File: GB_builder.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (1418 lines) | stat: -rw-r--r-- 57,239 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
//------------------------------------------------------------------------------
// GB_builder: build a matrix from tuples
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// CALLED BY: GB_build, GB_wait, GB_transpose, GB_concat_hyper

// This function is called by GB_build to build a matrix T for GrB_Matrix_build
// or GrB_Vector_build, by GB_wait to build a matrix T from the list of pending
// tuples, and by GB_transpose to transpose a matrix or vector.  Duplicates can
// appear if called by GB_build or GB_wait, but not GB_transpose.

// The indices are provided either as (I_input,J_input) or (I_work,J_work), not
// both.  The values are provided as S_input or S_work, not both.  On return,
// the *work arrays are either transplanted into T, or freed, since they are
// temporary workspaces.

// The work is done in major 5 Steps, some of which can be skipped, depending
// on how the tuples are provided (*_work or *_input), and whether or not they
// are sorted, or have duplicates.  If vdim <= 1, some work is skipped (for
// GrB_Vectors, and single-vector GrB_Matrices).  Let e be the of tuples on
// input.  Let p be the # of threads used.

// STEP 1: copy user input.  O(e/p) read/write per thread, or skipped.

// STEP 2: sort the tuples.  Time: O((e log e)/p), read/write, or skipped if
//         the tuples are already sorted.

// STEP 3: count vectors and duplicates.  O(e/p) reads, per thread, if no
//         duplicates, or skipped if already done.  O(e/p) read/writes
//         per thread if duplicates appear.

// STEP 4: construct T->h and T->p.  O(e/p) reads per thread, or skipped if
//         T is a vector.

// STEP 5: assemble the tuples.  O(e/p) read/writes per thread, or O(1) if the
//         values can be transplanted into T as-is.

// For GrB_Matrix_build:  If the input (I_input, J_input, S_input) is already
// sorted with no duplicates, and no typecasting needs to be done, then Step 1
// still must be done (each thread does O(e/p) reads of (I_input,J_input) and
// writes to I_work), but Step 1 also does the work for Step 3.  Step 2 and 3
// are skipped.  Step 4 does O(e/p) reads per thread (J_input only).  Then
// I_work is transplanted into T->i.  Step 5 does O(e/p) read/writes per thread
// to copy Sx into T->x.

// For GrB_Vector_build: as GrB_Matrix_build, Step 1 does O(e/p) read/writes
// per thread.  The input is always a vector, so vdim == 1 always holds.  Step
// 2 is skipped if the indices are already sorted, and Step 3 does no work at
// all unless duplicates appear.  Step 4 takes no time, for any vector. Step 5
// does O(e/p) reads/writes per thread.

// For GB_wait:  the pending tuples are provided as I_work, J_work, and S_work,
// so Step 1 is skipped (no need to check for invalid indices).  The input
// J_work may be null (vdim can be anything, since GB_wait is used for both
// vectors and matrices).  The tuples might be in sorted order already, which
// is known precisely known from A->Pending->sorted.  Step 2 does
// O((e log e)/p) work to sort the tuples.  Duplicates may appear, and
// out-of-order tuples are likely.  Step 3 does O(e/p) read/writes.  Step 4
// does O(e/p) reads per thread of (I_work,J_work), or just I_work.  Step 5
// does O(e/p) read/writes per thread, or O(1) time if S_work can be
// transplanted into T->x.

// For GB_transpose: uses I_work, J_work, and either S_input (if no op applied
// to the values) or S_work (if an op was applied to the A->x values).  This is
// only done for matrices, not vectors, so vdim > 1 will always hold.  The
// indices are valid so Step 1 is skipped.  The tuples are not sorted, so Step
// 2 takes O((e log e)/p) time to do the sort.  There are no duplicates, so
// Step 3 only does O(e/p) reads of J_work to count the vectors in each slice.
// Step 4 only does O(e/p) reads of J_work to compute T->h and T->p.  Step 5
// does O(e/p) read/writes per thread, but it uses the simpler case in
// GB_reduce_build_template since no duplicates can appear.  It is unlikely
// able to transplant S_work into T->x since the input will almost always be
// unsorted.

// For GB_concat_hyper:  uses I_work, J_work, and S_work.  No duplicates
// appear.  Tuples are not sorted on input.  I_work is transplanted into C->i.
// J_work and S_work are freed on output.  S_work is not transplanted into
// C->x.

// For iso inputs/outputs: T and Sx have the same iso property.  If
// they are iso, then dup is always NULL.  Duplicates may or may not appear
// if T and Sx are iso.

//  (1) GrB_Matrix_build, GrB_Vector_build, and GB_wait do not pass in an iso
//      Sx array, where Sx is S_input for GrB*build, and S_work for GB_wait.
//      Sx and Tx are not iso.  Duplicates may appear.  dup is always present
//      for GrB*build, but may be either NULL or non-NULL for GB_wait.

//  (2) GxB_Matrix_build_Scalar and GxB_Vector_build_Scalar: always construct
//      iso matrices.  For those methods Sx and Tx are always iso, and no dup
//      operator is be passed in (dup is NULL here, which is the implied 2nd
//      operator).  Duplicates may appear.

//  (3) GB_transpose and GB_concat_hyper can pass in Sx as iso or
//      non-iso, and always passes in dup as NULL since there are no
//      duplicates.  Sx and Tx are either both iso, or both non-iso.

// This method always returns T as hypersparse, and T is iso if and only
// if Sx is iso.

