File: GB_add_phase2.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (533 lines) | stat: -rw-r--r-- 21,099 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
//------------------------------------------------------------------------------
// GB_add_phase2: C=A+B or C<M>=A+B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// GB_add_phase2 computes C=A+B, C<M>=A+B, or C<!M>A+B.  It is preceded first
// by GB_add_phase0, which computes the list of vectors of C to compute (Ch)
// and their location in A and B (C_to_[AB]).  Next, GB_add_phase1 counts the
// entries in each vector C(:,j) and computes Cp.

// GB_add_phase2 computes the pattern and values of each vector of C(:,j),
// entirely in parallel.

// C, M, A, and B can be standard sparse or hypersparse, as determined by
// GB_add_phase0.  The mask can be either: not present, or present and
// not complemented.  The complemented mask is handled in most cases,
// except when C, M, A, and B are all sparse or hypersparse.

// This function either frees Cp and Ch, or transplants then into C, as C->p
// and C->h.  Either way, the caller must not free them.

// op may be NULL.  In this case, the intersection of A and B must be empty.
// This is used by GB_wait only, for merging the pending tuple matrix T into A.
// In this case, C is always sparse or hypersparse, not bitmap or full.

#include "GB_add.h"
#include "GB_binop.h"
#include "GB_unused.h"
#include "GB_ek_slice.h"
#include "GB_stringify.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif

#undef  GB_FREE_WORKSPACE
#define GB_FREE_WORKSPACE                   \
{                                           \
    GB_WERK_POP (B_ek_slicing, int64_t) ;   \
    GB_WERK_POP (A_ek_slicing, int64_t) ;   \
    GB_WERK_POP (M_ek_slicing, int64_t) ;   \
}

#undef  GB_FREE_ALL
#define GB_FREE_ALL                 \
{                                   \
    GB_FREE_WORKSPACE ;             \
    GB_phybix_free (C) ;            \
}

GrB_Info GB_add_phase2      // C=A+B, C<M>=A+B, or C<!M>=A+B
(
    GrB_Matrix C,           // output matrix, static header
    const GrB_Type ctype,   // type of output matrix C
    const bool C_is_csc,    // format of output matrix C
    const GrB_BinaryOp op,  // op to perform C = op (A,B), or NULL if no op
    // from phase1:
    int64_t **Cp_handle,    // vector pointers for C
    size_t Cp_size,
    const int64_t Cnvec_nonempty,   // # of non-empty vectors in C
    // tasks from phase1a:
    const GB_task_struct *restrict TaskList,    // array of structs
    const int C_ntasks,         // # of tasks
    const int C_nthreads,       // # of threads to use
    // analysis from phase0:
    const int64_t Cnvec,
    int64_t **Ch_handle,
    size_t Ch_size,
    const int64_t *restrict C_to_M,
    const int64_t *restrict C_to_A,
    const int64_t *restrict C_to_B,
    const bool Ch_is_Mh,        // if true, then Ch == M->h
    const int C_sparsity,
    // original input:
    const GrB_Matrix M,         // optional mask, may be NULL
    const bool Mask_struct,     // if true, use the only structure of M
    const bool Mask_comp,       // if true, use !M
    const GrB_Matrix A,
    const GrB_Matrix B,
    const bool is_eWiseUnion,   // if true, eWiseUnion, else eWiseAdd
    const GrB_Scalar alpha,     // alpha and beta ignored for eWiseAdd,
    const GrB_Scalar beta,      // nonempty scalars for GxB_eWiseUnion
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
    ASSERT_BINARYOP_OK_OR_NULL (op, "op for add phase2", GB0) ;
    ASSERT_MATRIX_OK (A, "A for add phase2", GB0) ;
    ASSERT_MATRIX_OK (B, "B for add phase2", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (M, "M for add phase2", GB0) ;
    ASSERT (A->vdim == B->vdim) ;

    ASSERT (!GB_JUMBLED (M)) ;
    ASSERT (!GB_JUMBLED (A)) ;
    ASSERT (!GB_JUMBLED (B)) ;

    GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
    GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
    GB_WERK_DECLARE (B_ek_slicing, int64_t) ;

