1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
//------------------------------------------------------------------------------
// GB_apply_op: typecast and apply a unary/binary/idxunop operator to an array
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Cx = op (A)
// Cx and A->x may be aliased.
// This function is CSR/CSC agnostic. For positional ops, A is treated as if
// it is in CSC format. The caller has already modified the op if A is in CSR
// format.
// Template/GB_positional_op_ijp can return GrB_OUT_OF_MEMORY.
// Otherwise, this function only returns GrB_SUCCESS.
#include "GB_apply.h"
#include "GB_binop.h"
#include "GB_ek_slice.h"
#include "GB_unused.h"
#ifndef GBCUDA_DEV
#include "GB_unop__include.h"
#include "GB_binop__include.h"
#endif
#define GB_FREE_ALL \
{ \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
GrB_Info GB_apply_op // apply a unary op, idxunop, or binop, Cx = op (A)
(
GB_void *Cx, // output array
const GrB_Type ctype, // type of C
const GB_iso_code C_code_iso, // C non-iso, or code to compute C iso value
const GB_Operator op, // unary/index-unary/binop to apply
const GrB_Scalar scalar, // scalar to bind to binary operator
bool binop_bind1st, // if true, C=binop(s,A), else C=binop(A,s)
bool flipij, // if true, flip i,j for user idxunop
const GrB_Matrix A, // input matrix
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (Cx != NULL) ;
ASSERT_MATRIX_OK (A, "A input for GB_apply_op", GB0) ;
ASSERT (GB_JUMBLED_OK (A)) ; // A can be jumbled
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
ASSERT (GB_IMPLIES (op != NULL, ctype == op->ztype)) ;
ASSERT_SCALAR_OK_OR_NULL (scalar, "scalar for GB_apply_op", GB0) ;
//--------------------------------------------------------------------------
// get A
//--------------------------------------------------------------------------
// A->x is not const since the operator might be applied in-place, if
// C is aliased to C.
GB_void *Ax = (GB_void *) A->x ; // A->x has type A->type
const int8_t *Ab = A->b ; // only if A is bitmap
const GrB_Type Atype = A->type ; // type of A->x
const int64_t anz = GB_nnz_held (A) ; // size of A->x and Cx
//--------------------------------------------------------------------------
// determine the maximum number of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// get the operator
//--------------------------------------------------------------------------
GB_Opcode opcode ;
bool op_is_unop = false ;
bool op_is_binop = false ;
if (op != NULL)
{
opcode = op->opcode ;
op_is_unop = GB_IS_UNARYOP_CODE (opcode) ;
op_is_binop = GB_IS_BINARYOP_CODE (opcode) ;
}
else
{
// C is iso, with no operator to apply; just call GB_iso_unop below.
ASSERT (C_code_iso == GB_ISO_1 || // C iso value is 1
C_code_iso == GB_ISO_S || // C iso value is the scalar
C_code_iso == GB_ISO_A) ; // C iso value is the iso value of A
opcode = GB_NOP_code ;
}
//--------------------------------------------------------------------------
// apply the operator
//--------------------------------------------------------------------------
if (GB_OPCODE_IS_POSITIONAL (opcode))
{
//----------------------------------------------------------------------
// built-in positional unary, index_unary, or binary operator
//----------------------------------------------------------------------
bool is64 = (op->ztype == GrB_INT64) ;
bool is32 = (op->ztype == GrB_INT32) ;
ASSERT_OP_OK (op, "positional unop/idxunop/binop: GB_apply_op", GB0) ;
// get A and C
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ai = A->i ;
int64_t anvec = A->nvec ;
int64_t avlen = A->vlen ;
int64_t avdim = A->vdim ;
//----------------------------------------------------------------------
// determine number of threads to use
//----------------------------------------------------------------------
int nthreads = GB_nthreads (anz + anvec, chunk, nthreads_max) ;
int ntasks = (nthreads == 1) ? 1 : (32 * nthreads) ;
//----------------------------------------------------------------------
// Cx = positional_op (A)
//----------------------------------------------------------------------
int64_t thunk = GB_positional_offset (opcode, scalar) ;
// GB_positional_op_ijp allocates a set of tasks, which can possibly
// fail if out of memory.
