1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_slice_balanced: construct balanced tasks for GB_AxB_saxpy3
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// If the mask is present but must be discarded, this function returns
// GrB_NO_VALUE, to indicate that the analysis was terminated early.
#include "GB_AxB_saxpy3.h"
#include "GB_unused.h"
// control parameters for generating parallel tasks
#define GB_NTASKS_PER_THREAD 2
#define GB_COSTLY 1.2
#define GB_FINE_WORK 2
#define GB_MWORK_ALPHA 0.01
#define GB_MWORK_BETA 0.10
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Fine_fl, int64_t) ; \
GB_WERK_POP (Fine_slice, int64_t) ; \
GB_WERK_POP (Coarse_Work, int64_t) ; \
GB_WERK_POP (Coarse_initial, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_FREE_WORK (&SaxpyTasks, SaxpyTasks_size) ; \
}
//------------------------------------------------------------------------------
// GB_hash_table_size
//------------------------------------------------------------------------------
// flmax is the max flop count for computing A*B(:,j), for any vector j that
// this task computes. If the mask M is present, flmax also includes the
// number of entries in M(:,j). GB_hash_table_size determines the hash table
// size for this task, which is twice the smallest power of 2 larger than
// flmax. If flmax is large enough, the hash_size is returned as cvlen, so
// that Gustavson's method will be used instead of the Hash method.
// By default, Gustavson vs Hash is selected automatically. AxB_method can be
// selected via the descriptor or a global setting, as the non-default
// GxB_AxB_GUSTAVSON or GxB_AxB_HASH settings, to enforce the selection of
// either of those methods. However, if Hash is selected but the hash table
// equals or exceeds cvlen, then Gustavson's method is used instead.
static inline int64_t GB_hash_table_size
(
int64_t flmax, // max flop count for any vector computed by this task
int64_t cvlen, // vector length of C
const GrB_Desc_Value AxB_method // Default, Gustavson, or Hash
)
{
int64_t hash_size ;
if (AxB_method == GxB_AxB_GUSTAVSON || flmax >= cvlen/2)
{
//----------------------------------------------------------------------
// use Gustavson if selected explicitly or if flmax is large
//----------------------------------------------------------------------
hash_size = cvlen ;
}
else
{
//----------------------------------------------------------------------
// flmax is small; consider hash vs Gustavson
//----------------------------------------------------------------------
// hash_size = 2 * (smallest power of 2 >= flmax)
hash_size = ((uint64_t) 2) << (GB_FLOOR_LOG2 (flmax) + 1) ;
bool use_Gustavson ;
if (AxB_method == GxB_AxB_HASH)
{
// always use Hash method, unless the hash_size >= cvlen
use_Gustavson = (hash_size >= cvlen) ;
}
else
{
// default: auto selection:
// use Gustavson's method if hash_size is too big
use_Gustavson = (hash_size >= cvlen/12) ;
}
if (use_Gustavson)
{
hash_size = cvlen ;
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
return (hash_size) ;
}
//------------------------------------------------------------------------------
// GB_create_coarse_task: create a single coarse task
//------------------------------------------------------------------------------
// Compute the max flop count for any vector in a coarse task, determine the
// hash table size, and construct the coarse task.