#include "GB_build.h"
#include "GB_sort.h"
#include "GB_binop.h"
#ifndef GBCUDA_DEV
#include "GB_red__include.h"
#endif

#define GB_I_WORK(t) (((t) < 0) ? -1 : I_work [t])
#define GB_J_WORK(t) (((t) < 0) ? -1 : ((J_work == NULL) ? 0 : J_work [t]))
#define GB_K_WORK(t) (((t) < 0) ? -1 : ((K_work == NULL) ? t : K_work [t]))

#define GB_FREE_WORKSPACE                           \
{                                                   \
    GB_WERK_POP (Work, int64_t) ;                   \
    GB_FREE (I_work_handle, *I_work_size_handle) ;  \
    GB_FREE (J_work_handle, *J_work_size_handle) ;  \
    GB_FREE (S_work_handle, *S_work_size_handle) ;  \
    GB_FREE_WORK (&K_work, K_work_size) ;           \
}

//------------------------------------------------------------------------------
// GB_builder
//------------------------------------------------------------------------------

GrB_Info GB_builder                 // build a matrix from tuples
(
    GrB_Matrix T,                   // matrix to build, static or dynamic header
    const GrB_Type ttype,           // type of output matrix T
    const int64_t vlen,             // length of each vector of T
    const int64_t vdim,             // number of vectors in T
    const bool is_csc,              // true if T is CSC, false if CSR
    int64_t **I_work_handle,        // for (i,k) or (j,i,k) tuples
    size_t *I_work_size_handle,
    int64_t **J_work_handle,        // for (j,i,k) tuples
    size_t *J_work_size_handle,
    GB_void **S_work_handle,        // array of values of tuples, size ijslen,
                                    // or size 1 if S is iso
    size_t *S_work_size_handle,
    bool known_sorted,              // true if tuples known to be sorted
    bool known_no_duplicates,       // true if tuples known to not have dupl
    int64_t ijslen,                 // size of I_work and J_work arrays
    const bool is_matrix,           // true if T a GrB_Matrix, false if vector
    const int64_t *restrict I_input,// original indices, size nvals
    const int64_t *restrict J_input,// original indices, size nvals
    const GB_void *restrict S_input,// array of values of tuples, size nvals,
                                    // or size 1 if S_input or S_work are iso
    const bool S_iso,               // true if S_input or S_work are iso
    const int64_t nvals,            // number of tuples, and size of K_work
    const GrB_BinaryOp dup,         // binary function to assemble duplicates,
                                    // if NULL use the SECOND operator to
                                    // keep the most recent duplicate.
    const GrB_Type stype,           // the type of S_work or S_input
    bool do_burble,                 // if true, then burble is allowed
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (T != NULL) ;            // T is a static or dynamic header on input 
    ASSERT (nvals >= 0) ;
    ASSERT_TYPE_OK (ttype, "ttype for builder", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (dup, "dup for builder", GB0) ;
    ASSERT (I_work_handle != NULL) ;
    ASSERT (J_work_handle != NULL) ;
    ASSERT (S_work_handle != NULL) ;
    ASSERT (!GB_OP_IS_POSITIONAL (dup)) ;
    ASSERT (I_work_size_handle != NULL) ;
    ASSERT (J_work_size_handle != NULL) ;
    ASSERT (S_work_size_handle != NULL) ;

    //--------------------------------------------------------------------------
    // get Sx
    //--------------------------------------------------------------------------

    GB_void *restrict S_work = (*S_work_handle) ;
    const GB_void *restrict Sx = (S_work == NULL) ? S_input : S_work ;
    ASSERT (GB_IMPLIES (nvals > 0, Sx != NULL)) ;
    ASSERT (GB_IMPLIES (S_iso, ttype == stype)) ;
    ASSERT (GB_IMPLIES (S_iso, dup == NULL)) ;

    //==========================================================================
    // symbolic phase of the build =============================================
    //==========================================================================

    // The symbolic phase sorts the tuples and finds any duplicates.  The
    // output matrix T is constructed (not including T->i and T->x), and T->h
    // and T->p are computed.  Then I_work is transplanted into T->i, or T->i is
    // allocated.  T->x is then allocated.  It is not computed until the
    // numeric phase.

    // When this function returns, I_work is either freed or transplanted into
    // T->i.  J_work is freed, and the I_work and J_work pointers (in the
    // caller) are set to NULL by setting their handles to NULL.  Note that
    // J_work may already be NULL on input, if T has one or zero vectors
    // (J_work_handle is always non-NULL however).

    GrB_Info info ;
    int64_t *restrict I_work = (*I_work_handle) ;
    int64_t *restrict J_work = (*J_work_handle) ;
    int64_t *restrict K_work = NULL ; size_t K_work_size = 0 ;

    //--------------------------------------------------------------------------
    // determine the number of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    int nthreads = GB_nthreads (nvals, chunk, nthreads_max) ;

    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------

    GB_WERK_DECLARE (Work, int64_t) ;
    GB_WERK_PUSH (Work, 5*(nthreads+1), int64_t) ;
    if (Work == NULL)
    { 
        // out of memory
        GB_FREE_WORKSPACE ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    memset (Work, 0, Work_nitems * sizeof (int64_t)) ;
    int64_t *restrict tstart_slice = Work ;                  // nthreads+1
    int64_t *restrict tnvec_slice  = Work +   (nthreads+1) ; // nthreads+1
    int64_t *restrict tnz_slice    = Work + 2*(nthreads+1) ; // nthreads+1
    int64_t *restrict kbad         = Work + 3*(nthreads+1) ; // nthreads
    int64_t *restrict ilast_slice  = Work + 4*(nthreads+1) ; // nthreads

    //--------------------------------------------------------------------------
    // partition the tuples for the threads
    //--------------------------------------------------------------------------

    // Thread tid handles tuples tstart_slice [tid] to tstart_slice [tid+1]-1.
    // Each thread handles about the same number of tuples.  This partition
    // depends only on nvals.

    GB_eslice (tstart_slice, nvals, nthreads) ;

    // tstart_slice [tid]: first tuple in slice tid
    // tnvec_slice [tid]: # of vectors that start in a slice.  If a vector
    //                    starts in one slice and ends in another, it is
    //                    counted as being in the first slice.
    // tnz_slice   [tid]: # of entries in a slice after removing duplicates

    // sentinel values for the final cumulative sum
    tnvec_slice [nthreads] = 0 ;
    tnz_slice   [nthreads] = 0 ;

    // this becomes true if the first pass computes tnvec_slice and tnz_slice,
    // and if the (I_input,J_input) tuples were found to be already sorted with
    // no duplicates present.
    bool tnvec_and_tnz_slice_computed = false ;

    //--------------------------------------------------------------------------
    // STEP 1: copy user input and check if valid
    //--------------------------------------------------------------------------

    // If the indices are provided by (I_input,J_input), then import them into
    // (I_work,J_work) and check if they are valid, and sorted.   If the input
    // happens to be already sorted, then duplicates are detected and the # of
    // vectors in each slice is counted.

    if (I_work == NULL)
    {

        //----------------------------------------------------------------------
        // allocate I_work
        //----------------------------------------------------------------------

        // allocate workspace to load and sort the index tuples:

        // vdim <= 1: I_work and K_work for (i,k) tuples, where i = I_input [k]

        // vdim > 1: also J_work for (j,i,k) tuples where i = I_input [k] and
        // j = J_input [k].  If the tuples are found to be already sorted on
        // input, then J_work is not allocated, and J_input is used instead.

