1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
//------------------------------------------------------------------------------
// GB_apply: apply a unary operator; optionally transpose a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C<M> = accum (C, op(A)) or accum (C, op(A)')
// GB_apply does the work for GrB_*_apply, including the binary op variants.
#define GB_FREE_ALL ;
#include "GB_apply.h"
#include "GB_binop.h"
#include "GB_transpose.h"
#include "GB_accum_mask.h"
#include "GB_scalar.h"
GrB_Info GB_apply // C<M> = accum (C, op(A)) or op(A')
(
GrB_Matrix C, // input/output matrix for results
const bool C_replace, // C descriptor
const GrB_Matrix M, // optional mask for C, unused if NULL
const bool Mask_comp, // M descriptor
const bool Mask_struct, // if true, use the only structure of M
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GB_Operator op_in, // unary/idxunop/binop to apply
const GrB_Scalar scalar_in, // scalar to bind to binop, or thunk
bool binop_bind1st, // if true, binop(x,A) else binop(A,y)
const GrB_Matrix A, // first or 2nd input: matrix A
bool A_transpose, // A matrix descriptor
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
// C may be aliased with M and/or A
struct GB_Matrix_opaque T_header ;
GrB_Matrix T = NULL ;
GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
GB_RETURN_IF_NULL_OR_FAULTY (op_in) ;
ASSERT_MATRIX_OK (C, "C input for GB_apply", GB0) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for GB_apply", GB0) ;
ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for GB_apply", GB0) ;
ASSERT_MATRIX_OK (A, "A input for GB_apply", GB0) ;
ASSERT_OP_OK (op_in, "op for GB_apply", GB0) ;
GB_Operator op = op_in ;
GB_Opcode opcode = op->opcode ;
GrB_Type T_type = op->ztype ;
GrB_Scalar scalar = (GrB_Scalar) scalar_in ;
bool op_is_unop = GB_IS_UNARYOP_CODE (opcode) ;
bool op_is_binop = GB_IS_BINARYOP_CODE (opcode) ;
bool op_is_idxunop = GB_IS_INDEXUNARYOP_CODE (opcode) ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
struct GB_Scalar_opaque Thunk_header ;
int64_t ithunk = 0 ;
if (op_is_unop)
{
// apply a unary operator: scalar is ignored
ASSERT_UNARYOP_OK (op, "unop for GB_apply", GB0) ;
if (!op_is_positional)
{
// A must also be compatible with op->xtype
if (!GB_Type_compatible (A->type, op->xtype))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x):\n"
"input A of type [%s]\n"
"cannot be typecast to x input of type [%s]",
op->name, A->type->name, op->xtype->name) ;
}
}
}
else if (op_is_binop)
{
// apply a binary operator, with one input bound to a scalar
ASSERT_BINARYOP_OK (op, "binop for GB_apply", GB0) ;
ASSERT_SCALAR_OK (scalar, "scalar for GB_apply", GB0) ;
if (!op_is_positional)
{
bool op_is_first = opcode == GB_FIRST_binop_code ;
bool op_is_second = opcode == GB_SECOND_binop_code ;
bool op_is_pair = opcode == GB_PAIR_binop_code ;
if (binop_bind1st)
{
// C = op (scalar,A)
// A must be compatible with op->ytype
if (!(op_is_first || op_is_pair ||
GB_Type_compatible (A->type, op->ytype)))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x,y):\n"
"input A of type [%s]\n"
"cannot be typecast to y input of type [%s]",
op->name, A->type->name, op->ytype->name) ;
}
// scalar must be compatible with op->xtype
