1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic: compute C=A*B, C<M>=A*B, or C<!M>=A*B in parallel
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic computes C=A*B, C<M>=A*B, or C<!M>=A*B in parallel,
// with arbitrary types and operators. C can have any sparsity pattern:
// hyper, sparse, bitmap, or full. For all cases, the four matrices C, M
// (if present), A, and B have the same format (by-row or by-column), or they
// represent implicitly transposed matrices with the same effect. This method
// does not handle the dot-product methods, which compute C=A'*B if A and B
// are held by column, or equivalently A*B' if both are held by row.
// This method uses GB_AxB_saxpy3_generic_* and GB_bitmap_AxB_saxpy_generic_*
// to implement two meta-methods, each of which can contain further specialized
// methods (such as the fine/ coarse x Gustavson/Hash, mask/no-mask methods in
// saxpy3):
// saxpy3: general purpose method, where C is sparse or hypersparse,
// via GB_AxB_saxpy3_template.c. SaxpyTasks holds the (fine/coarse x
// Gustavson/Hash) tasks constructed by GB_AxB_saxpy3_slice*.
// bitmap_saxpy: general purpose method, where C is bitmap or full, via
// GB_bitmap_AxB_saxpy_template.c. The method constructs its own
// tasks in workspace defined and freed in that template.
// C is not iso.
//------------------------------------------------------------------------------
#include "GB_mxm.h"
#include "GB_binop.h"
#include "GB_AxB_saxpy_generic.h"
GrB_Info GB_AxB_saxpy_generic
(
GrB_Matrix C, // any sparsity
const GrB_Matrix M,
bool Mask_comp,
const bool Mask_struct,
const bool M_in_place, // ignored if C is bitmap
const GrB_Matrix A,
bool A_is_pattern,
const GrB_Matrix B,
bool B_is_pattern,
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy, // if true, do z=fmult(b,a) vs fmult(a,b)
const int saxpy_method, // saxpy3 or bitmap method
// for saxpy3 only:
GB_saxpy3task_struct *restrict SaxpyTasks, // NULL if C is bitmap
int ntasks,
int nfine,
int nthreads,
const int do_sort, // if true, sort in saxpy3
GB_Context Context
)
{
//--------------------------------------------------------------------------
// get operators, functions, workspace, contents of A, B, and C
//--------------------------------------------------------------------------
GrB_Info info = GrB_NO_VALUE ;
GrB_BinaryOp mult = semiring->multiply ;
GB_Opcode opcode = mult->opcode ;
//--------------------------------------------------------------------------
// C = A*B via saxpy3 or bitmap method, function pointers, and typecasting
//--------------------------------------------------------------------------
if (GB_OPCODE_IS_POSITIONAL (opcode))
{
//----------------------------------------------------------------------
// generic semirings with positional mulitiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic positional C=A*B) ") ;
ASSERT (!flipxy) ;
// C always has type int64_t or int32_t. The monoid must be used via
// its function pointer. The positional multiply operator must be
// hard-coded since it has no function pointer. The numerical values
// and types of A and B are not accessed.
if (mult->ztype == GrB_INT64)
{
switch (opcode)
{
case GB_FIRSTI_binop_code : // z = first_i(A(i,k),y) == i
case GB_FIRSTI1_binop_code : // z = first_i1(A(i,k),y) == i+1
{
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_firsti64
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_firsti64
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
break ;
case GB_FIRSTJ_binop_code : // z = first_j(A(i,k),y) == k
case GB_FIRSTJ1_binop_code : // z = first_j1(A(i,k),y) == k+1
case GB_SECONDI_binop_code : // z = second_i(x,B(k,j)) == k
case GB_SECONDI1_binop_code : // z = second_i1(x,B(k,j))== k+1
{
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_firstj64
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_firstj64
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
break ;
case GB_SECONDJ_binop_code : // z = second_j(x,B(k,j)) == j
case GB_SECONDJ1_binop_code : // z = second_j1(x,B(k,j))== j+1
{
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_secondj64
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_secondj64
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
break ;
default: ;
}
}
else
{
switch (opcode)
{
case GB_FIRSTI_binop_code : // z = first_i(A(i,k),y) == i
case GB_FIRSTI1_binop_code : // z = first_i1(A(i,k),y) == i+1
{
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_firsti32
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_firsti32
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
break ;
case GB_FIRSTJ_binop_code : // z = first_j(A(i,k),y) == k
case GB_FIRSTJ1_binop_code : // z = first_j1(A(i,k),y) == k+1
case GB_SECONDI_binop_code : // z = second_i(x,B(k,j)) == k
case GB_SECONDI1_binop_code : // z = second_i1(x,B(k,j))== k+1
{
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_firstj32
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_firstj32
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
break ;
case GB_SECONDJ_binop_code : // z = second_j(x,B(k,j)) == j
case GB_SECONDJ1_binop_code : // z = second_j1(x,B(k,j))== j+1
{
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_secondj32
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_secondj32
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
break ;
default: ;
}
}
}
else
{
//----------------------------------------------------------------------
// generic semirings with standard multiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic C=A*B) ") ;
if (opcode == GB_FIRST_binop_code)
{
// t = A(i,k)
// fmult is not used and can be NULL. This is required for
// GB_reduce_to_vector for user-defined types.
ASSERT (!flipxy) ;
ASSERT (B_is_pattern) ;
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_first
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_first
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
else if (opcode == GB_SECOND_binop_code)
{
// t = B(i,k)
// fmult is not used and can be NULL. This is required for
// GB_reduce_to_vector for user-defined types.
ASSERT (!flipxy) ;
ASSERT (A_is_pattern) ;
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse
info = GB_AxB_saxpy3_generic_second
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full
info = GB_bitmap_AxB_saxpy_generic_second
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
else if (flipxy)
{
// t = B(k,j) * A(i,k)
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse, mult is flipped
info = GB_AxB_saxpy3_generic_flipped
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full, mult is flipped
info = GB_bitmap_AxB_saxpy_generic_flipped
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
else
{
// t = A(i,k) * B(k,j)
if (saxpy_method == GB_SAXPY_METHOD_3)
{
// C is sparse or hypersparse, mult is unflipped
info = GB_AxB_saxpy3_generic_unflipped
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
SaxpyTasks, ntasks, nfine, nthreads, do_sort,
Context) ;
}
else
{
// C is bitmap or full, mult is unflipped
info = GB_bitmap_AxB_saxpy_generic_unflipped
(C, M, Mask_comp, Mask_struct, M_in_place,
A, A_is_pattern, B, B_is_pattern, semiring,
NULL, 0, 0, 0, 0,
Context) ;
}
}
}
return (info) ;
}
|