File: GB_assign_prep.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (1278 lines) | stat: -rw-r--r-- 52,760 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
//------------------------------------------------------------------------------
// GB_assign_prep: check and prepare inputs for GB_assign and GB_subassign
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// GB_assign_prep checks the inputs for GB_assign and GB_subassign.

#include "GB_subassign.h"
#include "GB_bitmap_assign.h"
#include "GB_assign_zombie.h"
#include "GB_subassign_methods.h"
#include "GB_transpose.h"
#include "GB_subref.h"

#undef  GB_FREE_ALL
#define GB_FREE_ALL                 \
{                                   \
    GB_Matrix_free (&C2) ;          \
    GB_Matrix_free (&A2) ;          \
    GB_Matrix_free (&AT) ;          \
    GB_Matrix_free (&M2) ;          \
    GB_Matrix_free (&MT) ;          \
    GB_FREE_WORK (&I2, I2_size) ;   \
    GB_FREE_WORK (&J2, J2_size) ;   \
    GB_FREE_WORK (&I2k, I2k_size) ; \
    GB_FREE_WORK (&J2k, J2k_size) ; \
}

// redefine to use the revised GB_FREE_ALL above:
#include "GB_static_header.h"

GrB_Info GB_assign_prep
(
    // output:
    GrB_Matrix *Chandle,            // C_in, or C2 if C is aliased to M or A
    GrB_Matrix *Mhandle,            // M_in, or a modified version M2
    GrB_Matrix *Ahandle,            // A_in, or a modified version A2
    int *subassign_method,          // subassign method to use

    // modified versions of the matrices C, M, and A:
    GrB_Matrix *C2_handle,          // NULL, or a copy of C
    GrB_Matrix *M2_handle,          // NULL, or a temporary matrix
    GrB_Matrix *A2_handle,          // NULL, or a temporary matrix

    // static headers for C2, M2, A2, MT and AT
    GrB_Matrix C2_header_handle,
    GrB_Matrix M2_header_handle,
    GrB_Matrix A2_header_handle,
    GrB_Matrix MT_header_handle,
    GrB_Matrix AT_header_handle,

    // modified versions of the Rows/Cols lists, and their analysis:
    GrB_Index **I_handle,           // Rows, Cols, or a modified copy I2
    GrB_Index **I2_handle,          // NULL, or sorted/pruned Rows or Cols
    size_t *I2_size_handle,
    int64_t *ni_handle,
    int64_t *nI_handle,
    int *Ikind_handle,
    int64_t Icolon [3],

    GrB_Index **J_handle,           // Rows, Cols, or a modified copy J2
    GrB_Index **J2_handle,          // NULL, or sorted/pruned Rows or Cols
    size_t *J2_size_handle,
    int64_t *nj_handle,
    int64_t *nJ_handle,
    int *Jkind_handle,
    int64_t Jcolon [3],

    GrB_Type *atype_handle,         // type of A or the scalar

    // input/output
    GrB_Matrix C_in,                // input/output matrix for results
    bool *C_replace,                // descriptor for C
    int *assign_kind,               // row/col assign, assign, or subassign

    // input
    const GrB_Matrix M_in,          // optional mask for C
    const bool Mask_comp,           // true if mask is complemented
    const bool Mask_struct,         // if true, use the only structure of M
    bool M_transpose,               // true if the mask should be transposed
    const GrB_BinaryOp accum,       // optional accum for accum(C,T)
    const GrB_Matrix A_in,          // input matrix
    bool A_transpose,               // true if A is transposed
    const GrB_Index *Rows,          // row indices
    const GrB_Index nRows_in,       // number of row indices
    const GrB_Index *Cols,          // column indices
    const GrB_Index nCols_in,       // number of column indices
    const bool scalar_expansion,    // if true, expand scalar to A
    const void *scalar,             // scalar to be expanded
    const GB_Type_code scode,       // type code of scalar to expand
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
    GB_RETURN_IF_NULL (Rows) ;
    GB_RETURN_IF_NULL (Cols) ;

    GrB_Matrix C = C_in ;
    GrB_Matrix M = M_in ;
    GrB_Matrix A = A_in ;

    ASSERT_MATRIX_OK (C, "C input for GB_assign_prep", GB0) ;
    ASSERT (!GB_is_shallow (C)) ;
    ASSERT_MATRIX_OK_OR_NULL (M, "M for GB_assign_prep", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for GB_assign_prep", GB0) ;
    ASSERT (scode <= GB_UDT_code) ;

    GrB_Matrix C2 = NULL ;
    GrB_Matrix M2 = NULL ;
    GrB_Matrix A2 = NULL ;
    GrB_Matrix MT = NULL ;
    GrB_Matrix AT = NULL ;

    GrB_Index *I2  = NULL ; size_t I2_size = 0 ;
    GrB_Index *J2  = NULL ; size_t J2_size = 0 ;
    GrB_Index *I2k = NULL ; size_t I2k_size = 0 ;
    GrB_Index *J2k = NULL ; size_t J2k_size = 0 ;
    (*atype_handle) = NULL ;

    (*Chandle) = NULL ;
    (*Mhandle) = NULL ;
    (*Ahandle) = NULL ;

    (*C2_handle) = NULL ;
    (*A2_handle) = NULL ;
    (*M2_handle) = NULL ;

    (*I_handle) = NULL ; 
    (*I2_handle) = NULL ;
    (*I2_size_handle) = 0 ;
    (*ni_handle) = 0 ;
    (*nI_handle) = 0 ;
    (*Ikind_handle) = 0 ;

    (*J_handle) = NULL ;
    (*J2_handle) = NULL ;
    (*J2_size_handle) = 0 ;
    (*nj_handle) = 0 ;
    (*nJ_handle) = 0 ;
    (*Jkind_handle) = 0 ;

    //--------------------------------------------------------------------------
    // determine the type of A or the scalar
    //--------------------------------------------------------------------------

    GrB_Type atype ;
    GrB_Type ctype = C->type ;
    if (scalar_expansion)
    { 
        // for scalar expansion, the NULL pointer case has been already checked
        // for user-defined types, and can't be NULL for built-in types.
        ASSERT (scalar != NULL) ;
        ASSERT (A == NULL) ;
        ASSERT ((*assign_kind) == GB_ASSIGN || (*assign_kind) == GB_SUBASSIGN) ;
        atype = GB_code_type (scode, ctype) ;
    }
    else
    { 
        // GrB_*assign, not scalar:  The user's input matrix has been checked.
        // The pointer to the scalar is NULL.
        ASSERT (scalar == NULL) ;
        ASSERT (A != NULL) ;
        ASSERT_MATRIX_OK (A, "A for GB_assign_prep", GB0) ;
        atype = A->type ;
    }