        // The k value in the tuple gives the position in the original set of
        // tuples: I_input [k] and Sx [k] when vdim <= 1, and also J_input [k]
        // for matrices with vdim > 1.

        // The workspace I_work and J_work are allocated here but freed (or
        // transplanted) inside GB_builder.  K_work is allocated, used, and
        // freed in GB_builder.

        ASSERT (J_work == NULL) ;
        I_work = GB_MALLOC (nvals, int64_t, I_work_size_handle) ;
        (*I_work_handle) = I_work ;
        ijslen = nvals ;
        if (I_work == NULL)
        { 
            // out of memory
            GB_FREE_WORKSPACE ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // create the tuples to sort, and check for any invalid indices
        //----------------------------------------------------------------------

        known_sorted = true ;
        bool no_duplicates_found = true ;

        if (nvals == 0)
        { 

            // nothing to do

        }
        else if (is_matrix)
        {

            //------------------------------------------------------------------
            // C is a matrix; check both I_input and J_input
            //------------------------------------------------------------------

            ASSERT (J_input != NULL) ;
            ASSERT (I_work != NULL) ;
            ASSERT (vdim >= 0) ;
            ASSERT (I_input != NULL) ;

            int tid ;
            #pragma omp parallel for num_threads(nthreads) schedule(static) \
                reduction(&&:known_sorted) reduction(&&:no_duplicates_found)
            for (tid = 0 ; tid < nthreads ; tid++)
            {

                kbad [tid] = -1 ;
                int64_t my_tnvec = 0 ;
                int64_t kstart   = tstart_slice [tid] ;
                int64_t kend     = tstart_slice [tid+1] ;
                int64_t ilast = (kstart == 0) ? -1 : I_input [kstart-1] ;
                int64_t jlast = (kstart == 0) ? -1 : J_input [kstart-1] ;

                for (int64_t k = kstart ; k < kend ; k++)
                {
                    // get k-th index from user input: (i,j)
                    int64_t i = I_input [k] ;
                    int64_t j = J_input [k] ;

                    if (i < 0 || i >= vlen || j < 0 || j >= vdim)
                    { 
                        // halt if out of bounds
                        kbad [tid] = k ;
                        break ;
                    }

                    // check if the tuples are already sorted
                    known_sorted = known_sorted &&
                        ((jlast < j) || (jlast == j && ilast <= i)) ;

                    // check if this entry is a duplicate of the one before it
                    no_duplicates_found = no_duplicates_found &&
                        (!(jlast == j && ilast == i)) ;

                    // copy the tuple into I_work.  J_work is done later.
                    I_work [k] = i ;

                    if (j > jlast)
                    { 
                        // vector j starts in this slice (but this is
                        // valid only if J_input is sorted on input)
                        my_tnvec++ ;
                    }

                    // log the last index seen
                    ilast = i ; jlast = j ;
                }

                // these are valid only if I_input and J_input are sorted on
                // input, with no duplicates present.
                tnvec_slice [tid] = my_tnvec ;
                tnz_slice   [tid] = kend - kstart ;

            }

            // collect the report from each thread
            for (int tid = 0 ; tid < nthreads ; tid++)
            {
                if (kbad [tid] >= 0)
                { 
                    // invalid index
                    int64_t i = I_input [kbad [tid]] ;
                    int64_t j = J_input [kbad [tid]] ;
                    int64_t row = is_csc ? i : j ;
                    int64_t col = is_csc ? j : i ;
                    int64_t nrows = is_csc ? vlen : vdim ;
                    int64_t ncols = is_csc ? vdim : vlen ;
                    GB_FREE_WORKSPACE ;
                    GB_ERROR (GrB_INDEX_OUT_OF_BOUNDS,
                        "index (" GBd "," GBd ") out of bounds,"
                        " must be < (" GBd ", " GBd ")",
                        row, col, nrows, ncols) ;
                }
            }

            // if the tuples were found to be already in sorted order, and if
            // no duplicates were found, then tnvec_slice and tnz_slice are now
            // valid, Otherwise, they can only be computed after sorting.
            tnvec_and_tnz_slice_computed = known_sorted && no_duplicates_found ;

            //------------------------------------------------------------------
            // allocate J_work, if needed
            //------------------------------------------------------------------

            if (vdim > 1 && !known_sorted)
            {
                // copy J_input into J_work, so the tuples can be sorted
                J_work = GB_MALLOC (nvals, int64_t, J_work_size_handle) ;
                (*J_work_handle) = J_work ;
                if (J_work == NULL)
                { 
                    // out of memory
                    GB_FREE_WORKSPACE ;
                    return (GrB_OUT_OF_MEMORY) ;
                }
                GB_memcpy (J_work, J_input, nvals * sizeof (int64_t), nthreads);
            }
            else
            { 
                // J_work is a shallow copy of J_input.  The pointer is not
                // copied into (*J_work_handle), so it will not be freed.
                // J_input is not modified, even though it is typecast to the
                // int64_t *J_work, since J_work is not modified in this case.
                J_work = (int64_t *) J_input ;
            }

        }
        else
        {

            //------------------------------------------------------------------
            // C is a typecasted GrB_Vector; check only I_input
            //------------------------------------------------------------------

            ASSERT (I_input != NULL) ;
            ASSERT (J_input == NULL) ;
            ASSERT (vdim == 1) ;

            int tid ;
            #pragma omp parallel for num_threads(nthreads) schedule(static) \
                reduction(&&:known_sorted) reduction(&&:no_duplicates_found)
            for (tid = 0 ; tid < nthreads ; tid++)
            {

                kbad [tid] = -1 ;
                int64_t kstart   = tstart_slice [tid] ;
                int64_t kend     = tstart_slice [tid+1] ;
                int64_t ilast = (kstart == 0) ? -1 : I_input [kstart-1] ;

                for (int64_t k = kstart ; k < kend ; k++)
                {
                    // get k-th index from user input: (i)
                    int64_t i = I_input [k] ;

                    if (i < 0 || i >= vlen)
                    { 
                        // halt if out of bounds
                        kbad [tid] = k ;
                        break ;
                    }