    ASSERT (Cp_handle != NULL) ;
    ASSERT (Ch_handle != NULL) ;
    int64_t *restrict Cp = (*Cp_handle) ;
    int64_t *restrict Ch = (*Ch_handle) ;

    //--------------------------------------------------------------------------
    // get the opcode
    //--------------------------------------------------------------------------

    bool C_is_hyper = (C_sparsity == GxB_HYPERSPARSE) ;
    bool C_is_sparse_or_hyper = (C_sparsity == GxB_SPARSE) || C_is_hyper ;
    ASSERT (C_is_sparse_or_hyper == (Cp != NULL)) ;
    ASSERT (C_is_hyper == (Ch != NULL)) ;

    GB_Opcode opcode = (op == NULL) ? GB_NOP_code : op->opcode ;
    bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
    bool op_is_first  = (opcode == GB_FIRST_binop_code) ;
    bool op_is_second = (opcode == GB_SECOND_binop_code) ;
    bool op_is_pair   = (opcode == GB_PAIR_binop_code) ;

#ifdef GB_DEBUG
    if (op == NULL)
    {
        // GB_wait does no typecasting.  A and T have the same type when
        // computing A=A+T, and no operator is used since A and T have disjoint
        // nonzero patterns.  No mask is used.
        ASSERT (ctype == A->type) ;
        ASSERT (ctype == B->type) ;
        ASSERT (M == NULL) ;
        ASSERT (C_is_sparse_or_hyper) ;
    }
    else
    {
        // assert that the op is compatible with A, B, and C
        if (!(GB_as_if_full (A) && GB_as_if_full (B)))
        {
            // eWiseMult uses GB_add when A and B are both as-if-full,
            // and in this case, the entries of A and B are never typecasted
            // directly to C.
            ASSERT (GB_Type_compatible (ctype, A->type)) ;
            ASSERT (GB_Type_compatible (ctype, B->type)) ;
        }
        ASSERT (GB_Type_compatible (ctype, op->ztype)) ;
        ASSERT (GB_IMPLIES (!(op_is_second || op_is_pair || op_is_positional),
                GB_Type_compatible (A->type, op->xtype))) ;
        ASSERT (GB_IMPLIES (!(op_is_first  || op_is_pair || op_is_positional),
                GB_Type_compatible (B->type, op->ytype))) ;
    }
#endif

    //--------------------------------------------------------------------------
    // get the typecasting functions
    //--------------------------------------------------------------------------

    GxB_binary_function fadd ;
    size_t asize, bsize, xsize, ysize, zsize ;
    GB_cast_function cast_A_to_C = NULL, cast_B_to_C = NULL ;
    GB_cast_function cast_A_to_X, cast_B_to_Y, cast_Z_to_C ;
    const size_t csize = ctype->size ;
    GB_Type_code ccode = ctype->code ;

    if (op == NULL)
    { 
        // GB_wait: implicit GB_SECOND_[type] operator with no typecasting
        ASSERT (!is_eWiseUnion) ;
        fadd = NULL ;               // the operator is not called
        asize = csize ;
        bsize = csize ;
        xsize = csize ;
        ysize = csize ;
        zsize = csize ;
        cast_A_to_X = GB_copy_user_user ;
        cast_B_to_Y = GB_copy_user_user ;
        cast_A_to_C = GB_copy_user_user ;
        cast_B_to_C = GB_copy_user_user ;
        cast_Z_to_C = GB_copy_user_user ;
    }
    else
    {
        // normal case, with optional typecasting
        fadd = op->binop_function ;       // NULL if op is positional
        asize = A->type->size ;
        bsize = B->type->size ;

        if (op_is_second || op_is_pair || op_is_positional)
        { 
            // the op does not depend on the value of A(i,j)
            xsize = 1 ;
            cast_A_to_X = NULL ;
        }
        else
        { 
            xsize = op->xtype->size ;
            cast_A_to_X = GB_cast_factory (op->xtype->code, A->type->code) ;
        }

        if (op_is_first || op_is_pair || op_is_positional)
        { 
            // the op does not depend on the value of B(i,j)
            ysize = 1 ;
            cast_B_to_Y = NULL ;
        }
        else
        { 
            ysize = op->ytype->size ;
            cast_B_to_Y = GB_cast_factory (op->ytype->code, B->type->code) ;
        }

        zsize = op->ztype->size ;
        if (!is_eWiseUnion)
        { 
            // typecasting for eWiseAdd only
            cast_A_to_C = GB_cast_factory (ccode, A->type->code) ;
            cast_B_to_C = GB_cast_factory (ccode, B->type->code) ;
        }
        cast_Z_to_C = GB_cast_factory (ccode, op->ztype->code) ;
    }