if (is64)
{
//------------------------------------------------------------------
// int64 Cx = positional_op (A)
//------------------------------------------------------------------
int64_t *restrict Cz = (int64_t *) Cx ;
switch (opcode)
{
case GB_POSITIONI_unop_code : // z = position_i(A(i,j)) == i
case GB_POSITIONI1_unop_code : // z = position_i1(A(i,j)) == i+1
case GB_FIRSTI_binop_code : // z = first_i(A(i,j),y) == i
case GB_FIRSTI1_binop_code : // z = first_i1(A(i,j),y) == i+1
case GB_SECONDI_binop_code : // z = second_i(x,A(i,j)) == i
case GB_SECONDI1_binop_code : // z = second_i1(x,A(i,j)) == i+1
case GB_ROWINDEX_idxunop_code : // z = i+thunk
#define GB_APPLY(p) \
Cz [p] = (i + thunk) ;
#include "GB_positional_op_ip.c"
return (GrB_SUCCESS) ;
case GB_POSITIONJ_unop_code : // z = position_j(A(i,j)) == j
case GB_POSITIONJ1_unop_code : // z = position_j1(A(i,j)) == j+1
case GB_FIRSTJ_binop_code : // z = first_j(A(i,j),y) == j
case GB_FIRSTJ1_binop_code : // z = first_j1(A(i,j),y) == j+1
case GB_SECONDJ_binop_code : // z = second_j(x,A(i,j)) == j
case GB_SECONDJ1_binop_code : // z = second_j1(x,A(i,j)) == j+1
case GB_COLINDEX_idxunop_code : // z = j+thunk
#define GB_APPLY(p) \
Cz [p] = (j + thunk) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_DIAGINDEX_idxunop_code : // z = (j-(i+thunk)
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (j - (i+thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_FLIPDIAGINDEX_idxunop_code : // z = (i-(j+thunk)
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (i - (j+thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
default: ;
}
}
else if (is32)
{
//------------------------------------------------------------------
// int32 Cx = positional_op (A)
//------------------------------------------------------------------
int32_t *restrict Cz = (int32_t *) Cx ;
switch (opcode)
{
case GB_POSITIONI_unop_code : // z = position_i(A(i,j)) == i
case GB_POSITIONI1_unop_code : // z = position_i1(A(i,j)) == i+1
case GB_FIRSTI_binop_code : // z = first_i(A(i,j),y) == i
case GB_FIRSTI1_binop_code : // z = first_i1(A(i,j),y) == i+1
case GB_SECONDI_binop_code : // z = second_i(x,A(i,j)) == i
case GB_SECONDI1_binop_code : // z = second_i1(x,A(i,j)) == i+1
case GB_ROWINDEX_idxunop_code : // z = i+thunk
#define GB_APPLY(p) \
Cz [p] = (int32_t) (i + thunk) ;
#include "GB_positional_op_ip.c"
return (GrB_SUCCESS) ;
case GB_POSITIONJ_unop_code : // z = position_j(A(i,j)) == j
case GB_POSITIONJ1_unop_code : // z = position_j1(A(i,j)) == j+1
case GB_FIRSTJ_binop_code : // z = first_j(A(i,j),y) == j
case GB_FIRSTJ1_binop_code : // z = first_j1(A(i,j),y) == j+1
case GB_SECONDJ_binop_code : // z = second_j(x,A(i,j)) == j
case GB_SECONDJ1_binop_code : // z = second_j1(x,A(i,j)) == j+1
case GB_COLINDEX_idxunop_code : // z = j+thunk
#define GB_APPLY(p) \
Cz [p] = (int32_t) (j + thunk) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_DIAGINDEX_idxunop_code : // z = (j-(i+thunk)
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (int32_t) (j - (i+thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_FLIPDIAGINDEX_idxunop_code : // z = (i-(j+thunk)
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (int32_t) (i - (j+thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
default: ;
}
}
else
{
//------------------------------------------------------------------
// bool Cx = positional_op (A)
//------------------------------------------------------------------
ASSERT (op->ztype == GrB_BOOL) ;
bool *restrict Cz = (bool *) Cx ;
switch (opcode)
{
case GB_TRIL_idxunop_code : // z = (j <= (i+thunk))
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (j <= (i + thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_TRIU_idxunop_code : // z = (j >= (i+thunk))
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (j >= (i + thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_DIAG_idxunop_code : // z = (j == (i+thunk))
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (j == (i + thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_OFFDIAG_idxunop_code : // z = (j != (i+thunk))
#define GB_APPLY(p) \
int64_t i = GBI (Ai, p, avlen) ; \
Cz [p] = (j != (i + thunk)) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_COLLE_idxunop_code : // z = (j <= thunk)
#define GB_APPLY(p) \
Cz [p] = (j <= thunk) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_COLGT_idxunop_code : // z = (j > thunk)
#define GB_APPLY(p) \
Cz [p] = (j > thunk) ;
