1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_flopcount: compute flops for GB_AxB_saxpy3
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// On input, A, B, and M (optional) are matrices for C=A*B, C<M>=A*B, or
// C<!M>=A*B. The flop count for each B(:,j) is computed, and returned as a
// cumulative sum. This function is CSR/CSC agnostic, but for simplicity of
// this description, assume A and B are both CSC matrices, so that ncols(A) ==
// nrows(B). For both CSR and CSC, A->vdim == B->vlen holds. A and/or B may
// be hypersparse, in any combination.
// Bflops has size (B->nvec)+1, for both standard and hypersparse B. Let
// n=B->vdim be the column dimension of B (that is, B is m-by-n).
// If B is a standard CSC matrix then Bflops has size n+1 == B->nvec+1, and on
// output, Bflops [j] is the # of flops required to compute C (:, 0:j-1). B->h
// is NULL, and is implicitly the vector 0:(n-1).
// If B is hypersparse, then let Bh = B->h. Its size is B->nvec, and j = Bh
// [kk] is the (kk)th column in the data structure for B. C will also be
// hypersparse, and only C(:,Bh) will be computed (C may have fewer non-empty
// columns than B). On output, Bflops [kk] is the number of needed flops to
// compute C (:, Bh [0:kk-1]).
// In both cases, Bflops [0] = 0, and Bflops [B->nvec] = total number of flops.
// The size of Bflops is B->nvec+1 so that it has the same size as B->p. The
// first entry of B->p and Bflops are both zero. This allows B to be sliced
// either by # of entries in B (by slicing B->p) or by the flop count required
// (by slicing Bflops).
// This algorithm does not look at the values of M, A, or B, just their
// patterns. The flop count of C=A*B, C<M>=A*B, or C<!M>=A*B is computed for a
// saxpy-based method; the work for A'*B for the dot product method is not
// computed.
// The algorithm scans all nonzeros in B. It only scans at most the min and
// max (first and last) row indices in A and M (if M is present). If A and M
// are not hypersparse, the time taken is O(nnz(B)+n). If all matrices are
// hypersparse, the time is O(nnz(B)*log(h)) where h = max # of vectors present
// in A and M. Assuming B is in standard (not hypersparse) form:
/*
[m n] = size (B) ;
Bflops = zeros (1,n+1) ; % (set to zero in the caller)
Mwork = 0 ;
for each column j in B:
if (B (:,j) is empty) continue ;
mjnz = nnz (M (:,j))
if (M is present, not complemented, and M (:,j) is empty) continue ;
Bflops (j) = mjnz if M present and not dense, to scatter M(:,j)
Mwork += mjnz
for each k where B (k,j) is nonzero:
aknz = nnz (A (:,k))
if (aknz == 0) continue ;
% numerical phase will compute: C(:,j)<#M(:,j)> += A(:,k)*B(k,j)
% where #M is no mask, M, or !M. This typically takes aknz flops,
% or with a binary search if nnz(M(:,j)) << nnz(A(:,k)).
Bflops (j) += aknz
end
end
*/
#include "GB_mxm.h"
#include "GB_ek_slice.h"
#include "GB_AxB_saxpy3.h"
#include "GB_unused.h"
#define GB_FREE_ALL \
{ \
GB_WERK_POP (Work, int64_t) ; \
GB_WERK_POP (B_ek_slicing, int64_t) ; \
}
GB_PUBLIC
GrB_Info GB_AxB_saxpy3_flopcount
(
int64_t *Mwork, // amount of work to handle the mask M
int64_t *Bflops, // size B->nvec+1
const GrB_Matrix M, // optional mask matrix
const bool Mask_comp, // if true, mask is complemented
const GrB_Matrix A,
const GrB_Matrix B,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK_OR_NULL (M, "M for flop count A*B", GB0) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT_MATRIX_OK (A, "A for flop count A*B", GB0) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT_MATRIX_OK (B, "B for flop count A*B", GB0) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (GB_JUMBLED_OK (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (A->vdim == B->vlen) ;
ASSERT (Bflops != NULL) ;
ASSERT (Mwork != NULL) ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
int64_t bnvec = B->nvec ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
// clear Bflops
GB_memset (Bflops, 0, (bnvec+1) * sizeof (int64_t), nthreads_max) ;
//--------------------------------------------------------------------------
// get the mask, if present: any sparsity structure
//--------------------------------------------------------------------------
bool mask_is_M = (M != NULL && !Mask_comp) ;
const int64_t *restrict Mp = NULL ;
const int64_t *restrict Mh = NULL ;
const int64_t *restrict M_Yp = NULL ;
const int64_t *restrict M_Yi = NULL ;
const int64_t *restrict M_Yx = NULL ;
int64_t mnvec = 0 ;
int64_t mvlen = 0 ;