    //--------------------------------------------------------------------------
    // cast the alpha and beta scalars, if present
    //--------------------------------------------------------------------------

    GB_void alpha_scalar [GB_VLA(xsize)] ;
    GB_void beta_scalar  [GB_VLA(ysize)] ;
    if (is_eWiseUnion)
    { 
        // alpha_scalar = (xtype) alpha
        ASSERT (alpha != NULL) ;
        GB_cast_scalar (alpha_scalar, op->xtype->code, alpha->x, 
            alpha->type->code, alpha->type->size) ;
        // beta_scalar = (ytype) beta
        ASSERT (beta != NULL) ;
        GB_cast_scalar (beta_scalar, op->ytype->code, beta->x,
            beta->type->code, beta->type->size) ;
    }

    //--------------------------------------------------------------------------
    // check if C is iso and compute its iso value if it is
    //--------------------------------------------------------------------------

    GB_void cscalar [GB_VLA(csize)] ;
    bool C_iso = GB_iso_add (cscalar, ctype, A, alpha_scalar,
        B, beta_scalar, op, is_eWiseUnion) ;

    #ifdef GB_DEBUGIFY_DEFN
    GB_debugify_ewise (C_iso, C_sparsity, ctype, M,
        Mask_struct, Mask_comp, op, false, A, B) ;
    #endif

    //--------------------------------------------------------------------------
    // allocate the output matrix C: hypersparse, sparse, bitmap, or full
    //--------------------------------------------------------------------------

    // C is hypersparse if both A and B are (contrast with GrB_Matrix_emult),
    // or if M is present, not complemented, and hypersparse.
    // C acquires the same hyperatio as A.

    int64_t cnz = (C_is_sparse_or_hyper) ? (Cp [Cnvec]) : GB_nnz_full (A) ;

    // allocate the result C (but do not allocate C->p or C->h)
    // set C->iso = C_iso   OK
    GrB_Info info = GB_new_bix (&C, // any sparsity, existing header
        ctype, A->vlen, A->vdim, GB_Ap_null, C_is_csc,
        C_sparsity, true, A->hyper_switch, Cnvec, cnz, true, C_iso, Context) ;
    if (info != GrB_SUCCESS)
    { 
        // out of memory; caller must free C_to_M, C_to_A, C_to_B
        GB_FREE_ALL ;
        GB_FREE (Cp_handle, Cp_size) ;
        GB_FREE (Ch_handle, Ch_size) ;
        return (info) ;
    }

    // add Cp as the vector pointers for C, from GB_add_phase1
    if (C_is_sparse_or_hyper)
    { 
        C->nvec_nonempty = Cnvec_nonempty ;
        C->p = (int64_t *) Cp ; C->p_size = Cp_size ;
        (*Cp_handle) = NULL ;
        C->nvals = cnz ;
    }

    // add Ch as the hypersparse list for C, from GB_add_phase0
    if (C_is_hyper)
    { 
        C->h = (int64_t *) Ch ; C->h_size = Ch_size ;
        C->nvec = Cnvec ;
        (*Ch_handle) = NULL ;
    }

    // now Cp and Ch have been transplanted into C
    ASSERT ((*Cp_handle) == NULL) ;
    ASSERT ((*Ch_handle) == NULL) ;
    C->magic = GB_MAGIC ;

    //--------------------------------------------------------------------------
    // using a built-in binary operator (except for positional operators)
    //--------------------------------------------------------------------------

    #define GB_PHASE_2_OF_2

    bool done = false ;

    if (C_iso)
    { 

        //----------------------------------------------------------------------
        // C is iso
        //----------------------------------------------------------------------