                    // check if the tuples are already sorted
                    known_sorted = known_sorted && (ilast <= i) ;

                    // check if this entry is a duplicate of the one before it
                    no_duplicates_found = no_duplicates_found &&
                        (!(ilast == i)) ;

                    // copy the tuple into the work arrays to be sorted
                    I_work [k] = i ;

                    // log the last index seen
                    ilast = i ;
                }
            }

            // collect the report from each thread
            for (int tid = 0 ; tid < nthreads ; tid++)
            {
                if (kbad [tid] >= 0)
                { 
                    // invalid index
                    int64_t i = I_input [kbad [tid]] ;
                    GB_FREE_WORKSPACE ;
                    GB_ERROR (GrB_INDEX_OUT_OF_BOUNDS,
                        "index (" GBd ") out of bounds, must be < (" GBd ")",
                        i, vlen) ;
                }
            }
        }

        //----------------------------------------------------------------------
        // determine if duplicates are possible
        //----------------------------------------------------------------------

        // The input is now known to be sorted, or not.  If it is sorted, and
        // if no duplicates were found, then it is known to have no duplicates.
        // Otherwise, duplicates might appear, but a sort is required first to
        // check for duplicates.

        known_no_duplicates = known_sorted && no_duplicates_found ;
    }

    //--------------------------------------------------------------------------
    // STEP 2: sort the tuples in ascending order
    //--------------------------------------------------------------------------

    // If the tuples are known to already be sorted, Step 2 is skipped.  In
    // that case, K_work is NULL (not allocated), which implicitly means that
    // K_work [k] = k for all k = 0:nvals-1.  K_work is always NULL if Sx and
    // Tx are iso.

    if (!known_sorted)
    {

        //----------------------------------------------------------------------
        // allocate K_work workspace (not needed if T and Sx are iso)
        //----------------------------------------------------------------------

        if (!S_iso)
        {
            // create the k part of each tuple
            K_work = GB_MALLOC_WORK (nvals, int64_t, &K_work_size) ;
            if (K_work == NULL)
            { 
                // out of memory
                GB_FREE_WORKSPACE ;
                return (GrB_OUT_OF_MEMORY) ;
            }

            // The k part of each tuple (i,k) or (j,i,k) records the original
            // position of the tuple in the input list.  This allows an
            // unstable sorting algorithm to be used.  Since k is unique, it
            // forces the result of the sort to be stable regardless of whether
            // or not the sorting algorithm is stable.  It also keeps track of
            // where the numerical value of the tuple can be found; it is in
            // Sx[k] for the tuple (i,k) or (j,i,k), regardless of where the
            // tuple appears in the list after it is sorted.
            int64_t k ;
            #pragma omp parallel for num_threads(nthreads) schedule(static)
            for (k = 0 ; k < nvals ; k++)
            { 
                K_work [k] = k ;
            }
        }

        //----------------------------------------------------------------------
        // sort all the tuples
        //----------------------------------------------------------------------

        if (vdim > 1)
        {

            //------------------------------------------------------------------
            // sort a set of (j,i,k) tuples
            //------------------------------------------------------------------

            if (S_iso)
            { 
                // K_work is NULL; only sort (j,i)
                info = GB_msort_2 (J_work, I_work, nvals, nthreads) ;
            }
            else
            { 
                info = GB_msort_3 (J_work, I_work, K_work, nvals, nthreads) ;
            }

            #ifdef GB_DEBUG
            if (info == GrB_SUCCESS)
            {
                int64_t ilast = -1 ;
                int64_t jlast = -1 ;
                for (int64_t k = 0 ; k < nvals ; k++)
                {
                    int64_t i = I_work [k] ;
                    int64_t j = J_work [k] ;
                    ASSERT ((jlast < j) || (jlast == j && ilast <= i)) ;
                    ilast = i ;
                    jlast = j ;
                }
            }
            #endif

        }
        else
        {

            //------------------------------------------------------------------
            // sort a set of (i,k) tuples
            //------------------------------------------------------------------

            if (S_iso)
            { 
                // K_work is NULL; only sort (i)
                info = GB_msort_1 (I_work, nvals, nthreads) ;
            }
            else
            { 
                info = GB_msort_2 (I_work, K_work, nvals, nthreads) ;
            }

            #ifdef GB_DEBUG
            if (info == GrB_SUCCESS)
            {
                int64_t ilast = -1 ;
                for (int64_t k = 0 ; k < nvals ; k++)
                {
                    int64_t i = I_work [k] ;
                    ASSERT (ilast <= i) ;
                    ilast = i ;
                }
            }
            #endif
        }

        if (info != GrB_SUCCESS)
        {
            // out of memory in GB_msort_*
            GB_FREE_WORKSPACE ;
            return (GrB_OUT_OF_MEMORY) ;
        }
    }

    //--------------------------------------------------------------------------
    // STEP 3: count vectors and duplicates in each slice
    //--------------------------------------------------------------------------

    // Duplicates are located, counted and their indices negated.  The # of
    // vectors in each slice is counted.  If the indices are known to not have
    // duplicates, then only the vectors are counted.  Counting the # of
    // vectors is skipped if already done by Step 1.

    if (known_no_duplicates)
    {

        //----------------------------------------------------------------------
        // no duplicates: just count # vectors in each slice
        //----------------------------------------------------------------------

        // This is much faster, particularly if the # of vectors in each slice
        // has already been computed.

