64_t) ;           \
    GB_WERK_POP (B_ek_slicing, int64_t) ;   \
}

GB_PUBLIC
GrB_Info GB_AxB_saxpy3_flopcount
(
    int64_t *Mwork,             // amount of work to handle the mask M
    int64_t *Bflops,            // size B->nvec+1
    const GrB_Matrix M,         // optional mask matrix
    const bool Mask_comp,       // if true, mask is complemented
    const GrB_Matrix A,
    const GrB_Matrix B,
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK_OR_NULL (M, "M for flop count A*B", GB0) ;
    ASSERT (!GB_ZOMBIES (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (!GB_PENDING (M)) ;

    ASSERT_MATRIX_OK (A, "A for flop count A*B", GB0) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (!GB_PENDING (A)) ;

    ASSERT_MATRIX_OK (B, "B for flop count A*B", GB0) ;
    ASSERT (!GB_ZOMBIES (B)) ;
    ASSERT (GB_JUMBLED_OK (B)) ;
    ASSERT (!GB_PENDING (B)) ;

    ASSERT (A->vdim == B->vlen) ;
    ASSERT (Bflops != NULL) ;
    ASSERT (Mwork != NULL) ;

    //--------------------------------------------------------------------------
    // determine the number of threads to use
    //--------------------------------------------------------------------------

    int64_t bnvec = B->nvec ;

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;

    // clear Bflops
    GB_memset (Bflops, 0, (bnvec+1) * sizeof (int64_t), nthreads_max) ;

    //--------------------------------------------------------------------------
    // get the mask, if present: any sparsity structure
    //--------------------------------------------------------------------------

    bool mask_is_M = (M != NULL && !Mask_comp) ;
    const int64_t *restrict Mp = NULL ;
    const int64_t *restrict Mh = NULL ;
    const int64_t *restrict M_Yp = NULL ;
    const int64_t *restrict M_Yi = NULL ;
    const int64_t *restrict M_Yx = NULL ;
    int64_t mnvec = 0 ;
    int64_t mvlen = 0 ;
    int64_t M_hash_bits = 0 ;
    bool M_is_hyper = GB_IS_HYPERSPARSE (M) ;
    bool M_is_dense = false ;
    if (M != NULL)
    { 
        Mh = M->h ;
        Mp = M->p ;
        mnvec = M->nvec ;
        mvlen = M->vlen ;
        M_is_dense = GB_IS_BITMAP (M) || GB_as_if_full (M) ;
        if (M_is_hyper)
        {
            // mask is present, and hypersparse
            ASSERT_MATRIX_OK (M->Y, "M->Y hyper_hash", GB0) ;
            M_Yp = M->Y->p ;
            M_Yi = M->Y->i ;
            M_Yx = M->Y->x ;
            M_hash_bits = M->Y->vdim - 1 ;
        }
    }

    //--------------------------------------------------------------------------
    // get A and B: any sparsity structure
    //--------------------------------------------------------------------------

    const int64_t *restrict Ap = A->p ;
    const int64_t *restrict Ah = A->h ;
    const int64_t anvec = A->nvec ;
    const int64_t avlen = A->vlen ;
    const bool A_is_hyper = GB_IS_HYPERSPARSE (A) ;

    const int64_t *restrict A_Yp = NULL ;
    const int64_t *restrict A_Yi = NULL ;
    const int64_t *restrict A_Yx = NULL ;
    int64_t A_hash_bits = 0 ;
    if (A_is_hyper)
    {
        ASSERT_MATRIX_OK (A->Y, "A->Y hyper_hash", GB0) ;
        A_Yp = A->Y->p ;
        A_Yi = A->Y->i ;
        A_Yx = A->Y->x ;
        A_hash_bits = A->Y->vdim - 1 ;
    }

    const int64_t *restrict Bp = B->p ;
    const int64_t *restrict Bh = B->h ;
    const int8_t  *restrict Bb = B->b ;
    const int64_t *restrict Bi = B->i ;
    const bool B_is_hyper = GB_IS_HYPERSPARSE (B) ;
    const bool B_is_bitmap = GB_IS_BITMAP (B) ;
    const bool B_is_sparse_or_hyper = B_is_hyper || GB_IS_SPARSE (B) ;
    const int64_t bvlen = B->vlen ;

    //--------------------------------------------------------------------------
    // declare workspace
    //--------------------------------------------------------------------------

    GB_WERK_DECLARE (Work, int64_t) ;
    GB_WERK_DECLARE (B_ek_slicing, int64_t) ;
    int64_t *restrict Wfirst = NULL ;
    int64_t *restrict Wlast  = NULL ;