    //--------------------------------------------------------------------------
    // delete any lingering zombies and assemble any pending tuples
    //--------------------------------------------------------------------------

    // zombies and pending tuples in C or OK, but not M or A
    GB_MATRIX_WAIT_IF_PENDING_OR_ZOMBIES (M) ;
    GB_MATRIX_WAIT_IF_PENDING_OR_ZOMBIES (A) ;

    // some kernels allow for M and A to be jumbled
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;

    // C can have any kind of pending work
    ASSERT (GB_ZOMBIES_OK (C)) ;
    ASSERT (GB_JUMBLED_OK (C)) ;
    ASSERT (GB_PENDING_OK (C)) ;

    //--------------------------------------------------------------------------
    // check domains of C, M, A, and accum
    //--------------------------------------------------------------------------

    // GB_compatible is not used since most of it is slightly different here
    if (accum != NULL)
    { 
        // C<M>(Rows,Cols) = accum (C(Rows,Cols),A), or
        // C(Rows,Cols)<M> = accum (C(Rows,Cols),A)
        GB_OK (GB_BinaryOp_compatible (accum, ctype, ctype,
            (scalar_expansion) ? NULL : atype,
            (scalar_expansion) ? scode : GB_ignore_code, Context)) ;
    }

    // C<M>(Rows,Cols) = T, so C and T must be compatible.
    // also C<M>(Rows,Cols) = accum(C,T) for entries in T but not C
    if (scalar_expansion)
    {
        if (!GB_code_compatible (ctype->code, scode))
        { 
            GB_ERROR (GrB_DOMAIN_MISMATCH, "Input scalar of type [%s]\n"
                "cannot be typecast to output of type [%s]",
                GB_code_string (scode), ctype->name) ;
        }
    }
    else
    {
        if (!GB_Type_compatible (ctype, atype))
        { 
            GB_ERROR (GrB_DOMAIN_MISMATCH, "Input of type [%s]\n"
                "cannot be typecast to output of type [%s]",
                atype->name, atype->name) ;
        }
    }

    if (M != NULL && !Mask_struct)
    {
        // M is typecast to boolean
        if (!GB_Type_compatible (M->type, GrB_BOOL))
        { 
            GB_ERROR (GrB_DOMAIN_MISMATCH,
                "M of type [%s] cannot be typecast to boolean", M->type->name) ;
        }
    }

    //--------------------------------------------------------------------------
    // determine the properites of the Rows and Cols index lists
    //--------------------------------------------------------------------------

    int64_t nRows, nCols, RowColon [3], ColColon [3] ;
    int RowsKind, ColsKind ;
    GB_ijlength (Rows, nRows_in, GB_NROWS (C), &nRows, &RowsKind, RowColon) ;
    GB_ijlength (Cols, nCols_in, GB_NCOLS (C), &nCols, &ColsKind, ColColon) ;

    //--------------------------------------------------------------------------
    // check the dimensions of M
    //--------------------------------------------------------------------------

    if (M != NULL)
    {
        // check the mask: size depends on the method

        switch (*assign_kind)
        {
            case GB_ROW_ASSIGN : 
            {
                // GrB_Row_assign:
                // M is a column vector the same size as one row of C
                ASSERT (nRows == 1) ;
                ASSERT (!scalar_expansion) ;
                ASSERT (GB_VECTOR_OK (M)) ;
                if (GB_NROWS (M) != GB_NCOLS (C))
                { 
                    GB_ERROR (GrB_DIMENSION_MISMATCH, "Mask vector m length"
                        " is " GBd "; must match the number of columns of C ("
                        GBd ")", GB_NROWS (M), GB_NCOLS (C)) ;
                }
            }
            break ;

            case GB_COL_ASSIGN : 
            {
                // GrB_Col_assign:
                // M is a column vector the same size as one column of C
                ASSERT (nCols == 1) ;
                ASSERT (!scalar_expansion) ;
                ASSERT (GB_VECTOR_OK (M)) ;
                if (GB_NROWS (M) != GB_NROWS (C))
                { 
                    GB_ERROR (GrB_DIMENSION_MISMATCH, "Mask vector m length"
                        " is " GBd "; must match the number of rows of C ("
                        GBd ")", GB_NROWS (M), GB_NROWS (C)) ;
                }
            }
            break ;

            case GB_ASSIGN : 
            {
                // GrB_Matrix_assign, GrB_Vector_assign, and scalar variants: M
                // is a matrix the same size as C for entire matrix (or vector)
                // assignment, where A is either a matrix or a scalar
                if (GB_NROWS (M) != GB_NROWS (C) ||
                    GB_NCOLS (M) != GB_NCOLS (C))
                { 
                    GB_ERROR (GrB_DIMENSION_MISMATCH, "Mask M is " GBd "-by-"
                        GBd "; " "must match result C (" GBd "-by-" GBd ")",
                        GB_NROWS (M), GB_NCOLS (M),
                        GB_NROWS (C), GB_NCOLS (C)) ;
                }
            }
            break ;

            case GB_SUBASSIGN : 
            {
                // GxB_subassign: M is a matrix the same size as C(Rows,Cols)
                int64_t mnrows = M_transpose ? GB_NCOLS (M) : GB_NROWS (M) ;
                int64_t mncols = M_transpose ? GB_NROWS (M) : GB_NCOLS (M) ;
                if (mnrows != nRows || mncols != nCols)
                { 
                    GB_ERROR (GrB_DIMENSION_MISMATCH,
                        "M is " GBd "-by-" GBd "%s, "
                        "must match size of result C(I,J): " GBd "-by-" GBd "",
                        mnrows, mncols, M_transpose ? " (transposed)" : "",
                        nRows, nCols) ;
                }
            }
            break ;

            default:
                ASSERT (GB_DEAD_CODE) ;
        }
    }

    //--------------------------------------------------------------------------
    // check the dimensions of A
    //--------------------------------------------------------------------------

    if (!scalar_expansion)
    {
        int64_t anrows = (A_transpose) ? GB_NCOLS (A) : GB_NROWS (A) ;
        int64_t ancols = (A_transpose) ? GB_NROWS (A) : GB_NCOLS (A) ;
        if (nRows != anrows || nCols != ancols)
        { 
            GB_ERROR (GrB_DIMENSION_MISMATCH,
                "Dimensions not compatible:\n"
                "C(Rows,Cols) is " GBd "-by-" GBd "\n"
                "input is " GBd "-by-" GBd "%s",
                nRows, nCols, anrows, ancols,
                A_transpose ? " (transposed)" : "") ;
        }
    }