        #ifdef GB_DEBUG
        {
            // assert that there are no duplicates
            int64_t ilast = -1, jlast = -1 ;
            for (int64_t t = 0 ; t < nvals ; t++)
            {
                int64_t i = GB_I_WORK (t), j = GB_J_WORK (t) ;
                bool is_duplicate = (i == ilast && j == jlast) ;
                ASSERT (!is_duplicate) ;
                ilast = i ; jlast = j ;
            }
        }
        #endif

        if (vdim <= 1)
        {

            // all tuples appear in at most one vector, and there are no
            // duplicates, so there is no need to scan I_work or J_work.

            for (int tid = 0 ; tid < nthreads ; tid++)
            { 
                int64_t tstart = tstart_slice [tid] ;
                int64_t tend   = tstart_slice [tid+1] ;
                tnvec_slice [tid] = 0 ;
                tnz_slice   [tid] = tend - tstart ;
            }
            tnvec_slice [0] = (nvals == 0) ? 0 : 1 ;

        }
        else
        {

            // count the # of unique vector indices in J_work.  No need to scan
            // I_work since there are no duplicates to be found.  Also no need
            // to compute them if already found in Step 1. 

            if (!tnvec_and_tnz_slice_computed)
            {

                int tid ;
                #pragma omp parallel for num_threads(nthreads) schedule(static)
                for (tid = 0 ; tid < nthreads ; tid++)
                {
                    int64_t my_tnvec = 0 ;
                    int64_t tstart = tstart_slice [tid] ;
                    int64_t tend   = tstart_slice [tid+1] ;
                    int64_t jlast  = GB_J_WORK (tstart-1) ;

                    for (int64_t t = tstart ; t < tend ; t++)
                    {
                        // get the t-th tuple
                        int64_t j = J_work [t] ;
                        if (j > jlast)
                        { 
                            // vector j starts in this slice
                            my_tnvec++ ;
                            jlast = j ;
                        }
                    }

                    tnvec_slice [tid] = my_tnvec ;
                    tnz_slice   [tid] = tend - tstart ;
                }
            }
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // look for duplicates and count # vectors in each slice
        //----------------------------------------------------------------------

        for (int tid = 0 ; tid < nthreads ; tid++)
        { 
            int64_t tstart = tstart_slice [tid] ;
            ilast_slice [tid] = GB_I_WORK (tstart-1) ;
        }

        int tid ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (tid = 0 ; tid < nthreads ; tid++)
        {

            int64_t my_tnvec = 0 ;
            int64_t my_ndupl = 0 ;
            int64_t tstart   = tstart_slice [tid] ;
            int64_t tend     = tstart_slice [tid+1] ;
            int64_t ilast    = ilast_slice [tid] ;
            int64_t jlast    = GB_J_WORK (tstart-1) ;

            for (int64_t t = tstart ; t < tend ; t++)
            {
                // get the t-th tuple
                int64_t i = I_work [t] ;
                int64_t j = GB_J_WORK (t) ;

                // tuples are now sorted but there may be duplicates
                ASSERT ((jlast < j) || (jlast == j && ilast <= i)) ;

                // check if (j,i,k) is a duplicate
                if (i == ilast && j == jlast)
                { 
                    // flag the tuple as a duplicate
                    I_work [t] = -1 ;
                    my_ndupl++ ;
                    // the sort places earlier duplicate tuples (with smaller
                    // k) after later ones (with larger k).
                    ASSERT (GB_K_WORK (t-1) < GB_K_WORK (t)) ;
                }
                else
                {
                    // this is a new tuple
                    if (j > jlast)
                    { 
                        // vector j starts in this slice
                        my_tnvec++ ;
                        jlast = j ;
                    }
                    ilast = i ;
                }
            }
            tnvec_slice [tid] = my_tnvec ;
            tnz_slice   [tid] = (tend - tstart) - my_ndupl ;
        }
    }

    //--------------------------------------------------------------------------
    // find total # of vectors and duplicates in all tuples
    //--------------------------------------------------------------------------

    // Replace tnvec_slice with its cumulative sum, after which each slice tid
    // will be responsible for the # vectors in T that range from tnvec_slice
    // [tid] to tnvec_slice [tid+1]-1.
    GB_cumsum (tnvec_slice, nthreads, NULL, 1, NULL) ;
    int64_t tnvec = tnvec_slice [nthreads] ;

    // Replace tnz_slice with its cumulative sum
    GB_cumsum (tnz_slice, nthreads, NULL, 1, NULL) ;

    // find the total # of final entries, after assembling duplicates
    int64_t tnz = tnz_slice [nthreads] ;
    int64_t ndupl = nvals - tnz ;

    //--------------------------------------------------------------------------
    // allocate T; always hypersparse
    //--------------------------------------------------------------------------

    // allocate T; allocate T->p and T->h but do not initialize them.
    // T is always hypersparse.  The header T always exists on input, as
    // either a static or dynamic header.
    info = GB_new (&T, // always hyper, existing header
        ttype, vlen, vdim, GB_Ap_malloc, is_csc,
        GxB_HYPERSPARSE, GB_ALWAYS_HYPER, tnvec, Context) ;
    if (info != GrB_SUCCESS)
    { 
        // out of memory
        GB_FREE_WORKSPACE ;
        return (info) ;
    }

    ASSERT (T->p != NULL) ;
    ASSERT (T->h != NULL) ;
    ASSERT (T->b == NULL) ;
    ASSERT (T->i == NULL) ;
    ASSERT (T->x == NULL) ;

    T->iso = S_iso ;                // OK: T is iso if and only if Sx is iso
    do_burble = do_burble && (vlen > 1 || vdim > 1) && (nvals > 1) ;
    if (do_burble)
    {
        if (S_iso)
        { 
            GBURBLE ("(iso build) ") ;
        }
        else
        { 
            GBURBLE ("(build) ") ;
        }
    }

    //--------------------------------------------------------------------------
    // STEP 4: construct the vector pointers and hyperlist for T
    //--------------------------------------------------------------------------

    // Step 4 scans the J_work indices and constructs T->h and T->p.

    int64_t *restrict Th = T->h ;
    int64_t *restrict Tp = T->p ;

    if (vdim <= 1)
    {

        //----------------------------------------------------------------------
        // special case for vectors
        //----------------------------------------------------------------------

        ASSERT (tnvec == 0 || tnvec == 1) ;
        if (tnvec > 0)
        { 
            Th [0] = 0 ;
            Tp [0] = 0 ;
        }