int64_t M_hash_bits = 0 ;
bool M_is_hyper = GB_IS_HYPERSPARSE (M) ;
bool M_is_dense = false ;
if (M != NULL)
{
Mh = M->h ;
Mp = M->p ;
mnvec = M->nvec ;
mvlen = M->vlen ;
M_is_dense = GB_IS_BITMAP (M) || GB_as_if_full (M) ;
if (M_is_hyper)
{
// mask is present, and hypersparse
ASSERT_MATRIX_OK (M->Y, "M->Y hyper_hash", GB0) ;
M_Yp = M->Y->p ;
M_Yi = M->Y->i ;
M_Yx = M->Y->x ;
M_hash_bits = M->Y->vdim - 1 ;
}
}
//--------------------------------------------------------------------------
// get A and B: any sparsity structure
//--------------------------------------------------------------------------
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t anvec = A->nvec ;
const int64_t avlen = A->vlen ;
const bool A_is_hyper = GB_IS_HYPERSPARSE (A) ;
const int64_t *restrict A_Yp = NULL ;
const int64_t *restrict A_Yi = NULL ;
const int64_t *restrict A_Yx = NULL ;
int64_t A_hash_bits = 0 ;
if (A_is_hyper)
{
ASSERT_MATRIX_OK (A->Y, "A->Y hyper_hash", GB0) ;
A_Yp = A->Y->p ;
A_Yi = A->Y->i ;
A_Yx = A->Y->x ;
A_hash_bits = A->Y->vdim - 1 ;
}
const int64_t *restrict Bp = B->p ;
const int64_t *restrict Bh = B->h ;
const int8_t *restrict Bb = B->b ;
const int64_t *restrict Bi = B->i ;
const bool B_is_hyper = GB_IS_HYPERSPARSE (B) ;
const bool B_is_bitmap = GB_IS_BITMAP (B) ;
const bool B_is_sparse_or_hyper = B_is_hyper || GB_IS_SPARSE (B) ;
const int64_t bvlen = B->vlen ;
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
GB_WERK_DECLARE (Work, int64_t) ;
GB_WERK_DECLARE (B_ek_slicing, int64_t) ;
int64_t *restrict Wfirst = NULL ;
int64_t *restrict Wlast = NULL ;
//--------------------------------------------------------------------------
// construct the parallel tasks
//--------------------------------------------------------------------------
int B_ntasks, B_nthreads ;
GB_SLICE_MATRIX (B, 64, chunk) ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
GB_WERK_PUSH (Work, 2*B_ntasks, int64_t) ;
if (Work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
Wfirst = Work ;
Wlast = Work + B_ntasks ;
//--------------------------------------------------------------------------
// compute flop counts for C=A*B, C<M>=A*B, or C<!M>=A*B
//--------------------------------------------------------------------------
int64_t total_Mwork = 0 ;
int taskid ;
#pragma omp parallel for num_threads(B_nthreads) schedule(dynamic,1) \
reduction(+:total_Mwork)
for (taskid = 0 ; taskid < B_ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
int64_t kfirst = kfirst_Bslice [taskid] ;
int64_t klast = klast_Bslice [taskid] ;
Wfirst [taskid] = 0 ;
Wlast [taskid] = 0 ;
int64_t task_Mwork = 0 ;
//----------------------------------------------------------------------
// count flops for vectors kfirst to klast of B
//----------------------------------------------------------------------
for (int64_t kk = kfirst ; kk <= klast ; kk++)
{
// nnz (B (:,j)), for all tasks
int64_t bjnz = (Bp == NULL) ? bvlen : (Bp [kk+1] - Bp [kk]) ;
// C(:,j) is empty if the entire vector B(:,j) is empty
if (bjnz == 0) continue ;
//------------------------------------------------------------------
// find the part of B(:,j) to be computed by this task
//------------------------------------------------------------------
int64_t pB, pB_end ;
GB_get_pA (&pB, &pB_end, taskid, kk,
kfirst, klast, pstart_Bslice, Bp, bvlen) ;
int64_t my_bjnz = pB_end - pB ;
int64_t j = GBH (Bh, kk) ;
//------------------------------------------------------------------
// see if M(:,j) is present and non-empty
//------------------------------------------------------------------
// if M(:,j) is full, bitmap, or dense, do not add mjnz to bjflops
// or task_MWork.
int64_t bjflops = my_bjnz ; // account for scan of B(:,j) itself
int64_t mjnz = 0 ;
if (M != NULL && !M_is_dense)
{
// find M(:,j): only do this if M is sparse or hypersparse
int64_t pM, pM_end ;
if (M_is_hyper)
{
// M is hypersparse: find M(:,j) in the M->Y hyper_hash
GB_hyper_hash_lookup (Mp, M_Yp, M_Yi, M_Yx, M_hash_bits,
j, &pM, &pM_end) ;
}
else
{
// M is sparse
pM = Mp [j] ;
pM_end = Mp [j+1] ;
}
mjnz = pM_end - pM ;
// If M not complemented: C(:,j) is empty if M(:,j) is empty.
if (mjnz == 0 && !Mask_comp) continue ;
if (mjnz > 0)
{
// M(:,j) not empty
if (pB == GBP (Bp, kk, bvlen))
{
// this task owns the top part of B(:,j), so it can
// account for the work to access M(:,j), without the
// work being duplicated by other tasks working on
// B(:,j)
bjflops = mjnz ;
// keep track of total work spent examining the mask.