    //--------------------------------------------------------------------------
    // handle the CSR/CSC format of C:
    //--------------------------------------------------------------------------

    // GrB_Row_assign, GxB_Row_subassign: A is always a vector in CSC format,
    // and A_transpose is always true.  If C is in CSC format then A_transpose
    // remains true, and the n-by-1 vector A is transposed below into a 1-by-n
    // hypersparse CSC matrix.  If C is in CSR format then A_transpose becomes
    // false, and the assignment does not need to transpose A.  It remains in
    // CSC format but has the correct vector length and dimension for the
    // CSR/CSC-agnostic assignment.

    // GrB_Col_assign, GxB_Col_subassign: A is always a vector in CSC format,
    // and A_transpose is always false.  If C is in CSC format then A_transpose
    // remains false, and the assignment does not need to transpose A.  If C is
    // in CSR format then A_transpose becomes true, and the the n-by-1 vector A
    // is transposed below into a 1-by-n hypersparse CSC matrix.  The CSC
    // format is ignored by the CSR/CSC-agnostic assignment.

    // GrB_Vector_assign, GxB_Vector_subassign:  both A and C are always in CSC
    // format, and A_transpose is always false, and doesn't change below.

    // GrB_Matrix_assign, GxB_Matrix_subassign:  A and C can be in any format,
    // and A_transpose can be true or false, depending on the descriptor.  If
    // the CSR/CSC formats of A and C are the same, then A_transpose remains
    // as-is.  If they differ, then A_transpose is flipped.  Then the CSR-CSC
    // agnostic assignment proceeds.

    bool C_is_csc = C->is_csc ;
    if (!scalar_expansion && C_is_csc != A->is_csc)
    { 
        // Flip the sense of A_transpose
        A_transpose = !A_transpose ;
    }

    // get the I and J index lists
    int Ikind, Jkind ;
    const GrB_Index *I, *J ;
    int64_t ni, nj, nI, nJ ;

    if (C_is_csc)
    { 
        // C is in CSC format
        I      = Rows     ;     J      = Cols     ;
        ni     = nRows_in ;     nj     = nCols_in ;
        Ikind  = RowsKind ;     Jkind  = ColsKind ;
        nI     = nRows    ;     nJ     = nCols    ;
        memcpy (Icolon, RowColon, 3 * sizeof (int64_t)) ;
        memcpy (Jcolon, ColColon, 3 * sizeof (int64_t)) ;
    }
    else
    { 
        // C is in CSR format
        I       = Cols     ;    J       = Rows     ;
        ni      = nCols_in ;    nj      = nRows_in ;
        Ikind   = ColsKind ;    Jkind   = RowsKind ;
        nI      = nCols    ;    nJ      = nRows    ;
        memcpy (Icolon, ColColon, 3 * sizeof (int64_t)) ;
        memcpy (Jcolon, RowColon, 3 * sizeof (int64_t)) ;
        // flip the sense of row/col assign
        if ((*assign_kind) == GB_ROW_ASSIGN)
        {
            // assignment to vector j = J [0], which is Rows [0]
            (*assign_kind) = GB_COL_ASSIGN ;
        }
        else if ((*assign_kind) == GB_COL_ASSIGN)
        {
            // assignment to index i = I [0], which is Cols [0]
            (*assign_kind) = GB_ROW_ASSIGN ;
        }
    }

    // J is now a list of vectors in the range 0:C->vdim-1
    // I is now a list of indices in the range 0:C->vlen-1

    bool whole_C_matrix = (Ikind == GB_ALL && Jkind == GB_ALL) ;

    //--------------------------------------------------------------------------
    // quick return if an empty mask is complemented
    //--------------------------------------------------------------------------

    bool C_is_bitmap = GB_IS_BITMAP (C) ;
    int C_sparsity_control = GB_sparsity_control (C->sparsity_control, C->vdim);
    bool C_may_be_bitmap = (C_sparsity_control & GxB_BITMAP) ;
    bool use_bitmap_assign = (C_is_bitmap ||
        ((*C_replace) && GB_IS_FULL (C) && C_may_be_bitmap)) ;

    // an empty mask occurs when M is not present, but complemented

    if (M == NULL && Mask_comp)
    {

        //----------------------------------------------------------------------
        // C<!,replace or !replace>(I,J) = anything
        //----------------------------------------------------------------------

        // The mask M is empty, and complemented, and thus M(i,j)=0 for all i
        // and j.  The result does not depend on A or accum.  The output C is
        // either untouched (if C_replace is false) or cleared (if C_replace is
        // true).  However, the GrB_Row_assign and GrB_Col_assign only clear
        // their specific row or column of C, respectively.  GB_subassign only
        // clears C(I,J).  GrB_assign clears all of C.

        // M is NULL so C and M cannot be the same, and A is ignored so
        // it doesn't matter whether or not C == A.  Thus C is not aliased
        // to the inputs.

        // This condition is like GB_RETURN_IF_QUICK_MASK(...), except that
        // the action taken by C_replace is different for row/col assign
        // and subassign.

        if (*C_replace)
        {

            //------------------------------------------------------------------
            // C<!,replace>(I,J) = anything
            //------------------------------------------------------------------

            ASSERT_MATRIX_OK (C, "C for quick mask", GB0) ;