    }
    else if (ndupl == 0)
    {

        //----------------------------------------------------------------------
        // no duplicates appear
        //----------------------------------------------------------------------

        int tid ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (tid = 0 ; tid < nthreads ; tid++)
        {

            int64_t my_tnvec = tnvec_slice [tid] ;
            int64_t tstart   = tstart_slice [tid] ;
            int64_t tend     = tstart_slice [tid+1] ;
            int64_t jlast    = GB_J_WORK (tstart-1) ;

            for (int64_t t = tstart ; t < tend ; t++)
            {
                // get the t-th tuple
                int64_t j = GB_J_WORK (t) ;
                if (j > jlast)
                { 
                    // vector j starts in this slice
                    Th [my_tnvec] = j ;
                    Tp [my_tnvec] = t ;
                    my_tnvec++ ;
                    jlast = j ;
                }
            }
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // it is known that at least one duplicate appears
        //----------------------------------------------------------------------

        int tid ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (tid = 0 ; tid < nthreads ; tid++)
        {

            int64_t my_tnz   = tnz_slice [tid] ;
            int64_t my_tnvec = tnvec_slice [tid] ;
            int64_t tstart   = tstart_slice [tid] ;
            int64_t tend     = tstart_slice [tid+1] ;
            int64_t jlast    = GB_J_WORK (tstart-1) ;

            for (int64_t t = tstart ; t < tend ; t++)
            {
                // get the t-th tuple
                int64_t i = I_work [t] ;
                int64_t j = GB_J_WORK (t) ;
                if (i >= 0)
                {
                    // this is a new tuple
                    if (j > jlast)
                    { 
                        // vector j starts in this slice 
                        Th [my_tnvec] = j ;
                        Tp [my_tnvec] = my_tnz ;
                        my_tnvec++ ;
                        jlast = j ;
                    }
                    my_tnz++ ;
                }
            }
        }
    }

    // log the end of the last vector
    T->nvec_nonempty = tnvec ;
    T->nvec = tnvec ;
    Tp [tnvec] = tnz ;
    T->nvals = tnz ;
    ASSERT (T->nvec == T->plen || (T->plen == 1 && T->nvec == 0)) ;
    T->magic = GB_MAGIC ;

    //--------------------------------------------------------------------------
    // free J_work if it exists
    //--------------------------------------------------------------------------

    ASSERT (J_work_handle != NULL) ;
    GB_FREE (J_work_handle, *J_work_size_handle) ;
    J_work = NULL ;

    //--------------------------------------------------------------------------
    // allocate T->i
    //--------------------------------------------------------------------------

    if (ndupl == 0)
    {
        // shrink I_work from size ijslen to size tnz
        if (tnz < ijslen)
        { 
            // this cannot fail since the size is shrinking.
            bool ok ;
            GB_REALLOC (I_work, tnz, int64_t, I_work_size_handle, &ok, Context);
            ASSERT (ok) ;
        }
        // transplant I_work into T->i
        T->i = I_work ; T->i_size = (*I_work_size_handle) ;
        I_work = NULL ;
        (*I_work_handle) = NULL ;
        (*I_work_size_handle) = 0 ;
    }
    else
    {
        // duplicates exist, so allocate a new T->i.  I_work must be freed later
        T->i = GB_MALLOC (tnz, int64_t, &(T->i_size)) ;
        if (T->i == NULL)
        { 
            // out of memory
            GB_phybix_free (T) ;
            GB_FREE_WORKSPACE ;
            return (GrB_OUT_OF_MEMORY) ;
        }
    }

    int64_t *restrict Ti = T->i ;

    //==========================================================================
    // numerical phase of the build: assemble any duplicates
    //==========================================================================

    // The tuples have been sorted.  Assemble any duplicates with a switch
    // factory of built-in workers, or four generic workers.  The vector
    // pointers T->p and hyperlist T->h (if hypersparse) have already been
    // computed.

    // If there are no duplicates, T->i holds the row indices of the tuple.
    // Otherwise, the row indices are still in I_work.  K_work holds the
    // positions of each tuple in the array Sx.  The tuples are sorted so that
    // duplicates are adjacent to each other and they appear in the order they
    // appeared in the original tuples.  This method assembles the duplicates
    // and computes T->i and T->x from I_work, K_work, and Sx.  into T, becoming
    // T->i.  If no duplicates appear, T->i is already computed, and Sx just
    // needs to be copied and permuted into T->x.

    // The (i,k,Sx[k]) tuples are held in two integer arrays: (1) I_work or
    // T->i, and (2) K_work, and an array Sx of numerical values.  Sx has not
    // been sorted, nor even accessed yet.  It is identical to the original
    // unsorted tuples.  The (i,k,Sx[k]) tuple holds the row index i, the
    // position k, and the value Sx [k].  This entry becomes T(i,j) = Sx [k] in
    // the matrix T, and duplicates (if any) are assembled via the dup
    // operator.

    //--------------------------------------------------------------------------
    // get opcodes and check types
    //--------------------------------------------------------------------------

    // With GB_build, there can be 1 to 2 different types.
    //      T->type is identical to the types of x,y,z for z=dup(x,y).
    //      dup is never NULL and all its three types are the same
    //      The type of Sx (stype) can different but must be compatible
    //          with T->type

    // With GB_wait, there can be 1 to 5 different types:
    //      The pending tuples are in Sx, of type stype which must be
    //          compatible with dup->ytype and T->type
    //      z = dup (x,y): can be NULL or have 1 to 3 different types
    //      T->type: must be compatible with all above types.
    //      dup may be NULL, in which case it is assumed be the implicit SECOND
    //          operator, with all three types equal to T->type

    GrB_Type xtype, ytype, ztype ;
    GxB_binary_function fdup ;
    #ifndef GBCUDA_DEV
    GB_Opcode opcode ;
    #endif

    GB_Type_code tcode = ttype->code ;
    const size_t tsize = ttype->size ;
    bool op_2nd ;

    ASSERT_TYPE_OK (ttype, "ttype for build_factory", GB0) ;

    if (dup == NULL)
    { 

        //----------------------------------------------------------------------
        // dup is the implicit SECOND operator
        //----------------------------------------------------------------------

        // z = SECOND (x,y) where all three types are the same as ttype
        // T(i,j) = (ttype) Sx(k) will be done for all tuples.