static inline void GB_create_coarse_task
(
int64_t kfirst, // coarse task consists of vectors kfirst:klast
int64_t klast,
GB_saxpy3task_struct *SaxpyTasks,
int taskid, // taskid for this coarse task
int64_t *Bflops, // size bnvec; cum sum of flop counts for vectors of B
int64_t cvlen, // vector length of B and C
double chunk,
int nthreads_max,
int64_t *Coarse_Work, // workspace for parallel reduction for flop count
const GrB_Desc_Value AxB_method // Default, Gustavson, or Hash
)
{
//--------------------------------------------------------------------------
// find the max # of flops for any vector in this task
//--------------------------------------------------------------------------
int64_t nk = klast - kfirst + 1 ;
int nth = GB_nthreads (nk, chunk, nthreads_max) ;
// each thread finds the max flop count for a subset of the vectors
int tid ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (tid = 0 ; tid < nth ; tid++)
{
int64_t my_flmax = 1, istart, iend ;
GB_PARTITION (istart, iend, nk, tid, nth) ;
for (int64_t i = istart ; i < iend ; i++)
{
int64_t kk = kfirst + i ;
int64_t fl = Bflops [kk+1] - Bflops [kk] ;
my_flmax = GB_IMAX (my_flmax, fl) ;
}
Coarse_Work [tid] = my_flmax ;
}
// combine results from each thread
int64_t flmax = 1 ;
for (tid = 0 ; tid < nth ; tid++)
{
flmax = GB_IMAX (flmax, Coarse_Work [tid]) ;
}
// check the parallel computation
#ifdef GB_DEBUG
int64_t flmax2 = 1 ;
for (int64_t kk = kfirst ; kk <= klast ; kk++)
{
int64_t fl = Bflops [kk+1] - Bflops [kk] ;
flmax2 = GB_IMAX (flmax2, fl) ;
}
ASSERT (flmax == flmax2) ;
#endif
//--------------------------------------------------------------------------
// define the coarse task
//--------------------------------------------------------------------------
SaxpyTasks [taskid].start = kfirst ;
SaxpyTasks [taskid].end = klast ;
SaxpyTasks [taskid].vector = -1 ;
SaxpyTasks [taskid].hsize = GB_hash_table_size (flmax, cvlen, AxB_method) ;
SaxpyTasks [taskid].Hi = NULL ; // assigned later
SaxpyTasks [taskid].Hf = NULL ; // assigned later
SaxpyTasks [taskid].Hx = NULL ; // assigned later
SaxpyTasks [taskid].my_cjnz = 0 ; // for fine tasks only
SaxpyTasks [taskid].leader = taskid ;
SaxpyTasks [taskid].team_size = 1 ;
}
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_slice_balanced: create balanced tasks for saxpy3
//------------------------------------------------------------------------------
GrB_Info GB_AxB_saxpy3_slice_balanced
(
// inputs
GrB_Matrix C, // output matrix
const GrB_Matrix M, // optional mask matrix
const bool Mask_comp, // if true, use !M
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
GrB_Desc_Value AxB_method, // Default, Gustavson, or Hash
bool builtin_semiring, // if true, semiring is builtin
// outputs
GB_saxpy3task_struct **SaxpyTasks_handle,
size_t *SaxpyTasks_size_handle,
bool *apply_mask, // if true, apply M during sapxy3
bool *M_in_place, // if true, use M in-place
int *ntasks, // # of tasks created (coarse and fine)
int *nfine, // # of fine tasks created
int *nthreads, // # of threads to use
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
(*apply_mask) = false ;
(*M_in_place) = false ;
(*ntasks) = 0 ;
(*nfine) = 0 ;
(*nthreads) = 0 ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for saxpy3_slice_balanced A*B", GB0) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT_MATRIX_OK (A, "A for saxpy3_slice_balanced A*B", GB0) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT_MATRIX_OK (B, "B for saxpy3_slice_balanced A*B", GB0) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (GB_JUMBLED_OK (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
//--------------------------------------------------------------------------
// determine the # of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
if (builtin_semiring) chunk = chunk * 8 ;
//--------------------------------------------------------------------------
// define result and workspace
//--------------------------------------------------------------------------
GB_saxpy3task_struct *restrict SaxpyTasks = NULL ;
size_t SaxpyTasks_size = 0 ;
GB_WERK_DECLARE (Coarse_initial, int64_t) ; // initial coarse tasks