#include "GB_positional_op_ijp.c"
return (GrB_SUCCESS) ;
case GB_ROWLE_idxunop_code : // z = (i <= thunk)
#define GB_APPLY(p) \
Cz [p] = (i <= thunk) ;
#include "GB_positional_op_ip.c"
return (GrB_SUCCESS) ;
case GB_ROWGT_idxunop_code : // z = (i > thunk)
#define GB_APPLY(p) \
Cz [p] = (i > thunk) ;
#include "GB_positional_op_ip.c"
return (GrB_SUCCESS) ;
default: ;
}
}
}
else if (C_code_iso != GB_NON_ISO)
{
//----------------------------------------------------------------------
// apply the unary or binary operator to the iso value
//----------------------------------------------------------------------
// if C is iso, this function takes O(1) time
GBURBLE ("(iso apply) ") ;
ASSERT_MATRIX_OK (A, "A passing to GB_iso_unop", GB0) ;
if (anz > 0)
{
// Cx [0] = unop (A), binop (scalar,A), or binop (A,scalar)
GB_iso_unop (Cx, ctype, C_code_iso, op, A, scalar) ;
}
}
else if (op_is_unop)
{
//----------------------------------------------------------------------
// apply the unary operator to all entries
//----------------------------------------------------------------------
ASSERT_UNARYOP_OK (op, "unop for GB_apply_op", GB0) ;
ASSERT (!A->iso) ;
// determine number of threads to use
int nthreads = GB_nthreads (anz, chunk, nthreads_max) ;
#ifndef GBCUDA_DEV
if (Atype == op->xtype || opcode == GB_IDENTITY_unop_code)
{
// The switch factory is used if the op is IDENTITY, or if no
// typecasting is being done. IDENTITY operator can do arbitrary
// typecasting (it is not used if no typecasting is done).
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_unop_apply(unop,zname,aname) \
GB (_unop_apply_ ## unop ## zname ## aname)
#define GB_WORKER(unop,zname,ztype,aname,atype) \
{ \
if (GB_unop_apply (unop,zname,aname) ((ztype *) Cx, \
(const atype *) Ax, Ab, anz, nthreads) \
== GrB_SUCCESS) return (GrB_SUCCESS) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
#include "GB_unop_factory.c"
}
#endif
//----------------------------------------------------------------------
// generic worker: typecast and apply a unary operator
//----------------------------------------------------------------------
GB_BURBLE_N (anz, "(generic apply: %s) ", op->name) ;
size_t asize = Atype->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
GB_Type_code acode = Atype->code ;
GB_Type_code xcode = op->xtype->code ;
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
GxB_unary_function fop = op->unop_function ;
int64_t p ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (p = 0 ; p < anz ; p++)
{
if (!GBB (Ab, p)) continue ;
// xwork = (xtype) Ax [p]
GB_void xwork [GB_VLA(xsize)] ;
cast_A_to_X (xwork, Ax +(p)*asize, asize) ;
// Cx [p] = fop (xwork)
fop (Cx +(p*zsize), xwork) ;
}
}
else if (op_is_binop)
{
//----------------------------------------------------------------------
// apply a binary operator (bound to a scalar)
//----------------------------------------------------------------------
ASSERT_BINARYOP_OK (op, "standard binop for GB_apply_op", GB0) ;
ASSERT_SCALAR_OK (scalar, "scalar for GB_apply_op", GB0) ;
GB_Type_code xcode, ycode, zcode ;
ASSERT (opcode != GB_FIRST_binop_code) ;
ASSERT (opcode != GB_SECOND_binop_code) ;
ASSERT (opcode != GB_PAIR_binop_code) ;
ASSERT (opcode != GB_ANY_binop_code) ;
size_t asize = Atype->size ;
size_t ssize = scalar->type->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
size_t ysize = op->ytype->size ;
GB_Type_code scode = scalar->type->code ;
xcode = op->xtype->code ;
ycode = op->ytype->code ;
// typecast the scalar to the operator input
size_t ssize_cast ;
GB_Type_code scode_cast ;
if (binop_bind1st)
{
ssize_cast = xsize ;
scode_cast = xcode ;
}
else
{
ssize_cast = ysize ;
scode_cast = ycode ;
}
GB_void swork [GB_VLA(ssize_cast)] ;
GB_void *scalarx = (GB_void *) scalar->x ;
if (scode_cast != scode)
{
// typecast the scalar to the operator input, in swork
GB_cast_function cast_s = GB_cast_factory (scode_cast, scode) ;
cast_s (swork, scalar->x, ssize) ;
scalarx = swork ;
}
// determine number of threads to use
int nthreads = GB_nthreads (anz, chunk, nthreads_max) ;
#ifndef GBCUDA_DEV
if (binop_bind1st)
{
//------------------------------------------------------------------
// z = binop (scalar,Ax)
//------------------------------------------------------------------
if (GB_binop_builtin (op->xtype, false, Atype, false,
(GrB_BinaryOp) op, false, &opcode, &xcode, &ycode, &zcode))
{
//--------------------------------------------------------------