        #ifndef GBCUDA_DEV
        opcode = GB_SECOND_binop_code ;
        #endif
        xtype = ttype ;
        ytype = ttype ;
        ztype = ttype ;
        fdup = NULL ;
        op_2nd = true ;
        ASSERT (GB_op_is_second (dup, ttype)) ;

    }
    else
    { 

        //----------------------------------------------------------------------
        // dup is an explicit operator
        //----------------------------------------------------------------------

        // T(i,j) = (ttype) Sx[k] will be done for the first tuple.
        // for subsequent tuples: T(i,j) += Sx[k], via the dup operator and
        // typecasting:
        //
        //      y = (dup->ytype) Sx[k]
        //      x = (dup->xtype) T(i,j)
        //      z = (dup->ztype) dup (x,y)
        //      T(i,j) = (ttype) z

        ASSERT_BINARYOP_OK (dup, "dup for build_factory", GB0) ;
        ASSERT (!S_iso) ;
        #ifndef GBCUDA_DEV
        opcode = dup->opcode ;
        #endif
        xtype = dup->xtype ;
        ytype = dup->ytype ;
        ztype = dup->ztype ;
        fdup = dup->binop_function ;
        op_2nd = GB_op_is_second (dup, ttype) ;
    }

    //--------------------------------------------------------------------------
    // get the sizes and codes of each type
    //--------------------------------------------------------------------------

    GB_Type_code zcode = ztype->code ;
    GB_Type_code xcode = xtype->code ;
    GB_Type_code ycode = ytype->code ;

    ASSERT (GB_Type_compatible (ttype, stype)) ;    // T(i,j) = (ttype) Sx
    ASSERT (GB_Type_compatible (ytype, stype)) ;    // y = (ytype) Sx
    ASSERT (GB_Type_compatible (xtype, ttype)) ;    // x = (xtype) T(i,j)
    ASSERT (GB_Type_compatible (ttype, ztype)) ;    // T(i,j) = (ttype) z

    size_t zsize = ztype->size ;
    size_t xsize = xtype->size ;
    size_t ysize = ytype->size ;

    // no typecasting if all 5 types are the same
    bool nocasting = (ttype == stype) &&
        (ttype == xtype) && (ttype == ytype) && (ttype == ztype) ;

    ASSERT_TYPE_OK (ttype, "ttype for build_factory", GB0) ;
    ASSERT_TYPE_OK (stype, "stype for build_factory", GB0) ;
    ASSERT_TYPE_OK (xtype, "xtype for build_factory", GB0) ;
    ASSERT_TYPE_OK (ytype, "ytype for build_factory", GB0) ;
    ASSERT_TYPE_OK (ztype, "ztype for build_factory", GB0) ;

    //--------------------------------------------------------------------------
    // STEP 5: assemble the tuples
    //--------------------------------------------------------------------------

    bool copy_S_into_T = (nocasting && known_sorted && ndupl == 0) ;

    if (copy_S_into_T && S_work != NULL)
    { 

        //----------------------------------------------------------------------
        // transplant S_work into T->x
        //----------------------------------------------------------------------

        // No typecasting is needed, the tuples were originally in sorted
        // order, and no duplicates appear.  All that is required is to copy Sx
        // into Tx.  Sx can be directly transplanted into T->x since Sx is
        // provided as S_work.  GB_builder must either transplant or free
        // S_work.  The transplant can be used by GB_wait, whenever the tuples
        // are already sorted, with no duplicates, and no typecasting is
        // needed, since S_work is always A->Pending->x.  T and Sx may be iso
        // or non-iso.

        T->x = S_work ; T->x_size = (*S_work_size_handle) ;
        S_work = NULL ;
        (*S_work_handle) = NULL ;
        (*S_work_size_handle) = 0 ;

        int64_t tx_size_required = tnz * tsize ;
        if (2 * tx_size_required < T->x_size)
        { 
            // shrink the size of T->x
            bool ok = true ;
            GB_REALLOC (T->x, tx_size_required, GB_void, &(T->x_size), &ok,
                Context) ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // allocate T->x
        //----------------------------------------------------------------------

        T->x = GB_XALLOC (false, S_iso, tnz, tsize, &(T->x_size)) ; // x:OK
        if (T->x == NULL)
        { 
            // out of memory
            GB_phybix_free (T) ;
            GB_FREE_WORKSPACE ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        GB_void *restrict Tx = (GB_void *) T->x ;

        ASSERT (GB_IMPLIES (nvals > 0, Sx != NULL)) ;

        if (nvals == 0)
        { 

            // nothing to do

        }
        else if (copy_S_into_T)
        { 

            //------------------------------------------------------------------
            // copy Sx into T->x
            //------------------------------------------------------------------

            // No typecasting is needed, the tuples were originally in sorted
            // order, and no duplicates appear.  All that is required is to
            // copy Sx into Tx.  Sx cannot be transplanted into T->x since
            // S_work is NULL and S_input cannot be modified by GB_builder.

            ASSERT (S_work == NULL) ;
            ASSERT (Sx == S_input) ;
            GB_memcpy (Tx, Sx, (S_iso ? 1 : nvals) * tsize, nthreads) ;

        }
        else if (nocasting)
        { 

            //------------------------------------------------------------------
            // assemble the values, Sx, into T, no typecasting needed
            //------------------------------------------------------------------

            // Sx (either S_work or S_input) must be permuted and copied into
            // T->x, since the tuples had to be sorted, or duplicates appear.
            // Any duplicates are now assembled.

            // There are 44 common cases of this function for built-in types
            // and 8 associative operators: MIN, MAX, PLUS, TIMES for 10 types
            // (all but boolean; and OR, AND, XOR, and EQ for boolean.

            // In addition, the FIRST and SECOND operators are hard-coded, for
            // another 22 workers, since SECOND is used by GB_wait and since
            // FIRST is useful for keeping the first tuple seen.  It is
            // controlled by the GB_INCLUDE_SECOND_OPERATOR definition, so they
            // do not appear in GB_reduce_to_* where the FIRST and SECOND
            // operators are not needed.

