File: GB_add_phase0.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (842 lines) | stat: -rw-r--r-- 30,058 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
//------------------------------------------------------------------------------
// GB_add_phase0: find vectors of C to compute for C=A+B or C<M>=A+B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// The eWise add of two matrices, C=A+B, C<M>=A+B, or C<!M>=A+B starts with
// this phase, which determines which vectors of C need to be computed.
// This phase is also used for GB_masker, and for GB_SUBASSIGN_TWO_SLICE.

// On input, A and B are the two matrices being added, and M is the optional
// mask matrix (not complemented).  The complemented mask is handed in GB_mask,
// not here.

// On output, an integer (Cnvec) a boolean (Ch_to_Mh) and up to 3 arrays are
// returned, either NULL or of size Cnvec.  Let n = A->vdim be the vector
// dimension of A, B, M and C.

//      Ch:  the list of vectors to compute.  If not NULL, Ch [k] = j is the
//      kth vector in C to compute, which will become the hyperlist C->h of C.
//      Note that some of these vectors may turn out to be empty, because of
//      the mask, or because the vector j appeared in A or B, but is empty.
//      It is pruned at the end of GB_add_phase2.  If Ch is NULL then it is an
//      implicit list of size n, and Ch [k] == k for all k = 0:n-1.  In this
//      case, C will be a sparse matrix, not hypersparse.  Thus, the kth
//      vector is j = GBH (Ch, k).

//      Ch is freed by GB_add if phase1 fails.  phase2 either frees it or
//      transplants it into C, if C is hypersparse.

//      Ch_is_Mh:  true if the mask M is present, hypersparse, and not
//      complemented, false otherwise.  In this case Ch is a deep copy of Mh.
//      Only GB_add uses this option; it is not used by GB_masker or
//      GB_SUBASSIGN_TWO_SLICE (Ch_is_Mh is always false in this case).  This
//      is determined by passing in p_Ch_is_Mh as a NULL or non-NULL pointer.

//      C_to_A:  if A is hypersparse, then C_to_A [k] = kA if the kth vector,
//      j = GBH (Ch, k) appears in A, as j = Ah [kA].  If j does not appear in
//      A, then C_to_A [k] = -1.  If A is not hypersparse, then C_to_A is
//      returned as NULL.

//      C_to_B:  if B is hypersparse, then C_to_B [k] = kB if the kth vector,
//      j = GBH (Ch, k) appears in B, as j = Bh [kB].  If j does not appear in
//      B, then C_to_B [k] = -1.  If B is not hypersparse, then C_to_B is
//      returned as NULL.

//      C_to_M:  if M is hypersparse, and Ch_is_Mh is false, then C_to_M [k] =
//      kM if the kth vector, j = GBH (Ch, k) appears in M, as j = Mh [kM].  If
//      j does not appear in M, then C_to_M [k] = -1.  If M is not hypersparse,
//      then C_to_M is returned as NULL.

// M, A, B: any sparsity structure (hypersparse, sparse, bitmap, or full)
// C: not present here, but its sparsity structure is finalized, via the
// input/output parameter C_sparsity.

#define GB_FREE_WORKSPACE           \
{                                   \
    GB_WERK_POP (Work, int64_t) ;   \
}

#define GB_FREE_ALL                         \
{                                           \
    GB_FREE (&Ch, Ch_size) ;                \
    GB_FREE_WORK (&C_to_M, C_to_M_size) ;   \
    GB_FREE_WORK (&C_to_A, C_to_A_size) ;   \
    GB_FREE_WORK (&C_to_B, C_to_B_size) ;   \
    GB_FREE_WORKSPACE ;                     \
}

#include "GB_add.h"

//------------------------------------------------------------------------------
// GB_allocate_result
//------------------------------------------------------------------------------