        // Cx [0] = cscalar = op (A,B)
        GB_BURBLE_MATRIX (C, "(iso add) ") ;
        memcpy (C->x, cscalar, csize) ;

        // pattern of C = set union of pattern of A and B
        #define GB_ISO_ADD
        #define GB_PRAGMA_SIMD_VECTORIZE GB_PRAGMA_SIMD
        #include "GB_add_template.c"
        done = true ;

    }
    else
    {

        //----------------------------------------------------------------------
        // C is non-iso
        //----------------------------------------------------------------------

        #ifndef GBCUDA_DEV

            //------------------------------------------------------------------
            // define the worker for the switch factory
            //------------------------------------------------------------------

            #define GB_AaddB(mult,xname) GB (_AaddB_ ## mult ## xname)

            #define GB_BINOP_WORKER(mult,xname)                             \
            {                                                               \
                info = GB_AaddB(mult,xname) (C, C_sparsity,                 \
                    M, Mask_struct, Mask_comp,                              \
                    A, B, is_eWiseUnion, alpha_scalar, beta_scalar,         \
                    Ch_is_Mh, C_to_M, C_to_A, C_to_B,                       \
                    TaskList, C_ntasks, C_nthreads, Context) ;              \
                done = (info != GrB_NO_VALUE) ;                             \
            }                                                               \
            break ;

            //------------------------------------------------------------------
            // launch the switch factory
            //------------------------------------------------------------------

            GB_Type_code xcode, ycode, zcode ;
            if (!op_is_positional &&
                GB_binop_builtin (A->type, false, B->type, false,
                op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
            { 
                #include "GB_binop_factory.c"
            }

            // TODO: M, A, and B can be sliced before calling the worker, then
            // the worker can't run out of memory. Then pass in the ek_slice
            // arrays to the worker.
            if (info == GrB_OUT_OF_MEMORY)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (info) ;
            }

        #endif
    }

    //--------------------------------------------------------------------------
    // generic worker for positional ops, user-defined ops, and typecasting
    //--------------------------------------------------------------------------

    if (!done)
    {
        GB_BURBLE_MATRIX (C, "(generic add: %s) ",
            (op == NULL) ? "2nd" : op->name) ;

        // C(i,j) = (ctype) A(i,j), located in Ax [pA]
        #undef  GB_COPY_A_TO_C 
        #define GB_COPY_A_TO_C(cij,Ax,pA,A_iso)                             \
            cast_A_to_C (cij, Ax +((A_iso) ? 0: (pA)*asize), asize) ;

        // C(i,j) = (ctype) B(i,j), located in Bx [pB]
        #undef  GB_COPY_B_TO_C
        #define GB_COPY_B_TO_C(cij,Bx,pB,B_iso)                             \
            cast_B_to_C (cij, Bx +((B_iso) ? 0: (pB)*bsize), bsize) ;

        // aij = (xtype) A(i,j), located in Ax [pA]
        #undef  GB_GETA
        #define GB_GETA(aij,Ax,pA,A_iso)                                    \
            GB_void aij [GB_VLA(xsize)] ;                                   \
            if (cast_A_to_X != NULL)                                        \
            {                                                               \
                cast_A_to_X (aij, Ax +((A_iso) ? 0:(pA)*asize), asize) ;    \
            }

        // bij = (ytype) B(i,j), located in Bx [pB]
        #undef  GB_GETB
        #define GB_GETB(bij,Bx,pB,B_iso)                                    \
            GB_void bij [GB_VLA(ysize)] ;                                   \
            if (cast_B_to_Y != NULL)                                        \
            {                                                               \
                cast_B_to_Y (bij, Bx +((B_iso) ? 0:(pB)*bsize), bsize) ;    \
            }

        // address of Cx [p]
        #undef  GB_CX
        #define GB_CX(p) Cx +((p)*csize)

        // loops cannot be vectorized
        #undef  GB_PRAGMA_SIMD_VECTORIZE
        #define GB_PRAGMA_SIMD_VECTORIZE ;