            // Early exit cannot be exploited, so the terminal is ignored.

            bool done = false ;

            if (S_iso)
            { 

                //--------------------------------------------------------------
                // T and Sx are iso; set iso value and delete duplicates
                //--------------------------------------------------------------

                memcpy (Tx, Sx, tsize) ;
                #define GB_ISO_BUILD
                #include "GB_reduce_build_template.c"
                done = true ;

            }
            else
            { 

                //--------------------------------------------------------------
                // T and Sx are not iso; call in the workers
                //--------------------------------------------------------------

                #ifndef GBCUDA_DEV

                    //----------------------------------------------------------
                    // define the worker for the switch factory
                    //----------------------------------------------------------

                    #define GB_INCLUDE_SECOND_OPERATOR

                    #define GB_red(opname,aname) \
                        GB (_red_build_ ## opname ## aname)

                    #define GB_RED_WORKER(opname,aname,atype)               \
                    {                                                       \
                        info = GB_red (opname, aname) ((atype *) Tx, Ti,    \
                            (atype *) Sx, nvals, ndupl, I_work, K_work,     \
                            tstart_slice, tnz_slice, nthreads) ;            \
                        done = (info != GrB_NO_VALUE) ;                     \
                    }                                                       \
                    break ;

                    //----------------------------------------------------------
                    // launch the switch factory
                    //----------------------------------------------------------

                    // controlled by opcode and typecode
                    GB_Type_code typecode = tcode ;
                    #include "GB_red_factory.c"

                #endif
            }

            //------------------------------------------------------------------
            // generic worker
            //------------------------------------------------------------------

            if (!done)
            {
                if (do_burble) GBURBLE ("(generic build) ") ;

                //--------------------------------------------------------------
                // no typecasting, but use the fdup function pointer and memcpy
                //--------------------------------------------------------------

                // Either the fdup operator or type of Sx and T are
                // user-defined, or fdup is not an associative operator handled
                // by the GB_red_factory, or some combination of these
                // conditions.  User-defined types cannot be typecasted, so
                // this handles all user-defined types.

                // Tx [p] = (ttype) Sx [k], but with no typecasting
                #undef  GB_CAST_ARRAY_TO_ARRAY
                #define GB_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)               \
                    memcpy (Tx +((p)*tsize), Sx +((k)*tsize), tsize) ;

                if (op_2nd)
                { 

                    //----------------------------------------------------------
                    // dup is the SECOND operator, with no typecasting
                    //----------------------------------------------------------

                    // Tx [p] += (ttype) Sx [k], but 2nd op and no typecasting
                    #undef  GB_ADD_CAST_ARRAY_TO_ARRAY
                    #define GB_ADD_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)       \
                        GB_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)
                    #include "GB_reduce_build_template.c"

                }
                else
                { 

                    //----------------------------------------------------------
                    // dup is another operator, with no typecasting needed
                    //----------------------------------------------------------

                    // Tx [p] += (ttype) Sx [k], but with no typecasting
                    #undef  GB_ADD_CAST_ARRAY_TO_ARRAY
                    #define GB_ADD_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)       \
                        fdup (Tx +((p)*tsize), Tx +((p)*tsize), Sx+((k)*tsize));
                    #include "GB_reduce_build_template.c"
                }
            }

        }
        else
        {

            //------------------------------------------------------------------
            // assemble the values Sx into T, typecasting as needed
            //------------------------------------------------------------------

            if (do_burble)
            {
                GBURBLE ("(generic build with typecast) ") ;
            }

            // If T and Sx are iso, no typecasting is ever done, so this method
            // is not used in that case.
            ASSERT (!S_iso) ;

            // Sx (either S_work or S_input) must be permuted and copied into
            // T->x, since the tuples had to be sorted, or duplicates appear.
            // Any duplicates are now assembled.  Not all of the 5 types are
            // the same, but all of them are built-in since user-defined types
            // cannot be typecasted.

            const GB_Type_code scode = stype->code ;
            const size_t ssize = stype->size ;
            GB_cast_function cast_S_to_T = GB_cast_factory (tcode, scode) ;
            GB_cast_function cast_S_to_Y = GB_cast_factory (ycode, scode) ;
            GB_cast_function cast_T_to_X = GB_cast_factory (xcode, tcode) ;
            GB_cast_function cast_Z_to_T = GB_cast_factory (tcode, zcode) ;

            ASSERT (scode <= GB_FC64_code) ;
            ASSERT (tcode <= GB_FC64_code) ;
            ASSERT (xcode <= GB_FC64_code) ;
            ASSERT (ycode <= GB_FC64_code) ;
            ASSERT (zcode <= GB_FC64_code) ;

            // Tx [p] = (ttype) Sx [k], with typecasting
            #undef  GB_CAST_ARRAY_TO_ARRAY
            #define GB_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)                   \
                cast_S_to_T (Tx +((p)*tsize), Sx +((k)*ssize), ssize) ;

            if (op_2nd)
            { 

                //--------------------------------------------------------------
                // dup operator is the SECOND operator, with typecasting
                //--------------------------------------------------------------

                // Tx [p] += (ttype) Sx [k], but 2nd op, with typecasting
                #undef  GB_ADD_CAST_ARRAY_TO_ARRAY
                #define GB_ADD_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)           \
                    GB_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)
                #include "GB_reduce_build_template.c"

            }
            else
            { 

                //--------------------------------------------------------------
                // dup is another operator, with typecasting required
                //--------------------------------------------------------------

                // Tx [p] += Sx [k], with typecasting
                #undef  GB_ADD_CAST_ARRAY_TO_ARRAY
                #define GB_ADD_CAST_ARRAY_TO_ARRAY(Tx,p,Sx,k)               \
                {                                                           \
                    /* ywork = (ytype) Sx [k] */                            \
                    GB_void ywork [GB_VLA(ysize)] ;                         \
                    cast_S_to_Y (ywork, Sx +((k)*ssize), ssize) ;           \
                    /* xwork = (xtype) Tx [p] */                            \
                    GB_void xwork [GB_VLA(xsize)] ;                         \
                    cast_T_to_X (xwork, Tx +((p)*tsize), tsize) ;           \
                    /* zwork = f (xwork, ywork) */                          \
                    GB_void zwork [GB_VLA(zsize)] ;                         \
                    fdup (zwork, xwork, ywork) ;                            \
                    /* Tx [tnz-1] = (ttype) zwork */                        \
                    cast_Z_to_T (Tx +((p)*tsize), zwork, zsize) ;           \
                }

                #include "GB_reduce_build_template.c"
            }
        }
    }

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    T->jumbled = false ;
    ASSERT_MATRIX_OK (T, "T built", GB0) ;
    ASSERT (GB_IS_HYPERSPARSE (T)) ;
    return (GrB_SUCCESS) ;
}