static inline bool GB_allocate_result
(
    int64_t Cnvec,
    int64_t *restrict *Ch_handle,        size_t *Ch_size_handle,
    int64_t *restrict *C_to_M_handle,    size_t *C_to_M_size_handle,
    int64_t *restrict *C_to_A_handle,    size_t *C_to_A_size_handle,
    int64_t *restrict *C_to_B_handle,    size_t *C_to_B_size_handle
)
{
    bool ok = true ;
    if (Ch_handle != NULL)
    { 
        (*Ch_handle) = GB_MALLOC (Cnvec, int64_t, Ch_size_handle) ;
        ok = (*Ch_handle != NULL) ;
    }
    if (C_to_M_handle != NULL)
    { 
        (*C_to_M_handle) = GB_MALLOC_WORK (Cnvec, int64_t, C_to_M_size_handle) ;
        ok = ok && (*C_to_M_handle != NULL) ;
    }
    if (C_to_A_handle != NULL)
    { 
        *C_to_A_handle = GB_MALLOC_WORK (Cnvec, int64_t, C_to_A_size_handle) ;
        ok = ok && (*C_to_A_handle != NULL) ;
    }
    if (C_to_B_handle != NULL)
    { 
        *C_to_B_handle = GB_MALLOC_WORK (Cnvec, int64_t, C_to_B_size_handle) ;
        ok = ok && (*C_to_B_handle != NULL) ;
    }
    return (ok) ;
}

//------------------------------------------------------------------------------
// GB_add_phase0:  find the vectors of C for C<M>=A+B
//------------------------------------------------------------------------------

GrB_Info GB_add_phase0          // find vectors in C for C=A+B or C<M>=A+B
(
    int64_t *p_Cnvec,           // # of vectors to compute in C
    int64_t *restrict *Ch_handle,        // Ch: size Cnvec, or NULL
    size_t *Ch_size_handle,                 // size of Ch in bytes
    int64_t *restrict *C_to_M_handle,    // C_to_M: size Cnvec, or NULL
    size_t *C_to_M_size_handle,             // size of C_to_M in bytes
    int64_t *restrict *C_to_A_handle,    // C_to_A: size Cnvec, or NULL
    size_t *C_to_A_size_handle,             // size of C_to_A in bytes
    int64_t *restrict *C_to_B_handle,    // C_to_B: of size Cnvec, or NULL
    size_t *C_to_B_size_handle,             // size of C_to_A in bytes
    bool *p_Ch_is_Mh,           // if true, then Ch == Mh
    int *C_sparsity,            // sparsity structure of C
    const GrB_Matrix M,         // optional mask, may be NULL; not complemented
    const GrB_Matrix A,         // first input matrix
    const GrB_Matrix B,         // second input matrix
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    // M, A, and B can be jumbled for this phase, but not phase1 or phase2

    GrB_Info info ;
    ASSERT (p_Cnvec != NULL) ;
    ASSERT (Ch_handle != NULL) ;
    ASSERT (C_to_A_handle != NULL) ;
    ASSERT (C_to_B_handle != NULL) ;

    ASSERT_MATRIX_OK_OR_NULL (M, "M for add phase0", GB0) ;
    ASSERT (!GB_ZOMBIES (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;        // pattern not accessed
    ASSERT (!GB_PENDING (M)) ;

    ASSERT_MATRIX_OK (A, "A for add phase0", GB0) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (GB_JUMBLED_OK (B)) ;        // pattern not accessed
    ASSERT (!GB_PENDING (A)) ;

    ASSERT_MATRIX_OK (B, "B for add phase0", GB0) ;
    ASSERT (!GB_ZOMBIES (B)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;        // pattern not accessed
    ASSERT (!GB_PENDING (B)) ;

    ASSERT (A->vdim == B->vdim) ;
    ASSERT (A->vlen == B->vlen) ;
    ASSERT (GB_IMPLIES (M != NULL, A->vdim == M->vdim)) ;
    ASSERT (GB_IMPLIES (M != NULL, A->vlen == M->vlen)) ;

    //--------------------------------------------------------------------------
    // initializations
    //--------------------------------------------------------------------------

    (*p_Cnvec) = 0 ;
    (*Ch_handle) = NULL ;
    if (C_to_M_handle != NULL)
    { 
        (*C_to_M_handle) = NULL ;
    }
    (*C_to_A_handle) = NULL ;
    (*C_to_B_handle) = NULL ;
    if (p_Ch_is_Mh != NULL)
    { 
        (*p_Ch_is_Mh) = false ;
    }

    if ((*C_sparsity) == GxB_BITMAP || (*C_sparsity) == GxB_FULL)
    { 
        // nothing to do in phase0 for C bitmap or full
        (*p_Cnvec) = A->vdim ;  // not needed; to be consistent with GB_emult
        return (GrB_SUCCESS) ;
    }

    int64_t *restrict Ch     = NULL ; size_t Ch_size = 0 ;
    int64_t *restrict C_to_M = NULL ; size_t C_to_M_size = 0 ;
    int64_t *restrict C_to_A = NULL ; size_t C_to_A_size = 0 ;
    int64_t *restrict C_to_B = NULL ; size_t C_to_B_size = 0 ;