            // to clear the whole C matrix: assign and subassign are the same

            switch (whole_C_matrix ? GB_ASSIGN : (*assign_kind))
            {

                //--------------------------------------------------------------
                // row assign: delete all entries in C(i,:)
                //--------------------------------------------------------------

                case GB_ROW_ASSIGN : 
                {
                    // delete all entries in each vector with index i
                    GB_MATRIX_WAIT_IF_PENDING (C) ;
                    if (use_bitmap_assign)
                    { 
                        // neither A nor the scalar are used, so convert this
                        // to a scalar assignment (the scalar is not used)
                        GBURBLE ("bitmap C(i,:)=zombie ") ;
                        int scalar_unused = 0 ;
                        GB_OK (GB_bitmap_assign (C, /* C_replace: */ true,
                            I,    1, GB_LIST, NULL, // I
                            NULL, 0, GB_ALL,  NULL, // J
                            /* no M: */ NULL,
                            /* Mask_comp: */ true,
                            /* Mask_struct: ignored */ false,
                            /* no accum: */ NULL,
                            /* no A: */ NULL,
                            /* scalar: */ &scalar_unused, GrB_INT32,
                            GB_ROW_ASSIGN, Context)) ;
                    }
                    else
                    { 
                        GB_MATRIX_WAIT_IF_JUMBLED (C) ;
                        GB_ENSURE_SPARSE (C) ;
                        GBURBLE ("C(i,:)=zombie ") ;
                        GB_assign_zombie2 (C, I [0], Context) ;
                    }
                }
                break ;

                //--------------------------------------------------------------
                // col assign: delete all entries in C(:,j)
                //--------------------------------------------------------------

                case GB_COL_ASSIGN : 
                {
                    GB_MATRIX_WAIT_IF_PENDING (C) ;
                    if (use_bitmap_assign)
                    { 
                        // neither A nor the scalar are used, so convert this
                        // to a scalar assignment (the scalar is not used)
                        GBURBLE ("bitmap C(:,j)=zombie ") ;
                        int scalar_unused = 0 ;
                        GB_OK (GB_bitmap_assign (C, /* C_replace: */ true,
                            NULL, 0, GB_ALL,  NULL, // I
                            J,    1, GB_LIST, NULL, // J
                            /* no M: */ NULL,
                            /* Mask_comp: */ true,
                            /* Mask_struct: ignored */ false,
                            /* no accum: */ NULL,
                            /* no A: */ NULL,
                            /* scalar: */ &scalar_unused, GrB_INT32,
                            GB_COL_ASSIGN, Context)) ;
                    }
                    else
                    { 
                        GB_ENSURE_SPARSE (C) ;
                        GBURBLE ("C(:,j)=zombie ") ;
                        GB_OK (GB_hyper_hash_build (C, Context)) ;
                        GB_assign_zombie1 (C, J [0], Context) ;
                    }
                }
                break ;

                //--------------------------------------------------------------
                // assign: delete all entries in C
                //--------------------------------------------------------------

                case GB_ASSIGN : 
                {
                    // C<!>=anything since result does not depend on computing
                    // Z.  Since C_replace is true, all of C is cleared.  This
                    // is the same as the GB_RETURN_IF_QUICK_MASK macro.
                    // GB_clear either converts C to an empty sparse/hyper
                    // matrix, or to a bitmap matrix with no entries, depending
                    // on its sparsity control setting.
                    GBURBLE ("(clear C) ") ;
                    GB_OK (GB_clear (C, Context)) ;
                }
                break ;

                //--------------------------------------------------------------
                // subassign: delete all entries in C(I,J)
                //--------------------------------------------------------------

                case GB_SUBASSIGN : 
                {
                    GB_MATRIX_WAIT_IF_PENDING (C) ;
                    if (use_bitmap_assign)
                    { 
                        // neither A nor the scalar are used, so convert this
                        // to a scalar assignment (the scalar is not used)
                        GBURBLE ("bitmap C(I,J)=zombie ") ;
                        int scalar_unused = 0 ;
                        GB_OK (GB_bitmap_assign (C, /* C_replace: */ true,
                            I, nI, Ikind, Icolon,
                            J, nJ, Jkind, Jcolon,
                            /* no M: */ NULL,
                            /* Mask_comp: */ true,
                            /* Mask_struct: ignored */ false,
                            /* no accum: */ NULL,
                            /* no A: */ NULL,
                            /* scalar: */ &scalar_unused, GrB_INT32,
                            GB_SUBASSIGN, Context)) ;
                    }
                    else
                    { 
                        // Method 00: C(I,J) = empty, using S
                        GBURBLE ("C(I,J)=zombie ") ;
                        GB_ENSURE_SPARSE (C) ;
                        GB_OK (GB_subassign_zombie (C,
                            I, ni, nI, Ikind, Icolon,
                            J, nj, nJ, Jkind, Jcolon, Context)) ;
                    }
                }
                break ;

                default: ;
            }
        }

        //----------------------------------------------------------------------
        // finalize C if blocking mode is enabled, and return result
        //----------------------------------------------------------------------

        ASSERT_MATRIX_OK (C, "Final C for assign, quick mask", GB0) ;
        (*subassign_method) = 0 ;
        GB_FREE_ALL ;
        ASSERT (C == C_in) ;
        (*Chandle) = C ;
        return (GB_block (C, Context)) ;
    }

    //--------------------------------------------------------------------------
    // disable C_replace if no mask present
    //--------------------------------------------------------------------------

    bool no_mask = (M == NULL && !Mask_comp) ;
    if (no_mask)
    {
        // no_mask:  mask is not present, and not complemented
        if (*C_replace)
        { 
            // The mask is not present and not complemented.  In this case,
            // C_replace is effectively false for subassign.  Disable it, since
            // it can force pending tuples to be assembled.
            GBURBLE ("(no mask: C_replace effectively false) ") ;
            (*C_replace) = false ;
        }
    }

    //--------------------------------------------------------------------------
    // delete pending tuples for C(:,:) = x and C(:,:) = A
    //--------------------------------------------------------------------------

    if (whole_C_matrix)
    { 
        // If the assignment is C<M>(:,:) = ... then convert the assignment
        // into a subassign.
        (*assign_kind) = GB_SUBASSIGN ;
    }

    if (whole_C_matrix && no_mask && accum == NULL)
    { 

        //----------------------------------------------------------------------
        // C(:,:) = x or A:  whole matrix assignment with no mask
        //----------------------------------------------------------------------

        // C_replace is already effectively false (see no_mask condition above)
        ASSERT ((*C_replace) == false) ;

        if (GB_aliased (C, A) && !A_transpose && !scalar_expansion)
        { 
            // C = C, with C and A aliased, no transpose, no mask, no accum
            // operator, both I and J are ":", Mask_comp false.  C is not
            // modified at all, and there's no work to do except to check for
            // blocking mode.  The iso property of C is unchanged.
            GBURBLE ("(no-op) ") ;
            (*subassign_method) = 0 ;
            GB_FREE_ALL ;
            ASSERT (C == C_in) ;
            (*Chandle) = C ;
            return (GB_block (C, Context)) ;
        }

        // free pending tuples early but do not clear C.  If it is
        // already dense then its pattern can be reused.
        GB_Pending_free (&(C->Pending)) ;
    }

    //--------------------------------------------------------------------------
    // transpose A if requested
    //--------------------------------------------------------------------------

    // GrB_Row_assign and GrB_Col_assign pass A as a typecasted vector,
    // which is then quickly transposed to a hypersparse matrix.