if (!(op_is_second || op_is_pair ||
GB_Type_compatible (scalar->type, op->xtype)))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x,y):\n"
"input scalar of type [%s]\n"
"cannot be typecast to x input of type [%s]",
op->name, scalar->type->name, op->xtype->name) ;
}
}
else
{
// C = op (A,scalar)
// A must be compatible with op->xtype
if (!(op_is_first || op_is_pair ||
GB_Type_compatible (A->type, op->xtype)))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x,y):\n"
"input A of type [%s]\n"
"cannot be typecast to x input of type [%s]",
op->name, A->type->name, op->xtype->name) ;
}
// scalar must be compatible with op->ytype
if (!(op_is_second || op_is_pair
|| GB_Type_compatible (scalar->type, op->ytype)))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x,y):\n"
"input scalar of type [%s]\n"
"cannot be typecast to y input of type [%s]",
op->name, scalar->type->name, op->ytype->name) ;
}
}
}
}
else // op_is_idxunop
{
// apply an idxunop operator, with a thunk scalar
ASSERT_INDEXUNARYOP_OK (op, "idxunop for GB_apply", GB0) ;
ASSERT_SCALAR_OK (scalar, "thunk for GB_apply", GB0) ;
// A must be compatible with op->xtype
if (!GB_Type_compatible (A->type, op->xtype))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x,i,j,thunk):\n"
"input A of type [%s]\n"
"cannot be typecast to x input of type [%s]",
op->name, A->type->name, op->xtype->name) ;
}
// scalar must be compatible with op->ytype
if (!GB_Type_compatible (scalar->type, op->ytype))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for z=%s(x,i,j,thunk):\n"
"input scalar of type [%s]\n"
"cannot be typecast to thunk input of type [%s]",
op->name, scalar->type->name, op->ytype->name) ;
}
}
// check domains and dimensions for C<M> = accum (C,T)
GrB_Info info ;
GB_OK (GB_compatible (C->type, C, M, Mask_struct, accum, T_type, Context)) ;
// check the dimensions
int64_t tnrows = (A_transpose) ? GB_NCOLS (A) : GB_NROWS (A) ;
int64_t tncols = (A_transpose) ? GB_NROWS (A) : GB_NCOLS (A) ;
if (GB_NROWS (C) != tnrows || GB_NCOLS (C) != tncols)
{
GB_ERROR (GrB_DIMENSION_MISMATCH,
"Dimensions not compatible:\n"
"output is " GBd "-by-" GBd "\n"
"input is " GBd "-by-" GBd "%s",
GB_NROWS (C), GB_NCOLS (C),
tnrows, tncols, A_transpose ? " (transposed)" : "") ;
}
// quick return if an empty mask is complemented
GB_RETURN_IF_QUICK_MASK (C, C_replace, M, Mask_comp, Mask_struct) ;
// delete any lingering zombies and assemble any pending tuples
GB_MATRIX_WAIT_IF_PENDING_OR_ZOMBIES (A) ; // A can be jumbled
GB_MATRIX_WAIT (scalar) ;
if (!op_is_unop && GB_nnz ((GrB_Matrix) scalar) != 1)
{
// the scalar entry must be present
GB_ERROR (GrB_EMPTY_OBJECT, "%s", "Scalar must contain an entry") ;
}
//--------------------------------------------------------------------------
// rename binop and idxunop operators
//--------------------------------------------------------------------------
GB_binop_rename (&op, binop_bind1st) ;
opcode = op->opcode ;
op_is_unop = GB_IS_UNARYOP_CODE (opcode) ;
op_is_binop = GB_IS_BINARYOP_CODE (opcode) ;
op_is_idxunop = GB_IS_INDEXUNARYOP_CODE (opcode) ;
op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
// all VALUE* index_unary ops have been renamed to their corresponding
// binary ops. Only positional and user-defined idxunops remain.