    GB_WERK_DECLARE (Work, int64_t) ;
    int ntasks = 0 ;

    //--------------------------------------------------------------------------
    // determine the number of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    int nthreads = 1 ;      // nthreads depends on Cnvec, computed below

    //--------------------------------------------------------------------------
    // get content of M, A, and B
    //--------------------------------------------------------------------------

    int64_t Cnvec ;

    int64_t n = A->vdim ;
    int64_t Anvec = A->nvec ;
    int64_t vlen = A->vlen ;
    const int64_t *restrict Ap = A->p ;
    const int64_t *restrict Ah = A->h ;
    bool A_is_hyper = (Ah != NULL) ;

    int64_t Bnvec = B->nvec ;
    const int64_t *restrict Bp = B->p ;
    const int64_t *restrict Bh = B->h ;
    bool B_is_hyper = (Bh != NULL) ;

    int64_t Mnvec = 0 ;
    const int64_t *restrict Mp = NULL ;
    const int64_t *restrict Mh = NULL ;
    bool M_is_hyper = GB_IS_HYPERSPARSE (M) ;
    if (M != NULL)
    { 
        Mnvec = M->nvec ;
        Mp = M->p ;
        Mh = M->h ;
    }

    // For GB_add, if M is present, hypersparse, and not complemented, then C
    // will be hypersparse, and it will have set of vectors as M (Ch == Mh).
    // For GB_masker, Ch is never equal to Mh.
    bool Ch_is_Mh = (p_Ch_is_Mh != NULL) && (M != NULL && M_is_hyper) ;

    //--------------------------------------------------------------------------
    // find the set union of the non-empty vectors of A and B
    //--------------------------------------------------------------------------

    if (Ch_is_Mh)
    {

        //----------------------------------------------------------------------
        // C and M are hypersparse, with the same vectors as the hypersparse M
        //----------------------------------------------------------------------

        (*C_sparsity) = GxB_HYPERSPARSE ;
        ASSERT (M_is_hyper) ;
        Cnvec = Mnvec ;
        nthreads = GB_nthreads (Cnvec, chunk, nthreads_max) ;

        if (!GB_allocate_result (Cnvec,
            &Ch,    &Ch_size,
            NULL,   NULL,
            (A_is_hyper) ? (&C_to_A) : NULL, &C_to_A_size,
            (B_is_hyper) ? (&C_to_B) : NULL, &C_to_B_size))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        // copy Mh into Ch.  Ch is Mh so C_to_M is not needed.
        GB_memcpy (Ch, Mh, Mnvec * sizeof (int64_t), nthreads) ;

        // construct the mapping from C to A and B, if they are hypersparse
        if (A_is_hyper || B_is_hyper)
        {

            // create the A->Y and B->Y hyper_hashes
            GB_OK (GB_hyper_hash_build (A, Context)) ;
            GB_OK (GB_hyper_hash_build (B, Context)) ;

            const int64_t *restrict A_Yp = (A_is_hyper) ? A->Y->p : NULL ;
            const int64_t *restrict A_Yi = (A_is_hyper) ? A->Y->i : NULL ;
            const int64_t *restrict A_Yx = (A_is_hyper) ? A->Y->x : NULL ;
            const int64_t A_hash_bits = (A_is_hyper) ? (A->Y->vdim - 1) : 0 ;

            const int64_t *restrict B_Yp = (B_is_hyper) ? B->Y->p : NULL ;
            const int64_t *restrict B_Yi = (B_is_hyper) ? B->Y->i : NULL ;
            const int64_t *restrict B_Yx = (B_is_hyper) ? B->Y->x : NULL ;
            const int64_t B_hash_bits = (B_is_hyper) ? (B->Y->vdim - 1) : 0 ;

