1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
//------------------------------------------------------------------------------
// GB_assign: submatrix assignment: C<M>(Rows,Cols) = accum (C(Rows,Cols),A)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// submatrix assignment: C<M>(Rows,Cols) = accum (C(Rows,Cols),A)
// All GrB_*_assign operations rely on this function.
// Only one of the bool parameters: scalar_expansion, col_assign, and
// row_assign can be true. If all are false, this function does the work for
// GrB_Matrix_assign and GrB_Vector_assign.
// If scalar_expansion is true, this function performs scalar assignment (the
// GrB_Matrix_assign_TYPE and GrB_Vector_assign_TYPE functions) in which case
// the input matrix A is ignored (it is NULL), and the scalar is used instead.
// If col_assign is true, this function does the work for GrB_Col_assign.
// If row_assign is true, this function does the work for GrB_Row_assign.
// Compare with GB_subassign, which uses M and C_replace differently
#define GB_FREE_ALL \
{ \
GB_Matrix_free (&C2) ; \
GB_Matrix_free (&M2) ; \
GB_Matrix_free (&A2) ; \
GB_Matrix_free (&SubMask) ; \
GB_FREE_WORK (&I2, I2_size) ; \
GB_FREE_WORK (&J2, J2_size) ; \
}
#include "GB_assign.h"
#include "GB_assign_zombie.h"
#include "GB_subassign.h"
#include "GB_subref.h"
#include "GB_bitmap_assign.h"
GrB_Info GB_assign // C<M>(Rows,Cols) += A or A'
(
GrB_Matrix C_in, // input/output matrix for results
bool C_replace, // descriptor for C
const GrB_Matrix M_in, // optional mask for C
const bool Mask_comp, // true if mask is complemented
const bool Mask_struct, // if true, use the only structure of M
const bool M_transpose, // true if the mask should be transposed
const GrB_BinaryOp accum, // optional accum for accum(C,T)
const GrB_Matrix A_in, // input matrix
const bool A_transpose, // true if A is transposed
const GrB_Index *Rows, // row indices
const GrB_Index nRows_in, // number of row indices
const GrB_Index *Cols, // column indices
const GrB_Index nCols_in, // number of column indices
const bool scalar_expansion, // if true, expand scalar to A
const void *scalar, // scalar to be expanded
const GB_Type_code scalar_code, // type code of scalar to expand
int assign_kind, // row assign, col assign, or assign
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check and prep inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GrB_Matrix C = NULL ; // C_in or C2
GrB_Matrix M = NULL ; // M_in or M2
GrB_Matrix A = NULL ; // A_in or A2
GrB_Index *I = NULL ; // Rows, Cols, or I2
GrB_Index *J = NULL ; // Rows, Cols, or J2
// temporary matrices and arrays
GrB_Matrix C2 = NULL, M2 = NULL, A2 = NULL, SubMask = NULL ;
struct GB_Matrix_opaque C2_header, M2_header, A2_header, MT_header,
AT_header, SubMask_header ;
GrB_Index *I2 = NULL ; size_t I2_size = 0 ;
GrB_Index *J2 = NULL ; size_t J2_size = 0 ;
GrB_Type atype = NULL ;
int64_t ni, nj, nI, nJ, Icolon [3], Jcolon [3] ;
int Ikind, Jkind ;
ASSERT_MATRIX_OK (C_in, "C_in for assign", GB0) ;
int subassign_method ;
GB_OK (GB_assign_prep (&C, &M, &A, &subassign_method, &C2, &M2, &A2,
&C2_header, &M2_header, &A2_header, &MT_header, &AT_header,
&I, &I2, &I2_size, &ni, &nI, &Ikind, Icolon,
&J, &J2, &J2_size, &nj, &nJ, &Jkind, Jcolon,
&atype, C_in, &C_replace, &assign_kind,
M_in, Mask_comp, Mask_struct, M_transpose, accum,
A_in, A_transpose, Rows, nRows_in, Cols, nCols_in,
scalar_expansion, scalar, scalar_code, Context)) ;
ASSERT_MATRIX_OK (C, "initial C for assign", GB0) ;
ASSERT_MATRIX_OK_OR_NULL (M, "initial M for assign", GB0) ;
if (subassign_method == 0)
{
// GB_assign_prep has handled the entire assignment itself
ASSERT_MATRIX_OK (C_in, "QUICK : Final C for assign", GB0) ;
ASSERT (C == C_in) ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// determine if the final C_replace phase is needed
//--------------------------------------------------------------------------
// whole_submatrix is true if C(:,:)=A is being computed (the submatrix is
// all of C), or all that the operation can modify for row/col assign.
