1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy_sparsity: determine the sparsity structure for C<M or !M>=A*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Determines the sparsity structure for C, for computing C=A*B, C<M>=A*B, or
// C<!M>=A*B, based on the sparsity structures of C (on input), M, A, and B,
// and whether or not M is complemented.
// TODO: When A or B are bitmapped or full, they can be transposed in-place.
// TODO: give the user control over this decision
//------------------------------------------------------------------------------
#include "GB_AxB_saxpy.h"
void GB_AxB_saxpy_sparsity // determine C_sparsity and method to use
(
// output:
int *C_sparsity, // sparsity structure of C
int *saxpy_method, // saxpy method to use
// input:
const GrB_Matrix M, // optional mask for C, unused if NULL
const bool Mask_comp, // if true, use !M
const GrB_Matrix A, // input A matrix
const GrB_Matrix B, // input B matrix
GB_Context Context
)
{
//--------------------------------------------------------------------------
// determine the sparsity of C
//--------------------------------------------------------------------------
if (B->nvec_nonempty < 0)
{
// B->nvec_nonempty is used to select the method
B->nvec_nonempty = GB_nvec_nonempty (B, Context) ;
}
double bnvec = B->nvec_nonempty ;
double m = (double) A->vlen ;
double n = (double) B->vdim ;
double anz = (double) GB_nnz_held (A) ;
// double bnz = (double) GB_nnz_held (B) ;
int M_sparsity = (M == NULL) ? 0 : GB_sparsity (M) ;
int B_sparsity = GB_sparsity (B) ;
int A_sparsity = GB_sparsity (A) ;
bool M_is_hyper = (M_sparsity == GxB_HYPERSPARSE) ;
bool M_is_sparse = (M_sparsity == GxB_SPARSE) ;
if (M != NULL && !Mask_comp && (M_is_hyper || M_is_sparse))
{
//-----------------------------------------------------
// C <M>= A * B
//-----------------------------------------------------
// hyper sparse any hyper
// hyper hyper any hyper
// sparse hyper any sparse/bitmap/full
// sparse sparse any sparse/bitmap/full
// The non-empty columns of C are a subset of the non-empty columns of
// B, so in general, if B is hypersparse, so is C. If B is sparse,
// bitmap, or full, then C must be sparse, regardless of the sparsity
// of A and B. This is a restriction of GB_AxB_saxpy3.c.
if (B_sparsity == GxB_HYPERSPARSE)
{
(*C_sparsity) = GxB_HYPERSPARSE ;
}
else
{
(*C_sparsity) = GxB_SPARSE ;
}
(*saxpy_method) = GB_SAXPY_METHOD_3 ;
}
else
{
//-----------------------------------------------------
// C = A * B
//-----------------------------------------------------
// hyper . hyper hyper
// hyper . sparse hyper
// hyper . bitmap hyper
// hyper . full hyper
// sparse . hyper sparse
// sparse . sparse sparse
// sparse/bitmap . bitmap sparse
// sparse/bitmap . full sparse
// sparse/bitmap . hyper bitmap
// sparse/bitmap . sparse bitmap
// bitmap . bitmap bitmap
// bitmap . full bitmap
// sparse/bitmap . hyper full
// sparse/bitmap . sparse full
// bitmap . bitmap full
// bitmap (***) . full full
// (***): future, compute C as full
//-----------------------------------------------------
// C <M>= A * B
//-----------------------------------------------------
// hyper any hyper hyper
// hyper any sparse hyper
// hyper any bitmap hyper
// hyper any full hyper
// sparse any hyper sparse
// sparse any sparse sparse
// sparse/bitmap any bitmap sparse
// sparse/bitmap any full sparse
// sparse/bitmap any hyper bitmap
// sparse/bitmap any sparse bitmap
// bitmap any bitmap bitmap
// bitmap any full bitmap
// sparse/bitmap bitmap/full hyper full (*)
// sparse/bitmap bitmap/full sparse full (*)
// bitmap bitmap/full bitmap full (*)
// bitmap bitmap/full full full (*)
// (*): if M hyper/sparse, then C is hyper/sparse; see above
//-----------------------------------------------------
// C <!M>= A * B
//-----------------------------------------------------
// hyper any hyper hyper
// hyper any sparse hyper
// hyper any bitmap hyper
// hyper any full hyper
// sparse any hyper sparse
// sparse any sparse sparse
// sparse/bitmap any bitmap sparse
// sparse/bitmap any full sparse
// sparse/bitmap any hyper bitmap
// sparse/bitmap any sparse bitmap
// bitmap any bitmap bitmap
// bitmap any full bitmap
// sparse/bitmap any hyper full
// sparse/bitmap any sparse full
// bitmap any bitmap full
// bitmap any full full
// If M is complemented, or not complemented and bitmap/full, then C
// has the same sparsity as listed above, except when A and B are both
// full.
// For the cases where C is labelled as hyper/bitmap or sparse/bitmap:
// If m*n is much larger than nnz(A)+nnz(B), then always construct C as
// sparse/hyper, not bitmap. TODO: give the user control over this
// decision.
// TODO: for bitmap*hyper and hyper*bitmap, create a hyper_shallow
// version of the hyper matrix (like dot does), and construct C as
// bitmap. Then expand into C into hyper.
switch (B_sparsity)
{
case GxB_HYPERSPARSE :
// H = any * H
(*C_sparsity) = GxB_HYPERSPARSE ;
break ;
case GxB_SPARSE :
switch (A_sparsity)
{
case GxB_HYPERSPARSE :
case GxB_SPARSE :
// S = {S,H} * S : C has the same sparsity as B
(*C_sparsity) = GxB_SPARSE ;
break ;
case GxB_BITMAP :
case GxB_FULL :
// S = {B,F} * S : if B has many empty columns
// B = {B,F} * S : otherwise C is bitmap
(*C_sparsity) = (bnvec < n/4) ? GxB_SPARSE : GxB_BITMAP;
break ;
default: ;
}
break ;
case GxB_BITMAP :
case GxB_FULL :
switch (A_sparsity)
{
case GxB_HYPERSPARSE :
case GxB_SPARSE :
// S = {S,H} * {B,F} : if A is very sparse
// B = {S,H} * {B,F} : otherwise C is bitmap
(*C_sparsity) = (anz < m/20) ? GxB_SPARSE : GxB_BITMAP ;
break ;
case GxB_BITMAP :
case GxB_FULL :
// B = {B,F} * {B,F} : C is bitmap
(*C_sparsity) = GxB_BITMAP ;
break ;
default: ;
}
break ;
default: ;
}
if ((*C_sparsity) == GxB_HYPERSPARSE || (*C_sparsity) == GxB_SPARSE)
{
(*saxpy_method) = GB_SAXPY_METHOD_3 ;
}
else
{
(*saxpy_method) = GB_SAXPY_METHOD_BITMAP ;
}
}
if ((*C_sparsity) == GxB_HYPERSPARSE || (*C_sparsity) == GxB_SPARSE)
{
// If C is sparse or hypersparse, then it will be computed by
// GB_AxB_saxpy3. For this method, if B is hypersparse, C must also be
// hypersparse. Otherwise C must be sparse. This is a requirement of
// GB_AxB_saxpy3, and is also asserted there.
ASSERT ((*C_sparsity) ==
((B_sparsity == GxB_HYPERSPARSE) ? GxB_HYPERSPARSE : GxB_SPARSE)) ;
}
}
|