            int64_t k ;
            #pragma omp parallel for num_threads(nthreads) schedule(static)
            for (k = 0 ; k < Cnvec ; k++)
            {
                int64_t j = Ch [k] ;
                if (A_is_hyper)
                { 
                    // C_to_A [k] = kA if Ah [kA] == j and A(:,j) is non-empty
                    int64_t pA, pA_end ;
                    int64_t kA = GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx,
                        A_hash_bits, j, &pA, &pA_end) ;
                    C_to_A [k] = (pA < pA_end) ? kA : -1 ;
                }
                if (B_is_hyper)
                { 
                    // C_to_B [k] = kB if Bh [kB] == j and B(:,j) is non-empty
                    int64_t pB, pB_end ;
                    int64_t kB = GB_hyper_hash_lookup (Bp, B_Yp, B_Yi, B_Yx,
                        B_hash_bits, j, &pB, &pB_end) ;
                    C_to_B [k] = (pB < pB_end) ? kB : -1 ;
                }
            }
        }

    }
    else if (A_is_hyper && B_is_hyper)
    {

        //----------------------------------------------------------------------
        // A and B are hypersparse: C will be hypersparse
        //----------------------------------------------------------------------

        // Ch is the set union of Ah and Bh.  This is handled with a parallel
        // merge, since Ah and Bh are both sorted lists.

        (*C_sparsity) = GxB_HYPERSPARSE ;

        //----------------------------------------------------------------------
        // create the tasks to construct Ch
        //----------------------------------------------------------------------

        double work = GB_IMIN (Anvec + Bnvec, n) ;
        nthreads = GB_nthreads (work, chunk, nthreads_max) ;

        ntasks = (nthreads == 1) ? 1 : (64 * nthreads) ;
        ntasks = GB_IMIN (ntasks, work) ;

        // allocate workspace
        GB_WERK_PUSH (Work, 3*(ntasks+1), int64_t) ;
        if (Work == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }
        int64_t *restrict kA_start = Work ;
        int64_t *restrict kB_start = Work + (ntasks+1) ;
        int64_t *restrict kC_start = Work + (ntasks+1)*2 ;

        kA_start [0] = (Anvec == 0) ? -1 : 0 ;
        kB_start [0] = (Bnvec == 0) ? -1 : 0 ;
        kA_start [ntasks] = (Anvec == 0) ? -1 : Anvec ;
        kB_start [ntasks] = (Bnvec == 0) ? -1 : Bnvec ;

        for (int taskid = 1 ; taskid < ntasks ; taskid++)
        { 
            // create tasks: A and B are both hyper
            double target_work = ((ntasks-taskid) * work) / ntasks ;
            GB_slice_vector (NULL, NULL,
                &(kA_start [taskid]), &(kB_start [taskid]),
                0, 0, NULL,                 // Mi not present
                0, Anvec, Ah,               // Ah, explicit list
                0, Bnvec, Bh,               // Bh, explicit list
                n,                          // Ah and Bh have dimension n
                target_work) ;
        }

        //----------------------------------------------------------------------
        // count the entries in Ch for each task
        //----------------------------------------------------------------------

        int taskid ;
        #pragma omp parallel for num_threads(nthreads) schedule (dynamic,1)
        for (taskid = 0 ; taskid < ntasks ; taskid++)
        {
            // merge Ah and Bh into Ch
            int64_t kA = kA_start [taskid] ;
            int64_t kB = kB_start [taskid] ;
            int64_t kA_end = kA_start [taskid+1] ;
            int64_t kB_end = kB_start [taskid+1] ;
            int64_t kC = 0 ;
            for ( ; kA < kA_end && kB < kB_end ; kC++)
            {
                int64_t jA = Ah [kA] ;
                int64_t jB = Bh [kB] ;
                if (jA < jB)
                { 
                    // jA appears in A but not B
                    kA++ ;
                }
                else if (jB < jA)
                { 
                    // jB appears in B but not A
                    kB++ ;
                }
                else
                { 
                    // j = jA = jB appears in both A and B
                    kA++ ;
                    kB++ ;
                }
            }
            kC_start [taskid] = kC + (kA_end - kA) + (kB_end - kB) ;
        }

        //----------------------------------------------------------------------
        // cumulative sum of entries in Ch for each task
        //----------------------------------------------------------------------

        GB_cumsum (kC_start, ntasks, NULL, 1, NULL) ;
        Cnvec = kC_start [ntasks] ;

        //----------------------------------------------------------------------
        // allocate the result: Ch and the mappings C_to_[MAB]
        //----------------------------------------------------------------------