// If any B(:,j) is empty, M(:,j) can be ignored. So
// total_Mwork will be <= nnz (M).
task_Mwork += mjnz ;
}
}
}
int64_t mjnz_much = 64 * mjnz ;
//------------------------------------------------------------------
// count the flops to compute C(:,j)<#M(:,j)> = A*B(:,j)
//------------------------------------------------------------------
// where #M is either not present, M, or !M
for ( ; pB < pB_end ; pB++)
{
// get B(k,j)
int64_t k = GBI (Bi, pB, bvlen) ;
if (!GBB (Bb, pB)) continue ;
// B(k,j) is nonzero
// find A(:,k)
int64_t pA, pA_end ;
if (A_is_hyper)
{
// A is hypersparse: find A(:,k) in the A->Y hyper_hash
GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx, A_hash_bits,
k, &pA, &pA_end) ;
}
else
{
// A is sparse, bitmap, or full
pA = GBP (Ap, k , avlen) ;
pA_end = GBP (Ap, k+1, avlen) ;
}
// skip if A(:,k) empty
const int64_t aknz = pA_end - pA ;
if (aknz == 0) continue ;
double bkjflops ;
// skip if intersection of A(:,k) and M(:,j) is empty
// and mask is not complemented (C<M>=A*B)
if (mask_is_M)
{
// A(:,k) is non-empty; get first and last index of A(:,k)
if (aknz > 256 && mjnz_much < aknz && mjnz < mvlen &&
aknz < avlen && !(A->jumbled))
{
// scan M(:j), and do binary search for A(i,j)
bkjflops = mjnz * (1 + 4 * log2 ((double) aknz)) ;
}
else
{
// scan A(:k), and lookup M(i,j)
bkjflops = aknz ;
}
}
else
{
// A(:,k)*B(k,j) requires aknz flops
bkjflops = aknz ;
}
// increment by flops for the single entry B(k,j)
// C(:,j)<#M(:,j)> += A(:,k)*B(k,j).
bjflops += bkjflops ;
}
//------------------------------------------------------------------
// log the flops for B(:,j)
//------------------------------------------------------------------
if (kk == kfirst)
{
Wfirst [taskid] = bjflops ;
}
else if (kk == klast)
{
Wlast [taskid] = bjflops ;
}
else
{
Bflops [kk] = bjflops ;
}
}
// compute the total work to access the mask, which is <= nnz (M)
total_Mwork += task_Mwork ;
}
//--------------------------------------------------------------------------
// reduce the first and last vector of each slice
//--------------------------------------------------------------------------
// See also Template/GB_select_phase1.c
int64_t kprior = -1 ;
for (int taskid = 0 ; taskid < B_ntasks ; taskid++)
{
//----------------------------------------------------------------------
// sum up the partial flops that taskid computed for kfirst
//----------------------------------------------------------------------
int64_t kfirst = kfirst_Bslice [taskid] ;
int64_t klast = klast_Bslice [taskid] ;
if (kfirst <= klast)
{
int64_t pB = pstart_Bslice [taskid] ;
int64_t pB_end = GBP (Bp, kfirst+1, bvlen) ;
pB_end = GB_IMIN (pB_end, pstart_Bslice [taskid+1]) ;
if (pB < pB_end)
{
if (kprior < kfirst)
{
// This task is the first one that did work on
// B(:,kfirst), so use it to start the reduction.
Bflops [kfirst] = Wfirst [taskid] ;
}
else
{
// subsequent task for B(:,kfirst)
Bflops [kfirst] += Wfirst [taskid] ;
}
kprior = kfirst ;
}
}
//----------------------------------------------------------------------
// sum up the partial flops that taskid computed for klast
//----------------------------------------------------------------------
if (kfirst < klast)
{
int64_t pB = GBP (Bp, klast, bvlen) ;
int64_t pB_end = pstart_Bslice [taskid+1] ;
if (pB < pB_end)
{
/* if */ ASSERT (kprior < klast) ;
{
// This task is the first one that did work on
// B(:,klast), so use it to start the reduction.
Bflops [klast] = Wlast [taskid] ;
}
/*
else
{
// If kfirst < klast and B(:,klast) is not empty,
// then this task is always the first one to do
// work on B(:,klast), so this case is never used.
ASSERT (GB_DEAD_CODE) ;
// subsequent task to work on B(:,klast)
Bflops [klast] += Wlast [taskid] ;
}
*/
kprior = klast ;
}
}
}
//--------------------------------------------------------------------------
// cumulative sum of Bflops
//--------------------------------------------------------------------------
// Bflops = cumsum ([0 Bflops]) ;
ASSERT (Bflops [bnvec] == 0) ;
GB_cumsum (Bflops, bnvec, NULL, B_nthreads, Context) ;
// Bflops [bnvec] is now the total flop count, including the time to
// compute A*B and to handle the mask. total_Mwork is part of this total
// flop count, but is also returned separtely.
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
(*Mwork) = total_Mwork ;
return (GrB_SUCCESS) ;
}
|