bool whole_submatrix ;
bool whole_C_matrix = (Ikind == GB_ALL && Jkind == GB_ALL) ;
if (assign_kind == GB_ROW_ASSIGN)
{
// C(i,:) = ... row assignment to the entire row
whole_submatrix = (Jkind == GB_ALL) ;
}
else if (assign_kind == GB_COL_ASSIGN)
{
// C(:,j) = ... col assignment to the entire column
whole_submatrix = (Ikind == GB_ALL) ;
}
else
{
// C(:,:) = ... matrix assignment to the entire matrix
whole_submatrix = whole_C_matrix ;
}
// Mask_is_same is true if SubMask == M (:,:)
bool Mask_is_same = (M == NULL || whole_submatrix) ;
// C_replace_phase is true if a final pass over all of C is required
// to delete entries outside the C(I,J) submatrix.
bool C_replace_phase = (C_replace && !Mask_is_same) ;
if ((GB_IS_BITMAP (C) || GB_IS_FULL (C)) && C_replace_phase)
{
// GB_subassigner_method might not select the bitmap assignment
subassign_method = GB_SUBASSIGN_METHOD_BITMAP ;
}
//--------------------------------------------------------------------------
// do the assignment
//--------------------------------------------------------------------------
if (subassign_method == GB_SUBASSIGN_METHOD_BITMAP)
{
//----------------------------------------------------------------------
// use GB_bitmap_assign directly
//----------------------------------------------------------------------
// GB_bitmap_assign does not need to create the SubMask, and it also
// handles the C_replace_phase itself. C is bitmap, or is converted to
// bitmap by GB_bitmap_assign, before the assignment. For the C = A
// and C = scalar assignment, C may be returned in any sparsity
// structure, but otherwise C is returned as bitmap.
GB_OK (GB_bitmap_assign (C, C_replace,
I, nI, Ikind, Icolon, J, nJ, Jkind, Jcolon,
M, Mask_comp, Mask_struct, accum, A,
scalar, atype, assign_kind, Context)) ;
}
else
{
//----------------------------------------------------------------------
// use GB_subassigner
//----------------------------------------------------------------------
// C, M, and A can have any sparsity structure. C is typically not
// bitmap, except for a few methods (see GB_subassigner_method for
// a list).
//----------------------------------------------------------------------
// extract the SubMask = M (I,J) if needed
//----------------------------------------------------------------------
if (Mask_is_same)
{
// the mask M is the same for GB_assign and GB_subassign. Either
// both masks are NULL, or SubMask = M (:,:), and the two masks
// are equivalent.
//------------------------------------------------------------------
// C(I,J)<M> = A or accum (C(I,J),A) via GB_subassigner
//------------------------------------------------------------------
GB_OK (GB_subassigner (C, subassign_method, C_replace,
M, Mask_comp, Mask_struct, accum, A,
I, ni, nI, Ikind, Icolon, J, nj, nJ, Jkind, Jcolon,
scalar_expansion, scalar, atype, Context)) ;
}
else
{
//------------------------------------------------------------------
// extract the SubMask
//------------------------------------------------------------------
ASSERT_MATRIX_OK (M, "big mask", GB0) ;
GB_CLEAR_STATIC_HEADER (SubMask, &SubMask_header) ;
const GrB_Index *I_SubMask = I ; int64_t ni_SubMask = ni ;
const GrB_Index *J_SubMask = J ; int64_t nj_SubMask = nj ;
if (assign_kind == GB_ROW_ASSIGN)
{
// SubMask = M (:,J)
ASSERT (M->vlen == 1 && M->vdim == C->vdim) ;
I_SubMask = GrB_ALL ;
ni_SubMask = 1 ;
}
else if (assign_kind == GB_COL_ASSIGN)
{
// SubMask = M (I,:)
ASSERT (M->vlen == C->vlen && M->vdim == 1) ;
J_SubMask = GrB_ALL ;
nj_SubMask = 1 ;
}
else // assign_kind == GB_ASSIGN
{
// SubMask = M (I,J)
ASSERT (M->vlen == C->vlen && M->vdim == C->vdim) ;
}
// if Mask_struct is true then SubMask is extracted as iso
GB_OK (GB_subref (SubMask, Mask_struct,
true, M, I_SubMask, ni_SubMask, J_SubMask, nj_SubMask,
false, Context)) ;
// GB_subref can return a jumbled result
ASSERT (GB_JUMBLED_OK (SubMask)) ;
ASSERT_MATRIX_OK (SubMask, "extracted SubMask", GB0) ;
//------------------------------------------------------------------
// C(I,J)<SubMask> = A or accum (C(I,J),A) via GB_subassigner
//------------------------------------------------------------------
// Determine the method again since SubMask is not M. No need to
// recompute C_iso_out and cout for the iso case, since no change
// of method as a result of the SubMask will change the iso propery
// of C on output.
subassign_method = GB_subassigner_method (NULL, NULL, C,
C_replace, SubMask, Mask_comp, Mask_struct, accum, A,
Ikind, Jkind, scalar_expansion, scalar, atype) ;
GB_OK (GB_subassigner (C, subassign_method, C_replace,
SubMask, Mask_comp, Mask_struct, accum, A,
I, ni, nI, Ikind, Icolon, J, nj, nJ, Jkind, Jcolon,
scalar_expansion, scalar, atype, Context)) ;
GB_Matrix_free (&SubMask) ;
}
//----------------------------------------------------------------------
// examine C outside the C(I,J) submatrix
//----------------------------------------------------------------------
if (C_replace_phase)
{
// If C_replace is true and M(i,j)=0 for any entry outside the
// C(I,J) submatrix, then that entry must be deleted. This phase
// is very costly but it is what the GraphBLAS Specification
// requires. This phase is skipped if C_replace is false.