        // C will be hypersparse, so Ch is allocated.  The mask M is ignored
        // for computing Ch.  Ch is the set union of Ah and Bh.

        if (!GB_allocate_result (Cnvec,
            &Ch,    &Ch_size,
            (M_is_hyper) ? (&C_to_M) : NULL, &C_to_M_size,
            &C_to_A, &C_to_A_size,
            &C_to_B, &C_to_B_size))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // compute the result: Ch and the mappings C_to_[AB]
        //----------------------------------------------------------------------

        #pragma omp parallel for num_threads(nthreads) schedule (dynamic,1)
        for (taskid = 0 ; taskid < ntasks ; taskid++)
        {
            // merge Ah and Bh into Ch
            int64_t kA = kA_start [taskid] ;
            int64_t kB = kB_start [taskid] ;
            int64_t kC = kC_start [taskid] ;
            int64_t kA_end = kA_start [taskid+1] ;
            int64_t kB_end = kB_start [taskid+1] ;

            // merge Ah and Bh into Ch
            for ( ; kA < kA_end && kB < kB_end ; kC++)
            {
                int64_t jA = Ah [kA] ;
                int64_t jB = Bh [kB] ;
                if (jA < jB)
                { 
                    // append jA to Ch
                    Ch     [kC] = jA ;
                    C_to_A [kC] = kA++ ;
                    C_to_B [kC] = -1 ;       // jA does not appear in B
                }
                else if (jB < jA)
                { 
                    // append jB to Ch
                    Ch     [kC] = jB ;
                    C_to_A [kC] = -1 ;       // jB does not appear in A
                    C_to_B [kC] = kB++ ;
                }
                else
                { 
                    // j appears in both A and B; append it to Ch
                    Ch     [kC] = jA ;
                    C_to_A [kC] = kA++ ;
                    C_to_B [kC] = kB++ ;
                }
            }
            if (kA < kA_end)
            {
                // B is exhausted but A is not
                for ( ; kA < kA_end ; kA++, kC++)
                { 
                    // append jA to Ch
                    int64_t jA = Ah [kA] ;
                    Ch     [kC] = jA ;
                    C_to_A [kC] = kA ;
                    C_to_B [kC] = -1 ;
                }
            }
            else if (kB < kB_end)
            {
                // A is exhausted but B is not
                for ( ; kB < kB_end ; kB++, kC++)
                { 
                    // append jB to Ch
                    int64_t jB = Bh [kB] ;
                    Ch     [kC] = jB ;
                    C_to_A [kC] = -1 ;
                    C_to_B [kC] = kB ;
                }
            }
            ASSERT (kC == kC_start [taskid+1]) ;
        }

        //----------------------------------------------------------------------
        // check result via a sequential merge
        //----------------------------------------------------------------------

        #ifdef GB_DEBUG
        // merge Ah and Bh into Ch
        int64_t kA = 0 ;
        int64_t kB = 0 ;
        int64_t kC = 0 ;
        for ( ; kA < Anvec && kB < Bnvec ; kC++)
        {
            int64_t jA = Ah [kA] ;
            int64_t jB = Bh [kB] ;
            if (jA < jB)
            {
                // append jA to Ch
                ASSERT (Ch     [kC] == jA) ;
                ASSERT (C_to_A [kC] == kA) ; kA++ ;
                ASSERT (C_to_B [kC] == -1) ;      // jA does not appear in B
            }
            else if (jB < jA)
            {
                // append jB to Ch
                ASSERT (Ch     [kC] == jB) ;
                ASSERT (C_to_A [kC] == -1) ;       // jB does not appear in A
                ASSERT (C_to_B [kC] == kB) ; kB++ ;
            }
            else
            {
                // j appears in both A and B; append it to Ch
                ASSERT (Ch     [kC] == jA) ;
                ASSERT (C_to_A [kC] == kA) ; kA++ ;
                ASSERT (C_to_B [kC] == kB) ; kB++ ;
            }
        }
        if (kA < Anvec)
        {
            // B is exhausted but A is not
            for ( ; kA < Anvec ; kA++, kC++)
            {
                // append jA to Ch
                int64_t jA = Ah [kA] ;
                ASSERT (Ch     [kC] == jA) ;
                ASSERT (C_to_A [kC] == kA) ;
                ASSERT (C_to_B [kC] == -1) ;
            }
        }
        else if (kB < Bnvec)
        {
            // A is exhausted but B is not
            for ( ; kB < Bnvec ; kB++, kC++)
            {
                // append jB to Ch
                int64_t jB = Bh [kB] ;
                ASSERT (Ch     [kC] == jB) ;
                ASSERT (C_to_A [kC] == -1) ;
                ASSERT (C_to_B [kC] == kB) ;
            }
        }
        ASSERT (kC == Cnvec) ;
        #endif