GB_WERK_DECLARE (Coarse_Work, int64_t) ; // workspace for flop counts
GB_WERK_DECLARE (Fine_slice, int64_t) ;
GB_WERK_DECLARE (Fine_fl, int64_t) ; // size max(nnz(B(:,j)))
//--------------------------------------------------------------------------
// get A, and B
//--------------------------------------------------------------------------
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t avlen = A->vlen ;
const bool A_is_hyper = GB_IS_HYPERSPARSE (A) ;
const int64_t *restrict A_Yp = NULL ;
const int64_t *restrict A_Yi = NULL ;
const int64_t *restrict A_Yx = NULL ;
int64_t A_hash_bits = 0 ;
if (A_is_hyper)
{
ASSERT_MATRIX_OK (A->Y, "A->Y hyper_hash", GB0) ;
A_Yp = A->Y->p ;
A_Yi = A->Y->i ;
A_Yx = A->Y->x ;
A_hash_bits = A->Y->vdim - 1 ;
}
const int64_t *restrict Bp = B->p ;
const int64_t *restrict Bh = B->h ;
const int8_t *restrict Bb = B->b ;
const int64_t *restrict Bi = B->i ;
const int64_t bvdim = B->vdim ;
const int64_t bnz = GB_nnz_held (B) ;
const int64_t bnvec = B->nvec ;
const int64_t bvlen = B->vlen ;
const bool B_is_hyper = GB_IS_HYPERSPARSE (B) ;
int64_t cvlen = avlen ;
int64_t cvdim = bvdim ;
//--------------------------------------------------------------------------
// compute flop counts for each vector of B and C
//--------------------------------------------------------------------------
int64_t Mwork = 0 ;
int64_t *restrict Bflops = C->p ; // use C->p as workspace for Bflops
GB_OK (GB_AxB_saxpy3_flopcount (&Mwork, Bflops, M, Mask_comp, A, B,
Context)) ;
double total_flops = (double) Bflops [bnvec] ;
double axbflops = total_flops - Mwork ;
GBURBLE ("axbwork %g ", axbflops) ;
if (Mwork > 0) GBURBLE ("mwork %g ", (double) Mwork) ;
//--------------------------------------------------------------------------
// determine if the mask M should be applied, or done later
//--------------------------------------------------------------------------
if (M == NULL)
{
//----------------------------------------------------------------------
// M is not present
//----------------------------------------------------------------------
(*apply_mask) = false ;
}
else if (GB_IS_BITMAP (M) || GB_as_if_full (M))
{
//----------------------------------------------------------------------
// M is present and full, bitmap, or sparse/hyper with all entries
//----------------------------------------------------------------------
// Choose all-hash or all-Gustavson tasks, and apply M during saxpy3.
(*apply_mask) = true ;
// The work for M has not yet been added Bflops.
// Each vector M(:,j) has cvlen entries.
Mwork = cvlen * cvdim ;
if (!(AxB_method == GxB_AxB_HASH || AxB_method == GxB_AxB_GUSTAVSON))
{
if (axbflops < (double) Mwork * GB_MWORK_BETA)
{
// The mask is too costly to scatter into the Hf workspace.
// Leave it in place and use all-hash tasks.
AxB_method = GxB_AxB_HASH ;
}
else
{
// Scatter M into Hf and use all-Gustavson tasks.
AxB_method = GxB_AxB_GUSTAVSON ;
}
}
if (AxB_method == GxB_AxB_HASH)
{
// Use the hash method for all tasks (except for those tasks which
// require a hash table size >= cvlen; those tasks use Gustavson).
// Do not scatter the mask into the Hf hash workspace. The work
// for the mask is not accounted for in Bflops, so the hash tables
// can be small.
(*M_in_place) = true ;
GBURBLE ("(use mask in-place) ") ;
}
else
{
// Use the Gustavson method for all tasks, and scatter M into the
// fine Gustavson workspace. The work for M is not yet in the
// Bflops cumulative sum. Add it now.
ASSERT (AxB_method == GxB_AxB_GUSTAVSON)
int nth = GB_nthreads (bnvec, chunk, nthreads_max) ;
int64_t kk ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (kk = 0 ; kk <= bnvec ; kk++)
{
Bflops [kk] += cvlen * (kk+1) ;
}
total_flops = (double) Bflops [bnvec] ;
GBURBLE ("(use mask) ") ;
}
}
else if (axbflops < ((double) Mwork * GB_MWORK_ALPHA))
{
//----------------------------------------------------------------------
// M is costly to use; apply it after C=A*B
//----------------------------------------------------------------------
// Do not use M during the computation of A*B. Instead, compute C=A*B
// and then apply the mask later. Tell the caller that the mask should
// not be applied, so that it will be applied later in GB_mxm.