ASSERT (GB_IMPLIES (op_is_idxunop,
op_is_positional || opcode == GB_USER_idxunop_code)) ;
//--------------------------------------------------------------------------
// get the int64 value of the thunk for positional operators
//--------------------------------------------------------------------------
if (op_is_idxunop && op_is_positional)
{
// ithunk = (int64) scalar
GB_cast_scalar (&ithunk, GB_INT64_code, scalar->x, scalar->type->code,
scalar->type->size) ;
// wrap ithunk in the new scalar
scalar = GB_Scalar_wrap (&Thunk_header, GrB_INT64, &ithunk) ;
}
//--------------------------------------------------------------------------
// T = op(A) or op(A')
//--------------------------------------------------------------------------
bool T_is_csc = C->is_csc ;
if (T_is_csc != A->is_csc)
{
// Flip the sense of A_transpose
A_transpose = !A_transpose ;
}
if (!T_is_csc && op_is_positional)
{
// positional ops must be flipped, with i and j swapped
if (op_is_unop)
{
op = (GB_Operator) GB_positional_unop_ijflip ((GrB_UnaryOp) op) ;
}
else if (op_is_binop)
{
op = (GB_Operator) GB_positional_binop_ijflip ((GrB_BinaryOp) op) ;
}
else // op_is_idxunop
{
// also revise ithunk as needed (TRIL, TRIU, DIAG, OFFDIAG only)
op = (GB_Operator) GB_positional_idxunop_ijflip (&ithunk,
(GrB_IndexUnaryOp) op) ;
}
opcode = op->opcode ;
}
// user operator must have i,j flipped
bool flipij = (!T_is_csc && opcode == GB_USER_idxunop_code) ;
if (A_transpose)
{
// T = op (A'), typecasting to op->ztype
GBURBLE ("(transpose-op) ") ;
GB_CLEAR_STATIC_HEADER (T, &T_header) ;
info = GB_transpose (T, T_type, T_is_csc, A, op, scalar,
binop_bind1st, flipij, Context) ;
ASSERT (GB_JUMBLED_OK (T)) ;
// A positional op is applied to C after the transpose is computed,
// using the T_is_csc format. The ijflip is handled above.
}
else if (M == NULL && accum == NULL && (C == A) && C->type == T_type
&& GB_nnz (C) > 0)
{
GBURBLE ("(in-place-op) ") ;
// C = op (C), operating on the values in-place, with no typecasting
// of the output of the operator with the matrix C.
// No work to do if the op is identity.
if (opcode != GB_IDENTITY_unop_code)
{
// the output Cx is aliased with C->x in GB_apply_op.
GB_iso_code C_code_iso = GB_iso_unop_code (C, op, binop_bind1st) ;
info = GrB_SUCCESS ;
if (C_code_iso == GB_NON_ISO && C->iso)
{
// expand C to non-iso; initialize C->x unless the op
// is positional
info = GB_convert_any_to_non_iso (C, !op_is_positional,
Context) ;
}
if (info == GrB_SUCCESS)
{
// C->x = op (C->x) in place
info = GB_apply_op ((GB_void *) C->x, C->type, C_code_iso,
op, scalar, binop_bind1st, flipij, C, Context) ;
}
if (info == GrB_SUCCESS && C_code_iso != GB_NON_ISO)
{
// compact the iso values of C
C->iso = true ; // OK
info = GB_convert_any_to_iso (C, NULL, Context) ;
}
}
return (info) ;
}
else
{
// T = op (A), pattern is a shallow copy of A, type is op->ztype.
GBURBLE ("(shallow-op) ") ;
GB_CLEAR_STATIC_HEADER (T, &T_header) ;
info = GB_shallow_op (T, T_is_csc, op, scalar, binop_bind1st, flipij,
A, Context) ;
}
if (info != GrB_SUCCESS)
{
GB_Matrix_free (&T) ;
return (info) ;
}
ASSERT (T->is_csc == C->is_csc) ;
//--------------------------------------------------------------------------
// C<M> = accum (C,T): accumulate the results into C via the M
//--------------------------------------------------------------------------
return (GB_accum_mask (C, M, NULL, accum, &T, C_replace, Mask_comp,
Mask_struct, Context)) ;
}
|