File: GB_concat.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (265 lines) | stat: -rw-r--r-- 9,816 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//------------------------------------------------------------------------------
// GB_concat: concatenate an array of matrices into a single matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#define GB_FREE_WORKSPACE               \
    GB_WERK_POP (Tile_cols, int64_t) ;  \
    GB_WERK_POP (Tile_rows, int64_t) ;

#define GB_FREE_ALL                     \
    GB_FREE_WORKSPACE ;                 \
    GB_phybix_free (C) ;

#include "GB_concat.h"

GrB_Info GB_concat                  // concatenate a 2D array of matrices
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix *Tiles,        // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------

    GB_WERK_DECLARE (Tile_rows, int64_t) ;
    GB_WERK_DECLARE (Tile_cols, int64_t) ;
    GB_WERK_PUSH (Tile_rows, m+1, int64_t) ;
    GB_WERK_PUSH (Tile_cols, n+1, int64_t) ;
    if (Tile_rows == NULL || Tile_cols == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT_MATRIX_OK (C, "C input for GB_concat", GB0) ;
    for (int64_t k = 0 ; k < m*n ; k++)
    { 
        GrB_Matrix A = Tiles [k] ;
        GB_RETURN_IF_NULL_OR_FAULTY (A) ;
        ASSERT_MATRIX_OK (A, "Tile[k] input for GB_concat", GB0) ;
        GB_MATRIX_WAIT (A) ;
    }

    //--------------------------------------------------------------------------
    // check the sizes and types of each tile
    //--------------------------------------------------------------------------

    bool csc = C->is_csc ;
    GrB_Type ctype = C->type ;

    for (int64_t i = 0 ; i < m ; i++)
    { 
        GrB_Matrix A = GB_TILE (Tiles, i, 0) ;
        Tile_rows [i] = GB_NROWS (A) ;
    }

    for (int64_t j = 0 ; j < n ; j++)
    { 
        GrB_Matrix A = GB_TILE (Tiles, 0, j) ;
        Tile_cols [j] = GB_NCOLS (A) ;
    }

    bool C_is_full = true ;
    bool C_iso = false ;
    const size_t csize = ctype->size ;
    const GB_Type_code ccode = ctype->code ;
    GB_void cscalar [GB_VLA(csize)] ;
    GB_void ascalar [GB_VLA(csize)] ;
    memset (cscalar, 0, csize) ;
    memset (ascalar, 0, csize) ;
    int64_t cnz = 0 ;
    int64_t cnvec_estimate = 0 ;    // upper bound on C->nvec if hypersparse

    for (int64_t i = 0 ; i < m ; i++)
    {
        for (int64_t j = 0 ; j < n ; j++)
        {

            //------------------------------------------------------------------
            // get the (i,j) tile
            //------------------------------------------------------------------

            GrB_Matrix A = GB_TILE (Tiles, i, j) ;

            //------------------------------------------------------------------
            // check the types and dimensions
            //------------------------------------------------------------------

            int64_t nrows = GB_NROWS (A) ;
            int64_t ncols = GB_NCOLS (A) ;
            int64_t anz = GB_nnz (A) ;
            int A_sparsity = GB_sparsity (A) ;
            if (A_sparsity == GxB_HYPERSPARSE)
            { 
                cnvec_estimate += A->nvec ;
            }
            else
            { 
                int64_t n = csc ? ncols : nrows ;
                cnvec_estimate += GB_IMIN (n, anz) ;
            }
            GrB_Type atype = A->type ;
            #define offset (GB_Global_print_one_based_get ( ) ? 1 : 0)
            if (!GB_Type_compatible (ctype, atype))
            { 
                GB_FREE_WORKSPACE ;
                GB_ERROR (GrB_DOMAIN_MISMATCH,
                    "Input matrix Tiles{" GBd "," GBd "} of type [%s]\n"
                    "cannot be typecast to output of type [%s]\n",
                    i+offset, j+offset, atype->name, ctype->name) ;
            }
            int64_t tile_rows = Tile_rows [i] ;
            if (tile_rows != nrows)
            { 
                GB_FREE_WORKSPACE ;
                GB_ERROR (GrB_DIMENSION_MISMATCH,
                    "Input matrix Tiles{" GBd "," GBd "} is " GBd "-by-" GBd
                    "; its row\ndimension must match all other matrices Tiles{"
                    GBd ",:}, which is " GBd "\n", i+offset, j+offset,
                    nrows, ncols, i+offset, tile_rows) ;
            }
            int64_t tile_cols = Tile_cols [j] ;
            if (tile_cols != ncols)
            { 
                GB_FREE_WORKSPACE ;
                GB_ERROR (GrB_DIMENSION_MISMATCH,
                    "Input matrix Tiles{" GBd "," GBd "} is " GBd "-by-" GBd
                    "; its column\ndimension must match all other matrices "
                    "Tiles{:," GBd "}, which is " GBd "\n", i+offset, j+offset,
                    nrows, ncols, j+offset, tile_cols) ;
            }