    }
    else if (A_is_hyper && !B_is_hyper)
    {

        //----------------------------------------------------------------------
        // A is hypersparse, B is not hypersparse
        //----------------------------------------------------------------------

        // C will be sparse.  Construct the C_to_A mapping.

        Cnvec = n ;
        nthreads = GB_nthreads (Cnvec, chunk, nthreads_max) ;

        if (!GB_allocate_result (Cnvec,
            NULL, NULL,
            (M_is_hyper) ? (&C_to_M) : NULL, &C_to_M_size,
            &C_to_A, &C_to_A_size,
            NULL, NULL))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        int64_t j ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (j = 0 ; j < n ; j++)
        { 
            C_to_A [j] = -1 ;
        }

        // scatter Ah into C_to_A
        int64_t kA ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (kA = 0 ; kA < Anvec ; kA++)
        { 
            int64_t jA = Ah [kA] ;
            C_to_A [jA] = kA ;
        }

    }
    else if (!A_is_hyper && B_is_hyper)
    {

        //----------------------------------------------------------------------
        // A is not hypersparse, B is hypersparse
        //----------------------------------------------------------------------

        // C will be sparse.  Construct the C_to_B mapping.

        Cnvec = n ;
        nthreads = GB_nthreads (Cnvec, chunk, nthreads_max) ;

        if (!GB_allocate_result (Cnvec,
            NULL, NULL,
            (M_is_hyper) ? (&C_to_M) : NULL, &C_to_M_size,
            NULL, NULL,
            &C_to_B, &C_to_B_size))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        int64_t j ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (j = 0 ; j < n ; j++)
        { 
            C_to_B [j] = -1 ;
        }

        // scatter Bh into C_to_B
        int64_t kB ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (kB = 0 ; kB < Bnvec ; kB++)
        { 
            int64_t jB = Bh [kB] ;
            C_to_B [jB] = kB ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // A and B are both non-hypersparse
        //----------------------------------------------------------------------

        // C will be sparse
        Cnvec = n ;
        nthreads = GB_nthreads (Cnvec, chunk, nthreads_max) ;

        if (!GB_allocate_result (Cnvec,
            NULL, NULL,
            (M_is_hyper) ? (&C_to_M) : NULL, &C_to_M_size,
            NULL, NULL,
            NULL, NULL))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }
    }

    //--------------------------------------------------------------------------
    // construct C_to_M if needed, if M is hypersparse
    //--------------------------------------------------------------------------

    if (C_to_M != NULL)
    {
        ASSERT (M_is_hyper) ;
        if (Ch != NULL)
        {
            // C is hypersparse

            // create the M->Y hyper_hash
            GB_OK (GB_hyper_hash_build (M, Context)) ;

            const int64_t *restrict M_Yp = M->Y->p ;
            const int64_t *restrict M_Yi = M->Y->i ;
            const int64_t *restrict M_Yx = M->Y->x ;
            const int64_t M_hash_bits = M->Y->vdim - 1 ;

            int64_t k ;
            #pragma omp parallel for num_threads(nthreads) schedule(static)
            for (k = 0 ; k < Cnvec ; k++)
            { 
                int64_t j = Ch [k] ;
                // C_to_M [k] = kM if Mh [kM] == j and M(:,j) is non-empty
                int64_t pM, pM_end ;
                int64_t kM = GB_hyper_hash_lookup (Mp, M_Yp, M_Yi, M_Yx,
                    M_hash_bits, j, &pM, &pM_end) ;
                C_to_M [k] = (pM < pM_end) ? kM : -1 ;
            }
        }
        else
        {
            // C is sparse
            int64_t j ;
            #pragma omp parallel for num_threads(nthreads) schedule(static)
            for (j = 0 ; j < n ; j++)
            { 
                C_to_M [j] = -1 ;
            }
            // scatter Mh into C_to_M
            int64_t kM ;
            #pragma omp parallel for num_threads(nthreads) schedule(static)
            for (kM = 0 ; kM < Mnvec ; kM++)
            { 
                int64_t jM = Mh [kM] ;
                C_to_M [jM] = kM ;
            }
        }
    }

