1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy4: compute C+=A*B: C full, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy4 computes C+=A*B where C is as-if-full, A is
// sparse/hypersparse, and B is bitmap/full (or as-if-full). No mask is
// present, C_replace is false, the accum matches the monoid, no typecasting is
// needed, and no user-defined types or operators are used.
// The ANY monoid is not supported, since its use as accum would be unusual.
// The monoid must have an atomic implementation, so the TIMES monoid for
// complex types is not supported.
//------------------------------------------------------------------------------
#include "GB_mxm.h"
#include "GB_control.h"
#ifndef GBCUDA_DEV
#include "GB_AxB__include2.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (A_slice, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
//------------------------------------------------------------------------------
// GB_AxB_saxpy4: compute C+=A*B: C full, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------------------
GrB_Info GB_AxB_saxpy4 // C += A*B
(
GrB_Matrix C, // users input/output matrix
const GrB_Matrix A, // input matrix A
const GrB_Matrix B, // input matrix B
const GrB_Semiring semiring, // semiring that defines C=A*B and accum
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
bool *done_in_place, // if true, saxpy4 has computed the result
GB_Context Context
)
{
//--------------------------------------------------------------------------
// saxpy4 is disabled if GraphBLAS is compiled as compact
//--------------------------------------------------------------------------
#ifdef GBCUDA_DEV
return (GrB_NO_VALUE) ;
#else
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_WERK_DECLARE (A_slice, int64_t) ;
ASSERT_MATRIX_OK (C, "C for saxpy4 C+=A*B", GB0) ;
ASSERT (GB_as_if_full (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT_MATRIX_OK (A, "A for saxpy4 C+=A*B", GB0) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT_MATRIX_OK (B, "B for saxpy4 C+=A*B", GB0) ;
ASSERT (GB_IS_BITMAP (B) || GB_as_if_full (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for saxpy4 C+=A*B", GB0) ;
ASSERT (A->vdim == B->vlen) ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
// GrB_Monoid add = semiring->add ;
ASSERT (mult->ztype == semiring->add->op->ztype) ;
bool A_is_pattern, B_is_pattern ;
GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult->opcode) ;
GB_Opcode mult_binop_code, add_binop_code ;
GB_Type_code xcode, ycode, zcode ;
bool builtin_semiring = GB_AxB_semiring_builtin (A, A_is_pattern, B,
B_is_pattern, semiring, flipxy, &mult_binop_code, &add_binop_code,
&xcode, &ycode, &zcode) ;
if (!builtin_semiring || (add_binop_code == GB_ANY_binop_code)
|| (add_binop_code == GB_TIMES_binop_code && (zcode >= GB_FC32_code)))
{
// The semiring must be built-in, and cannot use the ANY monoid.
// In addition, the TIMES monoid for complex types is not supported,
// since it cannot be done atomically.
return (GrB_NO_VALUE) ;
}
GBURBLE ("(saxpy4: %s += %s*%s) ",
GB_sparsity_char_matrix (C),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
//--------------------------------------------------------------------------
// ensure C is non-iso
//--------------------------------------------------------------------------
GB_OK (GB_convert_any_to_non_iso (C, true, Context)) ;
//--------------------------------------------------------------------------
// determine the # of threads to use and the parallel tasks
//--------------------------------------------------------------------------
int nthreads, ntasks, nfine_tasks_per_vector ;
bool use_coarse_tasks, use_atomics ;
GB_AxB_saxpy4_tasks (&ntasks, &nthreads, &nfine_tasks_per_vector,
&use_coarse_tasks, &use_atomics, GB_nnz (A), GB_nnz_held (B),
B->vdim, C->vlen, Context) ;
if (!use_coarse_tasks)
{
// slice the matrix A for each team of fine tasks
GB_WERK_PUSH (A_slice, nfine_tasks_per_vector + 1, int64_t) ;
if (A_slice == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (A_slice, A->p, A->nvec, nfine_tasks_per_vector, true) ;
}
//--------------------------------------------------------------------------
// define the worker for the switch factory
//--------------------------------------------------------------------------
info = GrB_NO_VALUE ;
#define GB_Asaxpy4B(add,mult,xname) GB (_Asaxpy4B_ ## add ## mult ## xname)
#define GB_AxB_WORKER(add,mult,xname) \
{ \
info = GB_Asaxpy4B (add,mult,xname) (C, A, \
B, ntasks, nthreads, nfine_tasks_per_vector, \
use_coarse_tasks, use_atomics, A_slice, Context) ; \
} \
break ;
//--------------------------------------------------------------------------
// launch the switch factory
//--------------------------------------------------------------------------
// disabled the ANY monoid, and the TIMES monoid for complex types
#define GB_NO_ANY_MONOID
#define GB_NO_NONATOMIC_MONOID
#include "GB_AxB_factory.c"
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
if (info == GrB_NO_VALUE)
{
// saxpy4 doesn't handle this case; punt to saxpy3, bitmap saxpy, etc
GBURBLE ("(punt) ") ;
return (info) ;
}
else if (info != GrB_SUCCESS)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
else
{
ASSERT_MATRIX_OK (C, "saxpy4: output", GB0) ;
(*done_in_place) = true ;
return (GrB_SUCCESS) ;
}
#endif
}
|