    //--------------------------------------------------------------------------
    // construct the parallel tasks
    //--------------------------------------------------------------------------

    int B_ntasks, B_nthreads ;
    GB_SLICE_MATRIX (B, 64, chunk) ;

    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------

    GB_WERK_PUSH (Work, 2*B_ntasks, int64_t) ;
    if (Work == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    Wfirst = Work ;
    Wlast  = Work + B_ntasks ;

    //--------------------------------------------------------------------------
    // compute flop counts for C=A*B, C<M>=A*B, or C<!M>=A*B
    //--------------------------------------------------------------------------

    int64_t total_Mwork = 0 ;
    int taskid ;
    #pragma omp parallel for num_threads(B_nthreads) schedule(dynamic,1) \
        reduction(+:total_Mwork)
    for (taskid = 0 ; taskid < B_ntasks ; taskid++)
    {

        //----------------------------------------------------------------------
        // get the task descriptor
        //----------------------------------------------------------------------

        int64_t kfirst = kfirst_Bslice [taskid] ;
        int64_t klast  = klast_Bslice  [taskid] ;
        Wfirst [taskid] = 0 ;
        Wlast  [taskid] = 0 ;
        int64_t task_Mwork = 0 ;

        //----------------------------------------------------------------------
        // count flops for vectors kfirst to klast of B
        //----------------------------------------------------------------------

        for (int64_t kk = kfirst ; kk <= klast ; kk++)
        {

            // nnz (B (:,j)), for all tasks
            int64_t bjnz = (Bp == NULL) ? bvlen : (Bp [kk+1] - Bp [kk]) ;
            // C(:,j) is empty if the entire vector B(:,j) is empty
            if (bjnz == 0) continue ;

            //------------------------------------------------------------------
            // find the part of B(:,j) to be computed by this task
            //------------------------------------------------------------------

            int64_t pB, pB_end ;
            GB_get_pA (&pB, &pB_end, taskid, kk,
                kfirst, klast, pstart_Bslice, Bp, bvlen) ;
            int64_t my_bjnz = pB_end - pB ;
            int64_t j = GBH (Bh, kk) ;

            //------------------------------------------------------------------
            // see if M(:,j) is present and non-empty
            //------------------------------------------------------------------

            // if M(:,j) is full, bitmap, or dense, do not add mjnz to bjflops
            // or task_MWork.

            int64_t bjflops = my_bjnz ; // account for scan of B(:,j) itself
            int64_t mjnz = 0 ;
            if (M != NULL && !M_is_dense)
            {
                // find M(:,j): only do this if M is sparse or hypersparse
                int64_t pM, pM_end ;
                if (M_is_hyper)
                {
                    // M is hypersparse: find M(:,j) in the M->Y hyper_hash
                    GB_hyper_hash_lookup (Mp, M_Yp, M_Yi, M_Yx, M_hash_bits,
                        j, &pM, &pM_end) ;
                }
                else
                {
                    // M is sparse
                    pM     = Mp [j] ;
                    pM_end = Mp [j+1] ;
                }
                mjnz = pM_end - pM ;
                // If M not complemented: C(:,j) is empty if M(:,j) is empty.
                if (mjnz == 0 && !Mask_comp) continue ;
                if (mjnz > 0)
                {
                    // M(:,j) not empty
                    if (pB == GBP (Bp, kk, bvlen))
                    { 
                        // this task owns the top part of B(:,j), so it can
                        // account for the work to access M(:,j), without the
                        // work being duplicated by other tasks working on
                        // B(:,j)
                        bjflops = mjnz ;
                        // keep track of total work spent examining the mask.
                        // If any B(:,j) is empty, M(:,j) can be ignored.  So
                        // total_Mwork will be <= nnz (M).
                        task_Mwork += mjnz ;
                    }
                }
            }
            int64_t mjnz_much = 64 * mjnz ;

            //------------------------------------------------------------------
            // count the flops to compute C(:,j)<#M(:,j)> = A*B(:,j)
            //------------------------------------------------------------------

            // where #M is either not present, M, or !M

            for ( ; pB < pB_end ; pB++)
            {
                // get B(k,j)
                int64_t k = GBI (Bi, pB, bvlen) ;
                if (!GBB (Bb, pB)) continue ;

                // B(k,j) is nonzero

                // find A(:,k)
                int64_t pA, pA_end ;
                if (A_is_hyper)
                {
                    // A is hypersparse: find A(:,k) in the A->Y hyper_hash
                    GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx, A_hash_bits,
                        k, &pA, &pA_end) ;
                }
                else
                {
                    // A is sparse, bitmap, or full
                    pA     = GBP (Ap, k  , avlen) ;
                    pA_end = GBP (Ap, k+1, avlen) ;
                }

