File: GB_Matrix_diag.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (228 lines) | stat: -rw-r--r-- 7,600 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//------------------------------------------------------------------------------
// GB_Matrix_diag: construct a diagonal matrix from a vector
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#define GB_FREE_WORKSPACE   \
{                           \
    GB_Matrix_free (&T) ;   \
}

#define GB_FREE_ALL         \
{                           \
    GB_FREE_WORKSPACE ;     \
    GB_phybix_free (C) ;    \
}

#include "GB_diag.h"
#include "GB_unused.h"

GrB_Info GB_Matrix_diag     // build a diagonal matrix from a vector
(
    GrB_Matrix C,           // output matrix
    const GrB_Matrix V_in,  // input vector (as an n-by-1 matrix)
    int64_t k,
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT_MATRIX_OK (C, "C input for GB_Matrix_diag", GB0) ;
    ASSERT_MATRIX_OK (V_in, "V input for GB_Matrix_diag", GB0) ;
    ASSERT (GB_VECTOR_OK (V_in)) ;       // V_in is a vector on input
    ASSERT (!GB_aliased (C, V_in)) ;     // C and V_in cannot be aliased
    ASSERT (!GB_IS_HYPERSPARSE (V_in)) ; // vectors cannot be hypersparse

    struct GB_Matrix_opaque T_header ;
    GrB_Matrix T = NULL ;

    GrB_Type ctype = C->type ;
    GrB_Type vtype = V_in->type ;
    int64_t n = V_in->vlen + GB_IABS (k) ;     // C must be n-by-n

    ASSERT (GB_NROWS (C) == GB_NCOLS (C))
    ASSERT (GB_NROWS (C) == n)
    ASSERT (GB_Type_compatible (ctype, vtype)) ;

    //--------------------------------------------------------------------------
    // finish any pending work in V_in and clear the output matrix C
    //--------------------------------------------------------------------------

    GB_MATRIX_WAIT (V_in) ;
    GB_phybix_free (C) ;

    //--------------------------------------------------------------------------
    // ensure V is not bitmap
    //--------------------------------------------------------------------------

    GrB_Matrix V ;
    if (GB_IS_BITMAP (V_in))
    { 
        // make a deep copy of V_in and convert to CSC
        // set T->iso = V_in->iso   OK
        GB_CLEAR_STATIC_HEADER (T, &T_header) ;
        GB_OK (GB_dup_worker (&T, V_in->iso, V_in, true, NULL, Context)) ;
        GB_OK (GB_convert_bitmap_to_sparse (T, Context)) ;
        V = T ;
    }
    else
    { 
        // use V_in as-is
        V = V_in ;
    }

    //--------------------------------------------------------------------------
    // allocate C as sparse or hypersparse with vnz entries and vnz vectors
    //--------------------------------------------------------------------------

    // C is sparse if V is dense and k == 0, and hypersparse otherwise
    const int64_t vnz = GB_nnz (V) ;
    const bool V_is_full = GB_is_dense (V) ;
    const int C_sparsity = (V_is_full && k == 0) ? GxB_SPARSE : GxB_HYPERSPARSE;
    const bool C_iso = V->iso ;
    if (C_iso)
    { 
        GBURBLE ("(iso diag) ") ;
    }
    const bool csc = C->is_csc ;
    const float bitmap_switch = C->bitmap_switch ;
    const int sparsity_control = C->sparsity_control ;

    // set C->iso = C_iso   OK
    GB_OK (GB_new_bix (&C, // existing header
        ctype, n, n, GB_Ap_malloc, csc, C_sparsity, false,
        C->hyper_switch, vnz, vnz, true, C_iso, Context)) ;
    C->sparsity_control = sparsity_control ;
    C->bitmap_switch = bitmap_switch ;

    //--------------------------------------------------------------------------
    // handle the CSR/CSC format of C and determine position of diagonal
    //--------------------------------------------------------------------------

    if (!csc)
    { 
        // The kth diagonal of a CSC matrix is the same as the (-k)th diagonal
        // of the CSR format, so if C is CSR, negate the value of k.  Then
        // treat C as if it were CSC in the rest of this method.
        k = -k ;
    }

    int64_t kpositive, knegative ;
    if (k >= 0)
    { 
        kpositive = k ;
        knegative = 0 ;
    }
    else
    { 
        kpositive = 0 ;
        knegative = -k ;
    }

    //--------------------------------------------------------------------------
    // get the contents of C and determine # of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    int nthreads = GB_nthreads (vnz, chunk, nthreads_max) ;
    int64_t *restrict Cp = C->p ;
    int64_t *restrict Ch = C->h ;
    int64_t *restrict Ci = C->i ;

    //--------------------------------------------------------------------------
    // copy the contents of V into the kth diagonal of C
    //--------------------------------------------------------------------------

    if (C_sparsity == GxB_SPARSE)
    {

        //----------------------------------------------------------------------
        // V is full, or can be treated as full, and k == 0
        //----------------------------------------------------------------------

        // C->x = (ctype) V->x
        GB_cast_matrix (C, V, Context) ;

        // construct Cp and Ci
        int64_t p ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (p = 0 ; p < vnz ; p++)
        { 
            Cp [p] = p ;
            Ci [p] = p ;
        }

    }
    else if (V_is_full)
    {

        //----------------------------------------------------------------------
        // V is full, or can be treated as full, and k != 0
        //----------------------------------------------------------------------

        // C->x = (ctype) V->x
        GB_cast_matrix (C, V, Context) ;

        // construct Cp, Ch, and Ci
        int64_t p ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (p = 0 ; p < vnz ; p++)
        { 
            Cp [p] = p ;
            Ch [p] = p + kpositive ;
            Ci [p] = p + knegative ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // V is sparse
        //----------------------------------------------------------------------

        // C->x = (ctype) V->x
        GB_cast_matrix (C, V, Context) ;

        int64_t *restrict Vi = V->i ;

        // construct Cp, Ch, and Ci
        int64_t p ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (p = 0 ; p < vnz ; p++)
        { 
            Cp [p] = p ;
            Ch [p] = Vi [p] + kpositive ;
            Ci [p] = Vi [p] + knegative ;
        }
    }

    //--------------------------------------------------------------------------
    // finalize the matrix C
    //--------------------------------------------------------------------------

    Cp [vnz] = vnz ;
    C->nvals = vnz ;
    C->nvec = vnz ;
    C->nvec_nonempty = vnz ;
    C->magic = GB_MAGIC ;

    //--------------------------------------------------------------------------
    // free workspace, conform C to its desired format, and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    ASSERT_MATRIX_OK (C, "C before conform for GB_Matrix_diag", GB0) ;
    GB_OK (GB_conform (C, Context)) ;
    ASSERT_MATRIX_OK (C, "C output for GB_Matrix_diag", GB0) ;
    return (GrB_SUCCESS) ;
}