    ASSERT_MATRIX_OK (C, "C here in GB_assign_prep", GB0) ;

    if (!scalar_expansion && A_transpose)
    { 
        // AT = A', with no typecasting
        // TODO: if accum is present and it does not depend on the values of
        // A,  construct AT as iso.
        GBURBLE ("(A transpose) ") ;
        GB_CLEAR_STATIC_HEADER (AT, AT_header_handle) ;
        GB_OK (GB_transpose_cast (AT, A->type, C_is_csc, A, false, Context)) ;
        GB_MATRIX_WAIT (AT) ;       // A cannot be jumbled
        A = AT ;
    }

    //--------------------------------------------------------------------------
    // transpose the mask if requested
    //--------------------------------------------------------------------------

    // the mask for G*B_Col_*assign and G*B_Row_*assign is a GrB_Vector in CSC
    // form, which is quickly transposed to a hypersparse matrix, if needed.
    // G*B_Vector_*assign always has a CSC mask and CSC C matrix, since both
    // are GrB_Vectors.

    if (M != NULL)
    {
        if (M->is_csc != C_is_csc)
        { 
            // either G*B_Row_*assign and G*B_Col_*assign when matrix C is in
            // CSR format, and or G*B_Matrix_assign when the format of the
            // matrices C and M differ.
            M_transpose = !M_transpose ;
        }
        if (M_transpose)
        { 
            // MT = M' to conform M to the same CSR/CSC format as C,
            // and typecast to boolean.
            GBURBLE ("(M transpose) ") ;
            GB_CLEAR_STATIC_HEADER (MT, MT_header_handle) ;
            GB_OK (GB_transpose_cast (MT, GrB_BOOL, C_is_csc, M, Mask_struct,
                Context)) ;
            GB_MATRIX_WAIT (MT) ;       // M cannot be jumbled
            M = MT ;
        }
    }

    //--------------------------------------------------------------------------
    // determine the properties of I and J
    //--------------------------------------------------------------------------

    // If the descriptor says that A must be transposed, it has already been
    // transposed in the caller.  Thus C(I,J), A, and M (if present) all
    // have the same size: length(I)-by-length(J)

    bool I_unsorted, I_has_dupl, I_contig, J_unsorted, J_has_dupl, J_contig ;
    int64_t imin, imax, jmin, jmax ;
    GB_OK (GB_ijproperties (I, ni, nI, C->vlen, &Ikind, Icolon,
                &I_unsorted, &I_has_dupl, &I_contig, &imin, &imax, Context)) ;
    GB_OK (GB_ijproperties (J, nj, nJ, C->vdim, &Jkind, Jcolon,
                &J_unsorted, &J_has_dupl, &J_contig, &jmin, &jmax, Context)) ;

    //--------------------------------------------------------------------------
    // sort I and J and remove duplicates, if needed
    //--------------------------------------------------------------------------

    // If I or J are explicit lists, and either of are unsorted or are sorted
    // but have duplicate entries, then both I and J are sorted and their
    // duplicates are removed.  A and M are adjusted accordingly.  Removing
    // duplicates decreases the length of I and J.

    bool I_unsorted_or_has_dupl = (I_unsorted || I_has_dupl) ;
    bool J_unsorted_or_has_dupl = (J_unsorted || J_has_dupl) ;
    bool presort = I_unsorted_or_has_dupl || J_unsorted_or_has_dupl ;

    // This pre-sort of I and J is required for the parallel assignment.
    // Otherwise, multiple threads may attempt to modify the same part of C.
    // This could cause a race condition, if one thread flags a zombie at the
    // same time another thread is using that index in a binary search.  If the
    // 2nd thread finds either zombie/not-zombie, this is fine, but the
    // modification would have to be atomic.  Atomic read/write is slow, so to
    // avoid the use of atomics, the index lists I and J are sorted and all
    // duplicates are removed.

    // A side benefit of this pre-sort is that it ensures that the results of
    // GrB_assign and GxB_subassign are completely defined if I and J have
    // duplicates.  The definition of this pre-sort is given below.

    /*
        function C = subassign (C, I, J, A)
        % submatrix assignment with pre-sort of I and J; and remove duplicates

        % delete duplicates from I, keeping the last one seen
        [I2 I2k] = sort (I) ;
        Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;
        I2  = I2  (~Idupl) ;
        I2k = I2k (~Idupl) ;
        assert (isequal (I2, unique (I)))

        % delete duplicates from J, keeping the last one seen
        [J2 J2k] = sort (J) ;
        Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;
        J2  = J2  (~Jdupl) ;
        J2k = J2k (~Jdupl) ;
        assert (isequal (J2, unique (J)))

        % do the submatrix assignment, with no duplicates in I2 or J2
        C (I2,J2) = A (I2k,J2k) ;
    */

    // With this subassign script, the result returned by GB_subassigner
    // matches the following behavior:

    /*
        C4 = C ;
        C4 (I,J) = A ;
        C3 = subassign (C, I, J, A) ;
        assert (isequal (C4, C3)) ;
    */

    // That is, the pre-sort of I, J, and A has no effect on the final C.