(*apply_mask) = false ;
GBURBLE ("(discard mask) ") ;
GB_FREE_ALL ;
return (GrB_NO_VALUE) ;
}
else
{
//----------------------------------------------------------------------
// use M during saxpy3
//----------------------------------------------------------------------
(*apply_mask) = true ;
GBURBLE ("(use mask) ") ;
}
//--------------------------------------------------------------------------
// determine # of threads and # of initial coarse tasks
//--------------------------------------------------------------------------
(*nthreads) = GB_nthreads (total_flops, chunk, nthreads_max) ;
int ntasks_initial = ((*nthreads) == 1) ? 1 :
(GB_NTASKS_PER_THREAD * (*nthreads)) ;
//--------------------------------------------------------------------------
// give preference to Gustavson when using few threads
//--------------------------------------------------------------------------
if (!(AxB_method == GxB_AxB_HASH || AxB_method == GxB_AxB_GUSTAVSON))
{
// Unless a specific method has been explicitly requested, see if
// Gustavson should be used.
// Matrix-vector has a maximum intensity of 1, so this heuristic only
// applies to GrB_mxm.
double abnz = GB_nnz (A) + GB_nnz (B) + 1 ;
double workspace = (double) ntasks_initial * (double) cvlen ;
double intensity = total_flops / abnz ;
GBURBLE ("(intensity: %0.3g workspace/(nnz(A)+nnz(B)): %0.3g",
intensity, workspace / abnz) ;
if (((*nthreads) <= 8 && intensity >= 8 && workspace < abnz)
|| ( intensity >= 16 && workspace < abnz))
{
// work intensity is large, and Gustvason workspace is modest;
// use Gustavson for all tasks
AxB_method = GxB_AxB_GUSTAVSON ;
GBURBLE (": all Gustvason) ") ;
}
else
{
// use default task creation: mix of Hash and Gustavson
GBURBLE (") ") ;
}
}
//--------------------------------------------------------------------------
// determine target task size
//--------------------------------------------------------------------------
double target_task_size = total_flops / ((double) ntasks_initial) ;
target_task_size = GB_IMAX (target_task_size, chunk) ;
double target_fine_size = target_task_size / GB_FINE_WORK ;
target_fine_size = GB_IMAX (target_fine_size, chunk) ;
double very_costly = GB_Global_hack_get (0) ; // modified for testing
if (very_costly <= GxB_DEFAULT) very_costly = 8 ; // default is 8
//--------------------------------------------------------------------------
// determine # of parallel tasks
//--------------------------------------------------------------------------
int ncoarse = 0 ; // # of coarse tasks
int max_bjnz = 0 ; // max (nnz (B (:,j))) of fine tasks
// FUTURE: also use ultra-fine tasks that compute A(i1:i2,k)*B(k,j)
if (ntasks_initial > 1)
{
//----------------------------------------------------------------------
// construct initial coarse tasks
//----------------------------------------------------------------------
GB_WERK_PUSH (Coarse_initial, ntasks_initial + 1, int64_t) ;
if (Coarse_initial == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (Coarse_initial, Bflops, bnvec, ntasks_initial, true) ;
//----------------------------------------------------------------------
// split the work into coarse and fine tasks
//----------------------------------------------------------------------
for (int taskid = 0 ; taskid < ntasks_initial ; taskid++)
{
// get the initial coarse task
int64_t kfirst = Coarse_initial [taskid] ;
int64_t klast = Coarse_initial [taskid+1] ;
int64_t task_ncols = klast - kfirst ;
double task_flops = (double) (Bflops [klast] - Bflops [kfirst]) ;
if (task_ncols == 0)
{
// This coarse task is empty, having been squeezed out by
// costly vectors in adjacent coarse tasks.
}
else if (task_flops > very_costly * GB_COSTLY * target_task_size)
{
// This coarse task is too costly, because it contains one or
// more costly vectors. Split its vectors into a mixture of
// coarse and fine tasks.
int64_t kcoarse_start = kfirst ;
for (int64_t kk = kfirst ; kk < klast ; kk++)
{
// jflops = # of flops to compute a single vector A*B(:,j)
// where j == GBH (Bh, kk)
double jflops = Bflops [kk+1] - Bflops [kk] ;
// bjnz = nnz (B (:,j))
int64_t bjnz = (Bp == NULL) ? bvlen : (Bp [kk+1] - Bp [kk]);
if (jflops > GB_COSTLY * target_task_size && bjnz > 1)
{
// A*B(:,j) is costly; split it into 2 or more fine
// tasks. First flush the prior coarse task, if any.