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    (*p_Cnvec) = Cnvec ;
    (*Ch_handle) = Ch ;             (*Ch_size_handle) = Ch_size ;
    if (C_to_M_handle != NULL)
    { 
        (*C_to_M_handle) = C_to_M ; (*C_to_M_size_handle) = C_to_M_size ;
    }
    (*C_to_A_handle) = C_to_A ;     (*C_to_A_size_handle) = C_to_A_size ;
    (*C_to_B_handle) = C_to_B ;     (*C_to_B_size_handle) = C_to_B_size ;
    if (p_Ch_is_Mh != NULL)
    { 
        // return Ch_is_Mh to GB_add.  For GB_masker, Ch is never Mh.
        (*p_Ch_is_Mh) = Ch_is_Mh ;
    }

    //--------------------------------------------------------------------------
    // The code below describes what the output contains:
    //--------------------------------------------------------------------------

    #ifdef GB_DEBUG
    // the mappings are only constructed when C is sparse or hypersparse
    ASSERT ((*C_sparsity) == GxB_SPARSE || (*C_sparsity) == GxB_HYPERSPARSE) ;
    ASSERT (A != NULL) ;        // A and B are always present
    ASSERT (B != NULL) ;
    int64_t jlast = -1 ;
    for (int64_t k = 0 ; k < Cnvec ; k++)
    {

        // C(:,j) is in the list, as the kth vector
        int64_t j ;
        if (Ch == NULL)
        {
            // C will be constructed as sparse
            ASSERT ((*C_sparsity) == GxB_SPARSE) ;
            j = k ;
        }
        else
        {
            // C will be constructed as hypersparse
            ASSERT ((*C_sparsity) == GxB_HYPERSPARSE) ;
            j = Ch [k] ;
        }

        // vectors j in Ch are sorted, and in the range 0:n-1
        ASSERT (j >= 0 && j < n) ;
        ASSERT (j > jlast) ;
        jlast = j ;

        // see if A (:,j) exists
        if (C_to_A != NULL)
        {
            // A is hypersparse
            ASSERT (A_is_hyper) ;
            int64_t kA = C_to_A [k] ;
            ASSERT (kA >= -1 && kA < A->nvec) ;
            if (kA >= 0)
            {
                int64_t jA = A->h [kA] ;
                ASSERT (j == jA) ;
            }
        }
        else
        {
            // A is not hypersparse
            // C_to_A exists only if A is hypersparse
            ASSERT (!A_is_hyper) ;
        }

        // see if B (:,j) exists
        if (C_to_B != NULL)
        {
            // B is hypersparse
            ASSERT (B_is_hyper) ;
            int64_t kB = C_to_B [k] ;
            ASSERT (kB >= -1 && kB < B->nvec) ;
            if (kB >= 0)
            {
                int64_t jB = B->h [kB] ;
                ASSERT (j == jB) ;
            }
        }
        else
        {
            // B is not hypersparse
            // C_to_B exists only if B is hypersparse
            ASSERT (!B_is_hyper) ;
        }

        // see if M (:,j) exists
        if (Ch_is_Mh)
        {
            // Ch is the same as Mh
            ASSERT (M != NULL) ;
            ASSERT (M_is_hyper) ;
            ASSERT (Ch != NULL && M->h != NULL && Ch [k] == M->h [k]) ;
            ASSERT (C_to_M == NULL) ;
        }
        else if (C_to_M != NULL)
        {
            // M is present and hypersparse
            ASSERT (M != NULL) ;
            ASSERT (M_is_hyper) ;
            int64_t kM = C_to_M [k] ;
            ASSERT (kM >= -1 && kM < M->nvec) ;
            if (kM >= 0)
            {
                int64_t jM = M->h [kM] ;
                ASSERT (j == jM) ;
            }
        }
        else
        {
            // M is not present, or present and sparse, bitmap or full
            ASSERT (M == NULL || !M_is_hyper) ;
        }
    }
    #endif

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    return (GrB_SUCCESS) ;
}