    // The pre-sort itself takes additional work and memory space, but it may
    // actually improve the performance since it makes the data access of C
    // more regular, even in the sequential case.

    if (presort)
    {

        ASSERT (Ikind == GB_LIST || Jkind == GB_LIST) ;
        ASSERT (!whole_C_matrix) ;

        if (I_unsorted_or_has_dupl)
        { 
            // I2 = sort I and remove duplicates
            ASSERT (Ikind == GB_LIST) ;
            GB_OK (GB_ijsort (I, &ni, &I2, &I2_size, &I2k, &I2k_size, Context));
            // Recheck the length and properties of the new I2.  This may
            // convert I2 to GB_ALL or GB_RANGE, after I2 has been sorted.
            GB_ijlength (I2, ni, C->vlen, &nI, &Ikind, Icolon) ;
            GB_OK (GB_ijproperties (I2, ni, nI, C->vlen, &Ikind, Icolon,
                &I_unsorted, &I_has_dupl, &I_contig, &imin, &imax, Context)) ;
            ASSERT (! (I_unsorted || I_has_dupl)) ;
            I = I2 ;
        }

        if (J_unsorted_or_has_dupl)
        { 
            // J2 = sort J and remove duplicates
            ASSERT (Jkind == GB_LIST) ;
            GB_OK (GB_ijsort (J, &nj, &J2, &J2_size, &J2k, &J2k_size, Context));
            // Recheck the length and properties of the new J2.  This may
            // convert J2 to GB_ALL or GB_RANGE, after J2 has been sorted.
            GB_ijlength (J2, nj, C->vdim, &nJ, &Jkind, Jcolon) ;
            GB_OK (GB_ijproperties (J2, nj, nJ, C->vdim, &Jkind, Jcolon,
                &J_unsorted, &J_has_dupl, &J_contig, &jmin, &jmax, Context)) ;
            ASSERT (! (J_unsorted || J_has_dupl)) ;
            J = J2 ;
        }

        // inverse index lists to create the A2 and M2 submatrices:
        const GrB_Index *Iinv = I_unsorted_or_has_dupl ? I2k : GrB_ALL ;
        const GrB_Index *Jinv = J_unsorted_or_has_dupl ? J2k : GrB_ALL ;

        if (!scalar_expansion)
        { 
            // A2 = A (Iinv, Jinv)
            GB_CLEAR_STATIC_HEADER (A2, A2_header_handle) ;
            GB_OK (GB_subref (A2, false,  // TODO::: make A if accum is PAIR
                A->is_csc, A, Iinv, ni, Jinv, nj, false, Context)) ;
            // GB_subref can return a jumbled result
            ASSERT (GB_JUMBLED_OK (A2)) ;
            if (A == AT)
            { 
                GB_Matrix_free (&AT) ;
                AT = NULL ;
            }
            A = A2 ;
        }

        if (M != NULL && (*assign_kind) == GB_SUBASSIGN)
        { 
            // M2 = M (Iinv, Jinv)
            // if Mask_struct then M2 is extracted as iso
            GB_CLEAR_STATIC_HEADER (M2, M2_header_handle) ;
            GB_OK (GB_subref (M2, Mask_struct,
                M->is_csc, M, Iinv, ni, Jinv, nj, false, Context)) ;
            // GB_subref can return a jumbled result
            ASSERT (GB_JUMBLED_OK (M2)) ;
            if (M == MT)
            {
                GB_Matrix_free (&MT) ;
                MT = NULL ;
            }
            M = M2 ;
        }

        GB_FREE_WORK (&I2k, I2k_size) ;
        GB_FREE_WORK (&J2k, J2k_size) ;
    }

    // I and J are now sorted, with no duplicate entries.  They are either
    // GB_ALL, GB_RANGE, or GB_STRIDE, which are intrinsically sorted with no
    // duplicates, or they are explicit GB_LISTs with sorted entries and no
    // duplicates.

    ASSERT (!I_unsorted) ; ASSERT (!I_has_dupl) ;
    ASSERT (!J_unsorted) ; ASSERT (!J_has_dupl) ;

    //--------------------------------------------------------------------------
    // check for early C_replace
    //--------------------------------------------------------------------------

    // C(:,:)<any mask, replace> = A or x

    // C_replace_may_be_done_early is true if the C_replace action can take
    // place now.  If true, the final C does not depend on the contents of
    // C on input.  If bitmap assigment might be done, delay the clearing of
    // C since it would be faster to set its bitmap to all zero later on,
    // instead of freeing it and reallocating it.

    bool C_replace_may_be_done_early = (whole_C_matrix && (*C_replace)
        && accum == NULL && !use_bitmap_assign) ;

    // If the entire C(:,:) is being assigned to, and if no accum operator is
    // present, then the matrix can be cleared of all entries now, and then
    // C_replace can be set false.  Clearing C now speeds up the assignment
    // since the wait on C can be skipped, below.  It also simplifies the
    // kernels.  If S is constructed, it is just an empty matrix.

    // By clearing C now and setting C_replace to false, the following methods
    // are used: 09 becomes 05, 10 becomes 06n or 06s, 17 becomes 13, and 18
    // becomes 14.  The S matrix for methods 06s, 13, and 14 is still created,
    // but it is very fast to construct and traverse since C is empty.  Method
    // 00 can be skipped since C is already empty (see "quick" case below).

        // prior time             new  time           action
        // ----- ----             ---  ----           ------

        // 00:  O(S)              nothing, O(1)       C already cleared

        // 09:  O(M+S)            05:  O(M)           C<M> = x, no S

        // 10:  O((A+S)*log(m))   06n: O(M*(log(a))   C<M> = A, no S
        //                        06s: O(A*(log(m))   C<M> = A, with S

        // 17:  O(m*n)            13:  O(m*n)         C<!M> = x, with S

        // 18:  O(A*log(m))       14:  O(A*log(m))    C<!M> = A, with S

        //  =====================       ==============
        //  M   cmp rpl acc A   S       method: action
        //  =====================       ==============

        //  M   -   -   -   -   -       05:  C(I,J)<M> = x, no S
        //  M   -   -   -   A   -       06n: C(I,J)<M> = A, no S
        //  M   -   -   -   A   S       06s: C(I,J)<M> = A, with S

        //  M   -   r   -   -   S       09:  C(I,J)<M,repl> = x, with S
        //  M   -   r   -   A   S       10:  C(I,J)<M,repl> = A, with S

        //  M   c   -   -   -   S       13:  C(I,J)<!M> = x, with S
        //  M   c   -   -   A   S       14:  C(I,J)<!M> = A, with S

        //  M   c   r   -   -   S       17:  C(I,J)<!M,repl> = x, with S
        //  M   c   r   -   A   S       18:  C(I,J)<!M,repl> = A, with S

        // Methods 09, 10, 17, and 18 are now used only if C(I,J) is a
        // submatrix of C, and not for the whole_C_matrix case.