if (kcoarse_start < kk)
{
// vectors kcoarse_start to kk-1 form a single
// coarse task
ncoarse++ ;
}
// next coarse task (if any) starts at kk+1
kcoarse_start = kk+1 ;
// vectors kk will be split into multiple fine tasks
max_bjnz = GB_IMAX (max_bjnz, bjnz) ;
int team_size = ceil (jflops / target_fine_size) ;
(*nfine) += team_size ;
}
}
// flush the last coarse task, if any
if (kcoarse_start < klast)
{
// vectors kcoarse_start to klast-1 form a single
// coarse task
ncoarse++ ;
}
}
else
{
// This coarse task is OK as-is.
ncoarse++ ;
}
}
}
else
{
//----------------------------------------------------------------------
// entire computation in a single fine or coarse task
//----------------------------------------------------------------------
// use a single coarse task for now, but convert it later to a single
// fine hash task if the hash method is used
(*nfine) = 0 ;
ncoarse = 1 ;
}
(*ntasks) = ncoarse + (*nfine) ;
//--------------------------------------------------------------------------
// allocate the tasks, and workspace to construct fine tasks
//--------------------------------------------------------------------------
SaxpyTasks = GB_MALLOC_WORK ((*ntasks), GB_saxpy3task_struct,
&SaxpyTasks_size) ;
GB_WERK_PUSH (Coarse_Work, nthreads_max, int64_t) ;
if (max_bjnz > 0)
{
// also allocate workspace to construct fine tasks
GB_WERK_PUSH (Fine_slice, (*ntasks)+1, int64_t) ;
// Fine_fl will only fit on the Werk stack if max_bjnz is small,
// but try anyway, in case it fits. It is placed at the top of the
// Werk stack.
GB_WERK_PUSH (Fine_fl, max_bjnz+1, int64_t) ;
}
if (SaxpyTasks == NULL || Coarse_Work == NULL ||
(max_bjnz > 0 && (Fine_slice == NULL || Fine_fl == NULL)))
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// clear SaxpyTasks
memset (SaxpyTasks, 0, SaxpyTasks_size) ;
//--------------------------------------------------------------------------
// create the tasks
//--------------------------------------------------------------------------
if (ntasks_initial > 1)
{
//----------------------------------------------------------------------
// create the coarse and fine tasks
//----------------------------------------------------------------------
int nf = 0 ; // fine tasks have task id 0:nfine-1
int nc = (*nfine) ; // coarse task ids are nfine:ntasks-1
for (int taskid = 0 ; taskid < ntasks_initial ; taskid++)
{
// get the initial coarse task
int64_t kfirst = Coarse_initial [taskid] ;
int64_t klast = Coarse_initial [taskid+1] ;
int64_t task_ncols = klast - kfirst ;
double task_flops = (double) (Bflops [klast] - Bflops [kfirst]) ;
if (task_ncols == 0)
{
// This coarse task is empty, having been squeezed out by
// costly vectors in adjacent coarse tasks.
}
else if (task_flops > very_costly * GB_COSTLY * target_task_size)
{
// This coarse task is too costly, because it contains one or
// more costly vectors. Split its vectors into a mixture of
// coarse and fine tasks.
int64_t kcoarse_start = kfirst ;
for (int64_t kk = kfirst ; kk < klast ; kk++)
{
// jflops = # of flops to compute a single vector A*B(:,j)
double jflops = Bflops [kk+1] - Bflops [kk] ;
// bjnz = nnz (B (:,j))
int64_t bjnz = (Bp == NULL) ? bvlen : (Bp [kk+1] - Bp [kk]);
if (jflops > GB_COSTLY * target_task_size && bjnz > 1)
{
// A*B(:,j) is costly; split it into 2 or more fine
// tasks. First flush the prior coarse task, if any.
if (kcoarse_start < kk)
{
// kcoarse_start:kk-1 form a single coarse task
GB_create_coarse_task (kcoarse_start, kk-1,
SaxpyTasks, nc++, Bflops, cvlen, chunk,
nthreads_max, Coarse_Work, AxB_method) ;
}
// next coarse task (if any) starts at kk+1
kcoarse_start = kk+1 ;
// count the work for each entry B(k,j). Do not
// include the work to scan M(:,j), since that will
// be evenly divided between all tasks in this team.