// define the worker for the switch factory
//--------------------------------------------------------------
#define GB_bind1st(binop,xname) GB (_bind1st_ ## binop ## xname)
#define GB_BINOP_WORKER(binop,xname) \
{ \
if (GB_bind1st (binop, xname) (Cx, scalarx, Ax, \
Ab, anz, nthreads) == GrB_SUCCESS) \
return (GrB_SUCCESS) ; \
} \
break ;
//--------------------------------------------------------------
// launch the switch factory
//--------------------------------------------------------------
#define GB_NO_FIRST
#define GB_NO_SECOND
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
}
else
{
//------------------------------------------------------------------
// z = binop (Ax,scalar)
//------------------------------------------------------------------
if (GB_binop_builtin (Atype, false, op->ytype, false,
(GrB_BinaryOp) op, false, &opcode, &xcode, &ycode, &zcode))
{
//--------------------------------------------------------------
// define the worker for the switch factory
//--------------------------------------------------------------
#define GB_bind2nd(binop,xname) GB (_bind2nd_ ## binop ## xname)
#undef GB_BINOP_WORKER
#define GB_BINOP_WORKER(binop,xname) \
{ \
if (GB_bind2nd (binop, xname) (Cx, Ax, scalarx, \
Ab, anz, nthreads) == GrB_SUCCESS) \
return (GrB_SUCCESS) ; \
} \
break ;
//--------------------------------------------------------------
// launch the switch factory
//--------------------------------------------------------------
#define GB_NO_FIRST
#define GB_NO_SECOND
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
}
#endif
//----------------------------------------------------------------------
// generic worker: typecast and apply a binary operator
//----------------------------------------------------------------------
GB_BURBLE_N (anz, "(generic apply: %s) ", op->name) ;
GB_Type_code acode = Atype->code ;
GxB_binary_function fop = op->binop_function ;
ASSERT (!A->iso) ;
if (binop_bind1st)
{
// Cx = binop (scalar,Ax)
GB_cast_function cast_A_to_Y = GB_cast_factory (ycode, acode) ;
int64_t p ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (p = 0 ; p < anz ; p++)
{
if (!GBB (Ab, p)) continue ;
// ywork = (ytype) Ax [p]
GB_void ywork [GB_VLA(ysize)] ;
cast_A_to_Y (ywork, Ax +(p)*asize, asize) ;
// Cx [p] = fop (scalarx, ywork)
fop (Cx +((p)*zsize), scalarx, ywork) ;
}
}
else
{
// Cx = binop (Ax,scalar)
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
int64_t p ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (p = 0 ; p < anz ; p++)
{
if (!GBB (Ab, p)) continue ;
// xwork = (xtype) Ax [p]
GB_void xwork [GB_VLA(xsize)] ;
cast_A_to_X (xwork, Ax +(p)*asize, asize) ;
// Cx [p] = fop (xwork, scalarx)
fop (Cx +(p*zsize), xwork, scalarx) ;
}
}
}
else
{
//----------------------------------------------------------------------
// apply a user-defined index_unary op
//----------------------------------------------------------------------
// All valued GrB_IndexUnaryOps (GrB_VALUE*) have already been renamed
// to their corresponding binary op (GrB_VALUEEQ_FP32 became
// GrB_EQ_FP32, for example). The only remaining index unary ops are
// positional, and user-defined. Positional ops have been handled
// above, so only user-defined index unary ops are left.
// get A and C
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ai = A->i ;
int64_t anvec = A->nvec ;
int64_t avlen = A->vlen ;
int64_t avdim = A->vdim ;
ASSERT (opcode == GB_USER_idxunop_code) ;
GxB_index_unary_function fop = op->idxunop_function ;
size_t asize = Atype->size ;
size_t ssize = scalar->type->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
size_t ysize = op->ytype->size ;
GB_Type_code scode = scalar->type->code ;
GB_Type_code acode = Atype->code ;
GB_Type_code xcode = op->xtype->code ;
GB_Type_code ycode = op->ytype->code ;
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
GB_void ywork [GB_VLA(ysize)] ;
GB_void *ythunk = (GB_void *) scalar->x ;
if (ycode != scode)
{
// typecast the scalar to the operator input, in ywork
GB_cast_function cast_s = GB_cast_factory (ycode, scode) ;
cast_s (ywork, scalar->x, ssize) ;
ythunk = ywork ;
}
#define GB_APPLY(p) \
if (!GBB (Ab, p)) continue ; \
int64_t i = GBI (Ai, p, avlen) ; \
GB_void xwork [GB_VLA(xsize)] ; \
cast_A_to_X (xwork, Ax +(p)*asize, asize) ; \
fop (Cx +(p*zsize), xwork, \
flipij ? j : i, flipij ? i : j, ythunk) ;
#include "GB_positional_op_ijp.c"
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
|