            //------------------------------------------------------------------
            // check if C is iso, full, and/or empty
            //------------------------------------------------------------------

            bool A_full = (A_sparsity == GxB_FULL) || (anz == GB_nnz_full (A)) ;
            bool A_empty = (anz == 0) ;
            bool A_iso = A->iso || (anz == 1 && A_sparsity != GxB_BITMAP) ;

            // C is full only if all tiles are full or as-if-full.  A tile with
            // a zero dimension has no entries and is both as-if-full and
            // empty, but not iso.
            C_is_full = C_is_full && A_full ;

            // get the iso value of an iso tile, typecasted to C->type
            if (A_iso)
            {
                GB_cast_scalar (ascalar, ccode, A->x, A->type->code, csize) ;
                if (cnz == 0)
                { 
                    // A is the first non-empty iso tile seen while C is empty;
                    // C becomes non-empty and iso, with the iso value from A.
                    C_iso = true ;
                    memcpy (cscalar, ascalar, csize) ;
                }
            }

            // C is iso only if at least one tile is iso, and all others empty
            // or iso with the same value as the first non-empty iso tile
            if (C_iso)
            {
                if (A_empty)
                { 
                    // C remains iso
                }
                else if (A_iso)
                { 
                    // C and A are both iso; check if iso values are the same
                    C_iso = C_iso && (memcmp (cscalar, ascalar, csize) == 0) ;
                }
                else
                { 
                    // otherwise, C is non-iso
                    C_iso = false ;
                }
            }

            cnz += anz ;
        }
    }

    //--------------------------------------------------------------------------
    // replace Tile_rows and Tile_cols with their cumulative sum
    //--------------------------------------------------------------------------

    GB_cumsum (Tile_rows, m, NULL, 1, Context) ;
    GB_cumsum (Tile_cols, n, NULL, 1, Context) ;
    int64_t cnrows = Tile_rows [m] ;
    int64_t cncols = Tile_cols [n] ;
    if (cnrows != GB_NROWS (C) || cncols != GB_NCOLS (C))
    { 
        GB_FREE_WORKSPACE ;
        GB_ERROR (GrB_DIMENSION_MISMATCH,
            "C is " GBd "-by-" GBd " but Tiles{:,:} is " GBd "-by-" GBd "\n",
            GB_NROWS (C), GB_NCOLS (C), cnrows, cncols) ;
    }

    //--------------------------------------------------------------------------
    // C = concatenate (Tiles)
    //--------------------------------------------------------------------------

    if (cnz == 0)
    { 
        // construct C as an empty matrix
        GBURBLE ("(empty concat) ") ;
        GB_OK (GB_clear (C, Context)) ;
    }
    else if (C_is_full)
    { 
        // construct C as full
        GBURBLE ("(%sfull concat) ", C_iso ? "iso " : "") ;
        GB_OK (GB_concat_full (C, C_iso, cscalar,
            Tiles, m, n, Tile_rows, Tile_cols, Context)) ;
    }
    else if (GB_convert_sparse_to_bitmap_test (C->bitmap_switch, cnz, cnrows,
        cncols))
    { 
        // construct C as bitmap
        GBURBLE ("(%sbitmap concat) ", C_iso ? "iso " : "") ;
        GB_OK (GB_concat_bitmap (C, C_iso, cscalar,
            cnz, Tiles, m, n, Tile_rows, Tile_cols, Context)) ;
    }
    else if (GB_convert_sparse_to_hyper_test (C->hyper_switch, cnvec_estimate,
        C->vdim))
    { 
        // construct C as hypersparse
        GBURBLE ("(%shyper concat) ", C_iso ? "iso " : "") ;
        GB_OK (GB_concat_hyper (C, C_iso, cscalar,
            cnz, Tiles, m, n, Tile_rows, Tile_cols, Context)) ;
    }
    else
    { 
        // construct C as sparse
        GBURBLE ("(%ssparse concat) ", C_iso ? "iso " : "") ;
        GB_OK (GB_concat_sparse (C, C_iso, cscalar,
            cnz, Tiles, m, n, Tile_rows, Tile_cols, Context)) ;
    }

    //--------------------------------------------------------------------------
    // conform C to its desired format and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    ASSERT_MATRIX_OK (C, "C before conform for GB_concat", GB0) ;
    GB_OK (GB_conform (C, Context)) ;
    ASSERT_MATRIX_OK (C, "C output for GB_concat", GB0) ;
    return (GrB_SUCCESS) ;
}