        #define GB_ATYPE GB_void
        #define GB_BTYPE GB_void
        #define GB_CTYPE GB_void

        if (op_is_positional)
        {

            //------------------------------------------------------------------
            // C(i,j) = positional_op (aij, bij)
            //------------------------------------------------------------------

            int64_t offset = GB_positional_offset (opcode, NULL) ;
            #define GB_POSITIONAL_OP

            if (op->ztype == GrB_INT64)
            { 
                switch (opcode)
                {
                    case GB_FIRSTI_binop_code    : // first_i(A(i,j),y) == i
                    case GB_FIRSTI1_binop_code   : // first_i1(A(i,j),y) == i+1
                    case GB_SECONDI_binop_code   : // second_i(x,A(i,j)) == i
                    case GB_SECONDI1_binop_code  : // second_i1(x,A(i,j)) == i+1
                        #undef  GB_BINOP
                        #define GB_BINOP(cij, aij, bij, i, j)   \
                            int64_t z = i + offset ;            \
                            cast_Z_to_C (cij, &z, csize) ;
                        #include "GB_add_template.c"
                        break ;
                    case GB_FIRSTJ_binop_code    : // first_j(A(i,j),y) == j
                    case GB_FIRSTJ1_binop_code   : // first_j1(A(i,j),y) == j+1
                    case GB_SECONDJ_binop_code   : // second_j(x,A(i,j)) == j
                    case GB_SECONDJ1_binop_code  : // second_j1(x,A(i,j)) == j+1
                        #undef  GB_BINOP
                        #define GB_BINOP(cij, aij, bij, i, j)   \
                            int64_t z = j + offset ;            \
                            cast_Z_to_C (cij, &z, csize) ;
                        #include "GB_add_template.c"
                        break ;
                    default: ;
                }
            }
            else
            { 
                switch (opcode)
                {
                    case GB_FIRSTI_binop_code    : // first_i(A(i,j),y) == i
                    case GB_FIRSTI1_binop_code   : // first_i1(A(i,j),y) == i+1
                    case GB_SECONDI_binop_code   : // second_i(x,A(i,j)) == i
                    case GB_SECONDI1_binop_code  : // second_i1(x,A(i,j)) == i+1
                        #undef  GB_BINOP
                        #define GB_BINOP(cij, aij, bij, i, j)       \
                            int32_t z = (int32_t) (i + offset) ;    \
                            cast_Z_to_C (cij, &z, csize) ;
                        #include "GB_add_template.c"
                        break ;
                    case GB_FIRSTJ_binop_code    : // first_j(A(i,j),y) == j
                    case GB_FIRSTJ1_binop_code   : // first_j1(A(i,j),y) == j+1
                    case GB_SECONDJ_binop_code   : // second_j(x,A(i,j)) == j
                    case GB_SECONDJ1_binop_code  : // second_j1(x,A(i,j)) == j+1
                        #undef  GB_BINOP
                        #define GB_BINOP(cij, aij, bij, i, j)       \
                            int32_t z = (int32_t) (j + offset) ;    \
                            cast_Z_to_C (cij, &z, csize) ;
                        #include "GB_add_template.c"
                        break ;
                    default: ;
                }
            }

        }
        else
        { 

            //------------------------------------------------------------------
            // standard binary operator
            //------------------------------------------------------------------

            #undef GB_POSITIONAL_OP

            // C(i,j) = (ctype) (A(i,j) + B(i,j))
            // not used if op is null since the intersection of A and B is empty
            #undef  GB_BINOP
            #define GB_BINOP(cij, aij, bij, i, j)   \
                ASSERT (op != NULL) ;               \
                GB_void z [GB_VLA(zsize)] ;         \
                fadd (z, aij, bij) ;                \
                cast_Z_to_C (cij, z, csize) ;

            #include "GB_add_template.c"
        }
    }

    //--------------------------------------------------------------------------
    // remove empty vectors from C, if hypersparse
    //--------------------------------------------------------------------------

    GB_OK (GB_hypermatrix_prune (C, Context)) ;

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    // caller must free C_to_M, C_to_A, and C_to_B, but not Cp or Ch
    GB_FREE_WORKSPACE ;
    ASSERT_MATRIX_OK (C, "C output for add phase2", GB0) ;
    return (GrB_SUCCESS) ;
}