    //--------------------------------------------------------------------------
    // make a copy Z = C if C is aliased to A or M
    //--------------------------------------------------------------------------

    // TODO: bitmap assign can handle C==M and C==A aliasing in some cases

    // If C is aliased to A and/or M, a copy of C typically must be made.
    bool C_aliased = GB_aliased (C, A) || GB_aliased (C, M) ;

    // However, if C == M is aliased, M is structural and not complemented, I
    // and J are both ":", and scalar assignment is being done, then the alias
    // of C and M can be exploited.  The assignment is C<C,s>=scalar.
    // C<C,s>+=scalar might be exploited in the future.
    // C_replace is effectively false.
    bool C_exploit_alias_with_M =
        ((C == M)               // C is exactly aliased with M
        && Mask_struct          // mask is structural
        && !Mask_comp           // and not complemented
        && whole_C_matrix       // C(:,:) is being assigned to
        && (accum == NULL)      // no accum (accum can be handled in the future)
        && scalar_expansion) ;  // C<C,s> = scalar assignment

    // GB_assign cannot tolerate any alias with the input mask,
    // if the C_replace phase will be performed.
    if ((*C_replace) && ((*assign_kind) != GB_SUBASSIGN))
    { 
        // the C_replace phase requires C and M_in not to be aliased
        C_aliased = C_aliased || GB_aliased (C, M_in) ;
    }

    if (C_exploit_alias_with_M)
    {
        // C<C,s>=scalar, and C_replace can be ignored.
        ASSERT (C_aliased) ;            // C is aliased with M, but this is OK
        ASSERT (!GB_aliased (C, A)) ;   // A is not present so C != A
        if (*C_replace)
        { 
            GBURBLE ("(C_replace ignored) ") ;
            (*C_replace) = false ;
        }
    }
    else if (C_aliased)
    {
        // C is aliased with M or A: make a copy of C to assign into
        GB_CLEAR_STATIC_HEADER (C2, C2_header_handle) ;
        if (C_replace_may_be_done_early)
        { 
            // Instead of duplicating C, create a new empty matrix C2.
            int sparsity = (C->h != NULL) ? GxB_HYPERSPARSE : GxB_SPARSE ;
            GB_OK (GB_new (&C2, // sparse or hyper, existing header
                ctype, C->vlen, C->vdim, GB_Ap_calloc, C_is_csc,
                sparsity, C->hyper_switch, 1, Context)) ;
            GBURBLE ("(C alias cleared; C_replace early) ") ;
            (*C_replace) = false ;
        }
        else
        { 
            // finish any computations in C, but leave it jumbled
            // TODO:: keep zombies in C
            GBURBLE ("(%sC alias: duplicate) ", C->iso ? "iso " : "") ;
            GB_MATRIX_WAIT_IF_PENDING_OR_ZOMBIES (C) ;
            ASSERT (!GB_ZOMBIES (C)) ;
            ASSERT (GB_JUMBLED_OK (C)) ;
            ASSERT (!GB_PENDING (C)) ;
            // C2 = duplicate of C, which must be freed when done
            // set C2->iso = C->iso OK
            GB_OK (GB_dup_worker (&C2, C->iso, C, true, NULL, Context)) ;
        }
        // C2 must be transplanted back into C when done
        C = C2 ;
        ASSERT (C->static_header || GBNSTATIC) ;
    }
    else
    {
        // C is not aliased, but check if it can be cleared early
        if (C_replace_may_be_done_early)
        { 
            // Clear C early.
            GB_OK (GB_clear (C, Context)) ;
            GBURBLE ("(C(:,:)<any mask>: C_replace early) ") ;
            (*C_replace) = false ;
        }
        // the assignment operates on C in-place
    }

    //--------------------------------------------------------------------------
    // disable C_replace if C is empty
    //--------------------------------------------------------------------------

    bool C_is_empty = (GB_nnz (C) == 0 && !GB_PENDING (C) && !GB_ZOMBIES (C)) ;
    if (C_is_empty)
    { 
        // C is completely empty.  C_replace is irrelevant so set it to false.
        (*C_replace) = false ;
    }

    //--------------------------------------------------------------------------
    // determine the initial subassign method to use (prior to wait)
    //--------------------------------------------------------------------------

    // This decision can change if wait(C) is done.

    bool C_iso_out = false ;
    size_t csize = ctype->size ;
    GB_void cout [GB_VLA(csize)] ;
    (*subassign_method) = GB_subassigner_method (&C_iso_out, cout, C,
        (*C_replace), M, Mask_comp, Mask_struct, accum, A, Ikind, Jkind,
        scalar_expansion, scalar, atype) ;

    //--------------------------------------------------------------------------
    // check compatibilty of prior pending tuples
    //--------------------------------------------------------------------------

    // The action: ( delete ) can only delete a live entry in the pattern.  It
    // cannot delete a pending tuple; pending tuples cannot become zombies.
    // Thus, if this assignment has the potential for creating zombies, all
    // prior pending tuples must be assembled now.  They thus become live
    // entries in the pattern of C, so that this GB_subassigner can
    // (potentially) turn them into zombies via action: ( delete ).

    // If accum is NULL, the operation is C(I,J) = A, or C(I,J)<M> = A.  If A
    // has any implicit zeros at all, or if M is present, then the
    // action: ( delete ) is possible.  This action is taken when an entry is
    // found in C but not A.  It is thus not possible to check A in advance if
    // an entry in C must be deleted.  If an entry does not appear in C but
    // appears as a pending tuple, deleting it would require a scan of all the
    // pending tuples in C.  This is costly, and simply assembling all pending
    // tuples first is faster.

    // The action: ( insert ) adds additional pending tuples.  All pending
    // tuples will be assembled sometime later on, using a single pending
    // operator, and thus the current accum operator must match the prior
    // pending operator.  If the operators do not match, then all prior pending
    // tuples must be assembled now, so that this GB_subassigner can
    // (potentially) insert new pending tuples whose pending operator is accum.

    // These tests are conservative because it is possible that this
    // GxB_subassign will not need to use action: ( insert ).