                // skip if A(:,k) empty
                const int64_t aknz = pA_end - pA ;
                if (aknz == 0) continue ;

                double bkjflops ;

                // skip if intersection of A(:,k) and M(:,j) is empty
                // and mask is not complemented (C<M>=A*B)
                if (mask_is_M)
                {
                    // A(:,k) is non-empty; get first and last index of A(:,k)
                    if (aknz > 256 && mjnz_much < aknz && mjnz < mvlen &&
                        aknz < avlen && !(A->jumbled))
                    { 
                        // scan M(:j), and do binary search for A(i,j)
                        bkjflops = mjnz * (1 + 4 * log2 ((double) aknz)) ;
                    }
                    else
                    { 
                        // scan A(:k), and lookup M(i,j)
                        bkjflops = aknz ;
                    }
                }
                else
                { 
                    // A(:,k)*B(k,j) requires aknz flops
                    bkjflops = aknz ;
                }

                // increment by flops for the single entry B(k,j)
                // C(:,j)<#M(:,j)> += A(:,k)*B(k,j).
                bjflops += bkjflops ;
            }

            //------------------------------------------------------------------
            // log the flops for B(:,j)
            //------------------------------------------------------------------

            if (kk == kfirst)
            { 
                Wfirst [taskid] = bjflops ;
            }
            else if (kk == klast)
            { 
                Wlast [taskid] = bjflops ;
            }
            else
            { 
                Bflops [kk] = bjflops ;
            }
        }

        // compute the total work to access the mask, which is <= nnz (M)
        total_Mwork += task_Mwork ;
    }

    //--------------------------------------------------------------------------
    // reduce the first and last vector of each slice
    //--------------------------------------------------------------------------

    // See also Template/GB_select_phase1.c

    int64_t kprior = -1 ;

    for (int taskid = 0 ; taskid < B_ntasks ; taskid++)
    {

        //----------------------------------------------------------------------
        // sum up the partial flops that taskid computed for kfirst
        //----------------------------------------------------------------------

        int64_t kfirst = kfirst_Bslice [taskid] ;
        int64_t klast  = klast_Bslice  [taskid] ;

        if (kfirst <= klast)
        {
            int64_t pB = pstart_Bslice [taskid] ;
            int64_t pB_end = GBP (Bp, kfirst+1, bvlen) ;
            pB_end = GB_IMIN (pB_end, pstart_Bslice [taskid+1]) ;
            if (pB < pB_end)
            {
                if (kprior < kfirst)
                { 
                    // This task is the first one that did work on
                    // B(:,kfirst), so use it to start the reduction.
                    Bflops [kfirst] = Wfirst [taskid] ;
                }
                else
                { 
                    // subsequent task for B(:,kfirst)
                    Bflops [kfirst] += Wfirst [taskid] ;
                }
                kprior = kfirst ;
            }
        }

        //----------------------------------------------------------------------
        // sum up the partial flops that taskid computed for klast
        //----------------------------------------------------------------------

        if (kfirst < klast)
        {
            int64_t pB = GBP (Bp, klast, bvlen) ;
            int64_t pB_end = pstart_Bslice [taskid+1] ;
            if (pB < pB_end)
            {
                /* if */ ASSERT (kprior < klast) ;
                { 
                    // This task is the first one that did work on
                    // B(:,klast), so use it to start the reduction.
                    Bflops [klast] = Wlast [taskid] ;
                }
                /*
                else
                {
                    // If kfirst < klast and B(:,klast) is not empty,
                    // then this task is always the first one to do
                    // work on B(:,klast), so this case is never used.
                    ASSERT (GB_DEAD_CODE) ;
                    // subsequent task to work on B(:,klast)
                    Bflops [klast] += Wlast [taskid] ;
                }
                */
                kprior = klast ;
            }
        }
    }

    //--------------------------------------------------------------------------
    // cumulative sum of Bflops
    //--------------------------------------------------------------------------

    // Bflops = cumsum ([0 Bflops]) ;
    ASSERT (Bflops [bnvec] == 0) ;
    GB_cumsum (Bflops, bnvec, NULL, B_nthreads, Context) ;
    // Bflops [bnvec] is now the total flop count, including the time to
    // compute A*B and to handle the mask.  total_Mwork is part of this total
    // flop count, but is also returned separtely.

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_ALL ;
    (*Mwork) = total_Mwork ;
    return (GrB_SUCCESS) ;
}