// This case can only occur if the mask is present (either
// complemented or not). If the mask is not present, then it is
// not complemented (see the "quick return" case above). So if
// there is no mask matrix, M(I,J)=1 is true, so C_replace has no
// effect outside the C(I,J) submatrix.
// Also, if whole_submatrix is true, then there is nothing outside
// the C(I,J) submatrix to modify, so this phase is skipped if
// whole_submatrix is true.
// This code requires C and M not to be aliased to each other.
ASSERT (M != NULL) ;
ASSERT (!GB_aliased (C, M)) ; // NO ALIAS C==M in C_replace_phase
ASSERT (!whole_submatrix) ;
ASSERT (!GB_IS_BITMAP (C)) ;
ASSERT (!GB_IS_FULL (C)) ;
ASSERT_MATRIX_OK (C, "C for C-replace-phase", GB0) ;
ASSERT_MATRIX_OK (M, "M for C-replace-phase", GB0) ;
//------------------------------------------------------------------
// assemble any pending tuples
//------------------------------------------------------------------
GB_MATRIX_WAIT_IF_PENDING (C) ;
ASSERT_MATRIX_OK (C, "C cleaned up for C-replace-phase", GB0) ;
//------------------------------------------------------------------
// delete entries outside C(I,J) for which M(i,j) is false
//------------------------------------------------------------------
// C must be sparse or hypersparse
GB_ENSURE_SPARSE (C) ;
if (assign_kind == GB_COL_ASSIGN)
{
//--------------------------------------------------------------
// vector assignment, examine all of M but just C(:,j)
//--------------------------------------------------------------
// M is a single column so it is never hypersparse
ASSERT (nJ == 1) ;
ASSERT (M->vlen == C->vlen && M->vdim == 1 && M->h == NULL) ;
int64_t j = GB_ijlist (J, 0, Jkind, Jcolon) ;
GBURBLE ("assign zombies outside C(I,j) ") ;
GB_MATRIX_WAIT (M) ;
GB_OK (GB_hyper_hash_build (C, Context)) ;
GB_assign_zombie3 (C, M, Mask_comp, Mask_struct,
j, I, nI, Ikind, Icolon, Context) ;
}
else if (assign_kind == GB_ROW_ASSIGN)
{
//--------------------------------------------------------------
// index assignment, examine just C(i,:) and M
//--------------------------------------------------------------
// GrB_Row_assign: only examine C(i,:)
// M s a single row with vlen == 1 and the same vdim as C
ASSERT (nI == 1) ;
ASSERT (M->vlen == 1 && M->vdim == C->vdim) ;
int64_t i = GB_ijlist (I, 0, Ikind, Icolon) ;
GBURBLE ("assign zombies outside C(i,J) ") ;
GB_MATRIX_WAIT_IF_JUMBLED (C) ;
GB_MATRIX_WAIT (M) ;
GB_OK (GB_hyper_hash_build (M, Context)) ;
GB_assign_zombie4 (C, M, Mask_comp, Mask_struct,
i, J, nJ, Jkind, Jcolon, Context) ;
}
else
{
//--------------------------------------------------------------
// Matrix/vector assignment: examine all of C and M
//--------------------------------------------------------------
// M has the same size as C
ASSERT (M->vlen == C->vlen && M->vdim == C->vdim) ;
GBURBLE ("assign zombies outside C(I,J) ") ;
GB_MATRIX_WAIT (M) ;
GB_OK (GB_hyper_hash_build (M, Context)) ;
GB_OK (GB_assign_zombie5 (C, M, Mask_comp, Mask_struct,
I, nI, Ikind, Icolon, J, nJ, Jkind, Jcolon, Context)) ;
}
ASSERT_MATRIX_OK (C, "C for C-replace-phase done", GB_FLIP (GB0)) ;
}
}
//--------------------------------------------------------------------------
// transplant C2 back into C_in
//--------------------------------------------------------------------------
if (C == C2)
{
// Transplant the content of C2 into C_in and free C2. Zombies and
// pending tuples can be transplanted from C2 into C_in, and if C2 is
// jumbled, C_in becomes jumbled too.
GB_OK (GB_transplant (C_in, C_in->type, &C2, Context)) ;
}
//--------------------------------------------------------------------------
// free workspace, finalize C, and return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C_in, "C to conform", GB0) ;
GB_OK (GB_conform (C_in, Context)) ;
ASSERT_MATRIX_OK (C_in, "Final C for assign", GB0) ;
GB_FREE_ALL ;
return (GB_block (C_in, Context)) ;
}
|