    // In the discussion below, let SECOND_Ctype denote the SECOND operator
    // z=f(x,y) whose ztype, xtype, and ytype matches the type of C.

    bool wait = false ;

    if (C->Pending == NULL)
    { 

        //----------------------------------------------------------------------
        // no pending tuples currently exist
        //----------------------------------------------------------------------

        // If any new pending tuples are added, their pending operator is
        // accum, or the implicit SECOND_Ctype operator if accum is NULL.
        // The type of any pending tuples will become ctype.
        // Prior zombies have no effect on this decision.

        wait = false ;

    }
    else
    {

        //----------------------------------------------------------------------
        // prior pending tuples exist: check if action: ( delete ) can occur
        //----------------------------------------------------------------------

        // action: ( delete ) can only operate on entries in the pattern by
        // turning them into zombies.  It cannot delete prior pending tuples.
        // Thus all prior pending tuples must be assembled first if
        // action: ( delete ) can occur.

        if (*C_replace)
        { 
            // C_replace must use the action: ( delete )
            wait = true ;
        }
        else if (accum == NULL)
        {
            // This GxB_subassign can potentially use action: ( delete ), and
            // thus prior pending tuples must be assembled first.  However, if
            // A is completely dense, then C(I,J)=A cannot delete any entries
            // from C.
            if (scalar_expansion || GB_is_dense (A))
            { 
                // A is a scalar or dense matrix, so entries cannot be deleted
                wait = false ;
            }
            else
            { 
                // A is sparse.  action: ( delete ) might occur.
                wait = true ;
            }
        }

        //----------------------------------------------------------------------
        // check if pending operator is compatible
        //----------------------------------------------------------------------

        if (!wait)
        { 
            // ( delete ) will not occur, but new pending tuples may be added
            // via the action: ( insert ).  Check if the accum operator is the
            // same as the prior pending operator and ensure the types are
            // the same.

            ASSERT (C->Pending != NULL) ;
            ASSERT (C->Pending->type != NULL) ;

            wait =
                // entries in A are copied directly into the list of pending
                // tuples for C, with no typecasting.  The type of the prior
                // pending tuples must match the type of A.  If the types do
                // not match, prior updates must be assembled first.
                (atype != C->Pending->type)
                // also wait if the pending operator has changed.
                || !((accum == C->Pending->op)
                    || (GB_op_is_second (accum, ctype) &&
                        GB_op_is_second (C->Pending->op, ctype)))
                // also wait if the iso property of C changes.
                || (C->iso != C_iso_out) ;
        }
    }

    //--------------------------------------------------------------------------
    // wait on the matrix, if required
    //--------------------------------------------------------------------------

    if (wait)
    {
        // Prior computations are not compatible with this assignment, so all
        // prior work must be finished.  This potentially costly.
        // delete any lingering zombies and assemble any pending tuples
        ASSERT_MATRIX_OK (C, "C before wait", GB0) ;
        GB_MATRIX_WAIT (C) ;

        // GB_wait may have deleted all the zombies in C, so check again if C
        // is empty.  If so, C_replace is irrelevant so set it false
        C_is_empty = (GB_nnz (C) == 0 && !GB_PENDING (C) && !GB_ZOMBIES (C)) ;
        if (C_is_empty) (*C_replace) = false ;

        // C has changed so recompute the subassigner method
        (*subassign_method) = GB_subassigner_method (&C_iso_out, cout, C,
            (*C_replace), M, Mask_comp, Mask_struct, accum, A, Ikind, Jkind,
            scalar_expansion, scalar, atype) ;
    }

    ASSERT_MATRIX_OK (C, "C before subassign", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for assign", GB0) ;

    if (C_iso_out)
    {
        GBURBLE ("(C iso assign) ") ;
    }

    //--------------------------------------------------------------------------
    // keep track of the current accum operator
    //--------------------------------------------------------------------------

    // If accum is NULL and pending tuples are added, they will be assembled
    // sometime later (not here) using the implied SECOND_Ctype operator.  This
    // GB_subassigner operation corresponds to C(I,J)=A or C(I,J)<M>=A.
    // Subsequent calls to GrB_setElement, and subsequent calls to GrB_assign
    // or GxB_subassign with an explict SECOND_Ctype operator, may create
    // additional pending tuples and add them to the list without requiring
    // that they be assembled first.

    // If accum is non-NULL, then all prior pending tuples have the same
    // pending operator as this accum.  If that prior operator was the implicit
    // SECOND_Ctype and those pending tuples still exist, then this accum
    // operator is the explicit SECOND_ctype operator.  The implicit
    // SECOND_Ctype operator is replaced with the current accum, which is the
    // explicit SECOND_Ctype operator.

    // If C is iso, the pending op is effectively the implicit SECOND_Ctype op.

    if (C->Pending != NULL)
    { 
        C->Pending->op = (C_iso_out) ? NULL : accum ;
    }

    //--------------------------------------------------------------------------
    // convert C to its final iso property
    //--------------------------------------------------------------------------

    if (C->iso && !C_iso_out)
    { 
        // C is iso on input, but non-iso on output; expand the iso value
        // into all of C->x
        // set C->iso = false    OK
        GB_OK (GB_convert_any_to_non_iso (C, true, Context)) ;
    }
    else if (!C->iso && C_iso_out)
    { 
        // C is non-iso on input, but iso on output
        // copy the cout scalar into C->x
        // set C->iso = true    OK
        GB_OK (GB_convert_any_to_iso (C, cout, Context)) ;
    }
    else if (C->iso && C_iso_out)
    { 
        // the iso status of C is unchanged; set its new iso value
        memcpy (C->x, cout, csize) ;
    }
    ASSERT_MATRIX_OK (C, "C output from GB_assign_prep", GB0) ;

    //--------------------------------------------------------------------------
    // return results
    //--------------------------------------------------------------------------

    (*Chandle) = C ;            // C is C_in or C2
    (*Mhandle) = M ;            // M is M_in or M2
    (*Ahandle) = A ;            // A is A_in or A2

    (*C2_handle) = C2 ;
    (*M2_handle) = (MT != NULL) ? MT : M2 ;
    (*A2_handle) = (AT != NULL) ? AT : A2 ;

    (*atype_handle) = atype ;

    // modified versions of the Rows/Cols lists, and their analysis:
    (*I_handle) = (GrB_Index *) I ;     // either Rows, Cols, or I2
    (*I2_handle) = I2 ;         // temporary sorted copy of Rows or Cols list
    (*I2_size_handle) = I2_size ;
    (*ni_handle) = ni ;
    (*nI_handle) = nI ;
    (*Ikind_handle) = Ikind ;

    (*J_handle) = (GrB_Index *) J ;     // either Rows, Cols, or J2
    (*J2_handle) = J2 ;         // temporary sorted copy of Rows or Cols list
    (*J2_size_handle) = J2_size ;
    (*nj_handle) = nj ;
    (*nJ_handle) = nJ ;
    (*Jkind_handle) = Jkind ;

    return (GrB_SUCCESS) ;
}