int64_t pB_start = GBP (Bp, kk, bvlen) ;
int nth = GB_nthreads (bjnz, chunk, nthreads_max) ;
int64_t s ;
#pragma omp parallel for num_threads(nth) \
schedule(static)
for (s = 0 ; s < bjnz ; s++)
{
// get B(k,j)
Fine_fl [s] = 1 ;
int64_t pB = pB_start + s ;
if (!GBB (Bb, pB)) continue ;
int64_t k = GBI (Bi, pB, bvlen) ;
// fl = flop count for just A(:,k)*B(k,j)
// find A(:,k)
int64_t pA, pA_end ;
if (A_is_hyper)
{
// A is hypersparse: find A(:,k) in hyper_hash
GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx,
A_hash_bits, k, &pA, &pA_end) ;
}
else
{
// A is sparse, bitmap, or full
pA = GBP (Ap, k , avlen) ;
pA_end = GBP (Ap, k+1, avlen) ;
}
int64_t fl = pA_end - pA ;
Fine_fl [s] = fl ;
ASSERT (fl >= 0) ;
}
// cumulative sum of flops to compute A*B(:,j)
GB_cumsum (Fine_fl, bjnz, NULL, nth, Context) ;
// slice B(:,j) into fine tasks
int team_size = ceil (jflops / target_fine_size) ;
ASSERT (Fine_slice != NULL) ;
GB_pslice (Fine_slice, Fine_fl, bjnz, team_size, false);
// shared hash table for all fine tasks for A*B(:,j)
int64_t hsize =
GB_hash_table_size (jflops, cvlen, AxB_method) ;
// construct the fine tasks for C(:,j)=A*B(:,j)
int leader = nf ;
for (int fid = 0 ; fid < team_size ; fid++)
{
int64_t pstart = Fine_slice [fid] ;
int64_t pend = Fine_slice [fid+1] ;
int64_t fl = Fine_fl [pend] - Fine_fl [pstart] ;
SaxpyTasks [nf].start = pB_start + pstart ;
SaxpyTasks [nf].end = pB_start + pend - 1 ;
SaxpyTasks [nf].vector = kk ;
SaxpyTasks [nf].hsize = hsize ;
SaxpyTasks [nf].Hi = NULL ; // assigned later
SaxpyTasks [nf].Hf = NULL ; // assigned later
SaxpyTasks [nf].Hx = NULL ; // assigned later
SaxpyTasks [nf].my_cjnz = 0 ;
SaxpyTasks [nf].leader = leader ;
SaxpyTasks [nf].team_size = team_size ;
nf++ ;
}
}
}
// flush the last coarse task, if any
if (kcoarse_start < klast)
{
// kcoarse_start:klast-1 form a single coarse task
GB_create_coarse_task (kcoarse_start, klast-1, SaxpyTasks,
nc++, Bflops, cvlen, chunk, nthreads_max,
Coarse_Work, AxB_method) ;
}
}
else
{
// This coarse task is OK as-is.
GB_create_coarse_task (kfirst, klast-1, SaxpyTasks,
nc++, Bflops, cvlen, chunk, nthreads_max,
Coarse_Work, AxB_method) ;
}
}
}
else
{
//----------------------------------------------------------------------
// entire computation in a single fine or coarse task
//----------------------------------------------------------------------
// create a single coarse task: hash or Gustavson
GB_create_coarse_task (0, bnvec-1, SaxpyTasks, 0, Bflops, cvlen, 1, 1,
Coarse_Work, AxB_method) ;
int64_t hash_size = SaxpyTasks [0].hsize ;
bool use_Gustavson = (hash_size == cvlen) ;
if (bnvec == 1 && !use_Gustavson)
{
// convert the single coarse hash task into a single fine hash task
SaxpyTasks [0].start = 0 ; // first entry in B(:,0)
SaxpyTasks [0].end = bnz - 1 ; // last entry in B(:,0)
SaxpyTasks [0].vector = 0 ;
(*nfine) = 1 ;
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
(*nthreads) = GB_IMIN (*nthreads, *ntasks) ;
(*SaxpyTasks_handle) = SaxpyTasks ;
(*SaxpyTasks_size_handle) = SaxpyTasks_size ;
return (GrB_SUCCESS) ;
}
|